August 2022

Terminator 2 ROM L8.3

ROM L8.3 Manual Includes

Change Log
Technical Details
Appendix
ROM Image Changes

Terminator 2 L8.3

History/Summary of Releases:

Revision Date Checksum | Info

L-8 Dec. 15, 1992 BEOS Official release

L8.1 April 9, 2011 7608 Small change to have the attract mode “boom boom” sound only
when Feature Adjustment A2.16 “Attract Sounds” is set to “ON”.

L8.2 April 1, 2012 6F08 This is 8.1 plus changes to attract mode sequence to have
previously played game scores shown more often especially at
game-over. This image also deletes the “T2 Fan Club”.

L8.3 June 28, 2022 7308 Selectable 8.1, 8.2, 8.3 attract mode. L8.3 attract mode playing “I

am a cybernetic organism” more often. Profanity ROM logic.
Custom ROM embedded attract mode message. Bug fixes for:
attract mode, DMD animation flicker, multiball ball-lock issues,
German text, ball-search. Selectable original or corrected DMD
animation logic. Selectable original and LED lamp driver.
Selectable drop-target state at multiball start. Selectable 3-bank
lamp behavior.

L8.3 Beta ROM Image History

Revision Date Checksum | Info

L8.3 April 15, 2022 3E08 Selectable 8.1, 8.2, 8.3 attract mode. L8.3 attract mode
playing “I am a cybernetic organism” more often. Profanity
ROM logic. Custom ROM embedded attract mode message.
Bug fixes for attract mode and for DMD animation flicker.

L8.3 April 28, 2022 4508 DMD Animation flicker ISR routine was reverted to original L-8
so that certain 3" party color display, which was designed for
original L-8, will not flicker.

L8.3 May 8, 2022 BBOS8 Added Lamp Driver adjustment to select between original and
LED lamp driver code.

L8.3 May 21, 2022 A008 Added the “MB START DT ACTN” adjustment to select how
drop target behaves at start of multiball.

L8.3 May 25, 2022 7508 Image with update to sound test.

L8.3 June 7, 2022 FFO8 Experimental change to sound test and initial fix
w/adjustment for the 3-bank target lamp behavior.

L8.3 June 22, 2022 7708 Removed experimental sound test changes. Added multiball
fixes.

L8.3 June 27, 2022 7608 Ball-search bug fix.

L8.3 June 28, 2022 7308 Minor correction to German text. Final. Release image.

Beta ROM info provided only for historical accounting. Images not intended for public release.

L8.3 Change Log

Added a “L8.3” attract mode. Same as 8.2 but plays “l am a cybernetic organism” call more often.
Supports T2 “Profanity ROM” w/FUA database award in place of 100,000 (w/adjustment).

Added selectable attract mode, 8.1, 8.2, 8.3. The 8.1 mode will not include T2 Fan Club message.
Fixed bug in display animations that were being shown with unintended flickering (w/adjustment).
Support of the anti-ghosting lamp matrix code patch to prevent LED ghosting (w/adjustment).
Improved anti-ghosting patch code to prevent controlled-lamp flicker during “Gl Power Saver” mode.
Added Feature Adjustment 22 to allow enable/disable of profanity mode.

Added Feature Adjustment 23 to allow selection of the attract mode, L8,1, L8,2 or L8.3.

Added Feature Adjustment 24 to allow selection of original or corrected DMD animation logic.

Added Feature Adjustment 25 to allow selection of original or anti-ghost LED lamp driver code.
Added Feature Adjustment 26 to allow selection of drop-target state at multiball start.

Added Feature Adjustment 27 to allow selection of timed 3-bank lamp state at end-of-ball.

Fixed bug in WPC custom message where it was showing “Testing...” message prior to display.

Fixed bug in Game-Over L8.1 attract mode where the previous game scores were not displaying.
Added support for a custom embedded attract mode message w/ 3-line selectable font & placement.
Corrected spelling errors in the German text strings.

Fixed multiball bug where multiball state was being exited while multiple balls remained on playfield.
Fixed multiball bug where ball lock sometimes reported “Jackpot Multiplied 0x=0".

Fixed multiball bug when final “Load the gun” period was sometimes skipped at end of multiball.
Fixed ball-search bug, drop-target knock-down was accumulating points and played speech.

Fixed ball-search bug, drop-target was getting kicked up when adjustment A.2 20 was set to “On”.
Fixed Sound Test T.7 05 (Database) during “repeat” doesn’t restart the music every few seconds.

o Some3"™ party sound boards classify 05 as non-music & continue playing 05 during “running” test.

L8.3 Changes to L-8 ROM Image, Summary Table
Table is shown below for quick reference of changes done for each L8 ROM image. Details on the L8.3
changes are provided in the next section of this document.

Attract Mode L8.1
(original L-8 sequence)
Attract Mode L8.2
(scores shown more often)
Attract Mode L8.3
(‘Cyber netic’ sounds more often)
Selectable Attract Mode
L8.1,18.2, 8.3
Bug Fix: Multiball ball-lock issues
Corrected German Text
Profanity (FUA) option
Custom ROM embedded custom
message in attract mode

(]
T
]
=
-
(8]
@
-
=]
-
<
Q2
=
o
c
(]
('
(o]
'—
©
=
80
f=
(@)

Bug Fix:“Boom Boom” attract sounds
Bug Fix: WPC Custom Message “Testing”
Bug Fix: Game-over Last scores display
Bug Fix: Animation flicker problem
With selectable original/fixed mode
Bug Fix: Ball-search drop-target issues
Selectable Lamp Driver Original / LED
Selectable 3-bank lamp bugfix behavior

Updated Sound Test Code for sound 05

Note: With L8.3, regardless of “Attract Mode” selection, the “T2 Fan Club” message will never be shown.
Regardless of the “Attract Mode” selection, the custom ROM embedded message, if present, will always
be shown, periodically, during attract mode.

Document Revision History

Revison 1.0, March 2022, Initial draft.

Revision 1.1, April 2022, Cleaned up L8.3 revision statements. Moved sections to make document
consistent in ordering of the L8.3 update items. Added DMD Animation flicker bug fix.

Revision 1.2, April 2022, Indicated beta L8.3 rom images used for testing purposes.

Revision 1.3, August 2022, Added remaining sections describing L8.3.

Table of Contents

TermMINATOr 2 L8.3 i a e a e 2
L8.3 Beta ROM IMABE HiSTOIY coeiiiiieiieie ettt e ettt e e e e s ettt e e e e s s st reeeeeeesessnnenaeeeeeesnnan 2
IR0 @ o =T Yo I I o Y-S PSSR 3
L8.3 Changes to L-8 ROM Image, SUMMAry Tablec.uviiiiiiiiciieccee e 4
DOCUMENT REVISION HISTOIY ..ciiiiiiiiiiiiiiiiiiieieieeeeteeeeee et ee e e e et e e e e e e e e e e e e e e e eeeeeeaeeeeeeeeeeeeeseeeeeaeaeaeaens 4
L8.3 Changes to L-8 ROM Image, Technical Details.........ccccouieeiiiiiiiiciiee ettt e e 9
The L8.3 Fan-Club Adjustment REPIACEMENT..........iii et e e e arae e s e b e e e e eareeas 11
The L8.2/18.3 changes t0 attraCt MOoouviiereiieiiccree ettt ettt ete et e et e e ere e eebeeeeaeeeeteeeeanas 12
The L8.3 “Cybernetic Organism” and “LastGameScores” Changes......ccccveeevecirieeeeeeeeeieciireeee e eeeireeeee e 14
L=l =70 M e ToToT 0 o 1 e ToTo T o' I o TUT 8 £ GO TP 15
The L8.3 “Testing...” WPC Custom Message DUE fiXueeeeiuiiiiiiiieeeecie ettt et 16
The L8.3 “Last-Game-Scores” game-over attract mode bug fiXcoccvieiiiiiii i, 20
The “LastGameScores” Missing Display (L-8, L8.1 ROM iMagES).....ccccurreeecrireeieiiieeeecireeeeecrreeeeecvveeeeenns 20
The “LastGameScores” Incorrect Display (L-8, L8.1, L8.2 ROM iMaZES)...ccccvvreererereerireeeeeerreeeeeeveeeeenne 21
The L8.3 “Last-Game-Scores” game-over attract mode code fiXeS......uuvveieeeiiiirieeeieeeieicciireeee e 23
The L8.3 FUA COUE INCIUSION ...ttt ettt ettt ettt st sttt et b e s bt e smeesmeeeaeeeneean 25
The L8.3 Display Animation flicker DUE fiX........cccuiiiieiie et 26
The L8.3 Display Animation flicker problem analysiscooeieoiiiiicciii e 27
The L8.3 Display Animation flicker affected animationsccoccvvveeiiciiii e 30
The SEEQL INterrupt SEIVICE ROUTINE ...c.veiviireerecieceeere et ere et ettt sreete e e steeteesneebeeasesreereensesteennensesanenns 32
The Getaway L-5 Interrupt SErvice ROULINE.....coccuiiii ittt e e e e e sare e e 34
Analysis of T2 MemMory SBA fOr NEW IOZIC.....ccuviiiiiiiieeeteeete ettt ete e eve e beeereeereseneeenee s 36
Corrections to Animation Init Code and ISR Code for L8.3......ccoiiiiiiiiriieieeieesiee st 37
INTLIAL FIX TN L8.3 BEEA c..eiueieiieette ettt sttt ettt be e sttt e b e et e e sbe e saeesatesabeebeebeenas 38
Final FiX iN L8.3 ReIEASE IMAG....cuuiiiiiciiiee ittt ettt ettt ette e e e etee e e et e e e e eatee e e e eabae e s esabaee e ennbeeeeennseeas 38

The L8.3 Display Animation Analysis and FIXES........ceccuiieiiiiiiieeiieie et sree e s ree e s aree e e eabae e e areeas 41
ANIMAtioN FiX: SECUNILY LEVEIS ...oiiiiiiiie ettt ettt e et e e e rabee e e e sabaee s esnbeeeeenareeas 45
Animation Fix: T-1000 Self-Healed/EXtra Ball AWAId........ccuooviieeoeeeeeeeee ettt e e e e e eeeeeteeeeessesereeeeees 46
The L8.3 Custom Message support in the ROMccoi ittt e e e e e e e e e nnrae e e e 48
The L8.3 Custom Message ASSEMDBIY COAE..... ..t e e et rrr e e e e e e e sabrr e e e e e e e e e eennrnnns 49

The L8.3 Custom Message Adjustable Values Table........coccviiiiiiie i 50

The L8.3 Custom Message Adjustable Values INfO ...ttt 51

[T = g O RPPURTOT 51
LINE FONT.cciiiiiii e ra s 52
LINE X-POSITION..cciiiiiiiiiiiii it 53
LINE Y-POSITION..cciiiiiiiiiiiii e e 53
SOUNG Gl ittt b et e st e s bt e e s ab e e s beeesabeesabeesbeeesabeeesnseesaseesareeesbeesans 54
IV LT 1 ATV T 1T 61
(D11 o] Y =T o o o [P 65
FONTS e e e e e s srr e e e s sanee 65
FONTOXO00 ...ttt et s e s e e s s e e e s s enb e e e s s e e e s e b e e e s earee s 67
FONTOXOT ettt e s e e s s e s s e e e s s e e e s s b e e e s s eare e e s e e 67
FONT OXO3 ...ttt et ettt ettt et e et e esat e e s bt e e ea b e e sabteebeeesabe e e abeesabeeeanbeesabeeenaseesabeesasbeesabeeenrs 68
FONTOXOA ...ttt ettt ettt e b bt e s at e e s bt e e s a b e e sabte e beeesabee e abeesabeesanbeesabeeenaseesabeesanbeesasaeenans 68
FONT OXOS ..t e s s e s s e s e e e s e s ree s 68
FONTOXOB ...ttt e s s e e s s e e e s s e e s e e e e s 68
FONT OXOT ettt e st e s s e s s e e s s e e s s e e e s e e e s aree s 68
FONT OXOB ...ttt ettt ettt ettt sttt e bt e e s a bt e s bt e e sa b e e sabteeaeeesabee e abeesabeesanbeesabeeenabaesabeesanteesasaeenanes 68
2o 01 001 TP P PP PRSP 69
FONE OXOA ..ottt ettt e bt et s e st s bt e bt e bt e s bt e sh e e s et e et e et e e bt e sneesanesanesane e reenee 69
FONTOXOB ...ttt et e s s e e s s e s s b e e s s b e e e s s b e e e s e enrenesesarenes 70
FONTOXOC ...ttt e s s e e s s e e s s b e e e s s b e e e s s ambe e e s ennenesssnrenes 71
FONT OXOF ... ittt et e s s e e s s e e s s e e e s s b e e e s s b e e e s e nreresssnrenes 71
FONE OXL0 ..ottt ettt et et et et et sae e st st et e bt e s bt e she e s ae e et e e bt e s bt e s seesanesane e ne e neenes 72
FONE OXLL .ottt ettt ettt et s e st st et e bt e s bt e s be e s ae e et e ear e e bt e sseesanesanesane e neenes 72
FONE OXL2 .ottt sttt et et et sae e st st et e bt e s bt e s he e st e et e et e e s bt e e neesanesanesne e reenes 72
L0) A0)1t RSP PURTOT 72
FONTOXIA ..ttt st e s st e s st e e e s e e s s mr e e s s amr e e e e e amr e e e s e amreeeseanreneeesnnenes 73
0]) A0)11 SOOI OT 73
FONTOXLO oottt e b e s ba e s a e s ara s 73
FONT OXL7 oottt e b e s s s e s s a e s a e s aba s 73
FONTOXL8 oottt e b e a e s aa e s ara s 73

[T 0T 0 L0 Y N 74

The L8.3 Feature Adjustments AdditioNs...........uuuiiiiii oo e r e e e e e e ree e e 75

Determining Total Number of AdjuStMENtScccuviiiiiiiie e 75
The L-8 Adjustments MEMOIY IMApueieiiiiiie ittt et e e ettee e e ectte e e e ette e e e sbteeesebteeeesbteeessseaeesesrneaesnes 76
Feature Adjustments Metadata Table ...ttt e e e e e e e eanes 79
Feature Adjustment: Profanityc.ceeoiei it s 81
Feature Adjustment: Attract MOTEcuuiiii i e e e e s e sbe e e s s areeas 81
Feature Adjustment: Remaining New AdjUuStMENTScoeiviiiiiiiiiiire e e e 83
Feature Adjustments String Tables........uii i st e e s e e s sreaeeesanee 83
The L8.3 TeXt STriNG COITECLIONSeeiiiiiiieecciiee ettt ettt e e e et e e e ete e e e et e e e s eabeeeeeanbeeesanntaeesennseeeeennsenas 87
The L8.3 SOUN TEST UPUALES...cccuuiiiieeiiie et e ettt ectee et e e e tte e e e te e e e ettt e e e sennteeesennteeesennseeesennseneeennsenas 89
Sound Test Update: Sound 05 Playing UnexXpectedly.........cooocuiiiieiiiiiiiciiee et 89
SOUN 05 ClasSifiCationcocuuieiiiiiiiieiiee ettt ettt e st esbee e bt e e sbeeesabeesabeesneeesabeeenns 89
Y10 g Lo MO R o] ol 1] o o USRS 91

FUA INCIUSION INTO SOUNT TESE ...uveitieiiiiiiieiie ettt ettt et sttt st be e b e b et e emeeeneean 93
Relocated SOUND TEST TabIE......coiiiiiiieeie ettt st s s 93
Updated Sound TeSt LOGIC fOr FUAoii ittt ettt e e tee e e et e e e eabe e e s e aba e e e eareeas 95

The L8.3 MUIIDAII BUS-FIXES ...eeiiurieiieiiiieeciiee s ecitte e ettt e et e e st e e e be e e e saae e e e snnbeeeesasbaaeessseeesennseeesennsenns 96
WPC Scheduled Functions and FUNCLION IDScccceriiriiriiiiiieiieneesee ettt s 97
Yol o 1=Te [U1 [T =48 TN ¥ o Yo u o T s ISP 97
SChedUuled FUNCLION ID ...couiiiieeeecee ettt sttt sttt et e b e s bt s st e st e et e e sbeesbeesaeesaneeas 97
MUIIDAI LOGIC OVEIVIEBW.......vieiieiiiee ettt e ettt e e et e e e et e e e e e bte e e e ebteeeesstseaeestasaesstaeaesassenessnnes 98
Multiball Startup Balls-In-Play Timing Problemccuiiiieiiiie ettt e e e e 99
Multiball Startup Balls-In-Play Timing Fix: Startup waits for balls-in-play greater than 1.................. 99
Multiball Startup Balls-In-Play Timing Fix: Maintenance function checks if startup is running 103
Multiball Startup Balls-In-Play Timing Fix: Corrected Multiball LOgIC.........coccueerireiinieiniieiiecrieeens 108
Multiball Switch Handler Logic Updatesuuiiiiieeei ettt e e e e e svnree e e e e e e e e nnrnees 109
Switch Handling, A Brief OVEIVIEWooouiiiieeee e et e et e e e et 109
Switch Handling, Ball Lock SWitch HandIercoeei it 116
Switch Handling, Outhole SWitch Handler............oe it 126
YT o F=1 | M 0o T g ¢=Yoru=Te [oY= oS 128
The L8.3 Lamp Driver UPAate ...uuveiiiiiiee ettt sttt e s e ette e e e satae e s e eata e e s e enbaee e e sanaeeaennranas 130

LED PatCh SUMMAIY oottt e e e e ettt e e e e e e e e e aab e e e e e e e e s e asabeeeeaaesesannsasaneaeaesesnnnrrnns 130

LED Patch Improvement, power-saver improVeMENtc.ccuveeeeeeeeecciiiieeee e e e eccirrree e e e e e e eenrreeeeeeeeeeas 130

Lamp Driver Code MOdIfiCatioNScccuviieiiiiiiiiciiie et e e s e e ssabae e e s snreeeeas 133
Relocated CoPYriSht IMIESSAEE ...cccvieeiiciiiee ettt ettt et e e et e e e et e e e etae e e s eateeeesbaeeeessteeessnstaeeesnnes 135
LamMP DIIVEL RESUILS . .evvieiieiiiee ettt ettt e ettt e e ettt e e et e e e e sata e e e sstaee e e asaeeeensseeesnsaeeesnnsseeesnnnseeanns 136
The L8.3 Multiball-Start Drop-Target Action ENhancementcoooviiiiiciiie e 137
Drop Target Down Multiball AdjUuSTMENTcooiiiiiiiicee e s e s sare e e 137
Multiball-Start Drop-Target Action AdJUSTMENTccoiiiiiiiiiee e 137
Multiball-Start Drop-Target Action Adjustment COe......occuuiiiiiiiiiiiiiiiee e 138
Multiball-Start Drop-Target Action Adjustment Code, Up/Down FUNCLIONS.........cccvveeivieeiieeeeneens 142
Multiball-Start Drop-Target Action Adjustment Code, Drop-Target Switch Handler...................... 144
Multiball-Start Drop-Target Action Adjustment Code ANalYSiS........ccccveeeeiiieeeeiiieeeeceee e 148
Drop-Target Up FUNCtion ID 00 B OVEIIAP ..vviiiiiiiieeiciieee ettt e eectteee e sttt e e e site e e s svaee e s snteeessnraeessnnes 150

The L8.3 Timed 3-Bank LAmMP FiXES ...ccuuiiiiiiiieeiiiiee s criiee s eettee s estte e e stte e s etee e s s snbae e e ssnbeeesesnbaeeeesnseaesenasenas 157
The L8.3 Ball-SEArch BUE FiXESueiiiiiiieiieiiie e cetiee ettt e e eette e e etee e e e ete e e e e e tee e e e enbaee e eeabaeeeennbaneeesnseneeennsenas 164
F YT 1< o Yo [RSP 169
SOIENO0IA TABIE ...ttt ettt e b e s ae e st st et b e be e be e she e eae et an 169

(01 o 1=Yol &0 o112 1Y PSP 169
General Humination aNd ZEr0 CrOSSccvervireiieiiieieenee ettt ettt st et r e sr e sreesaeesaee e s 170
ATEraCt MOOE COUR ...ttt ettt ettt e st e e s bt e s reesanesanesaneeneenne 173
FAN ClUD COOE . ittt ettt e b e s bt e sat e st e e bt e bt e bt e s bt e saeesateebeenbeesbeesaneeas 178
ROM IMAEE CNANEESveiiiiiiie ettt e ettt e e ettt e e e et e e e eeateeeeeeabaeeeeaabaeeeeaabaseeesasaeeeeasbasaeeasbesaseansaeesennrenas 179

[T T =X 0 AV =T RN ot L o o F RO 191

L8.3 Changes to L-8 ROM Image, Technical Details

For transparency and education to the pinball hobbyists interested in such information, the following
sections provide technical details on the changes involved with the L8.3 image. Various parts of the L8.3
enhancements will be described, including:

e The L8.3 Fan-Club Adjustment Removal

e The L8.2/L8.3 changes to attract mode

e The L8.3 “Cybernetic Organism” and “LastGameScores” changes
e The L8.1 “boom boom” bug fix

e The L8.3 “Testing...” WPC Custom Message bug fix

e The L8.3 “Last-Game-Scores” game-over attract mode bug fix
e The L8.3 Display Animation flicker bug fix

e The L8.3 FUA code inclusion

e The L8.3 Custom Message support in the ROM

e The L8.3 Feature Adjustments additions

e The L8.3 Text String corrections

e The L8.3 Sound Test updates

e The L8.3 Multiball bug-fixes

e The L8.3 Lamp Driver update

e The L8.3 Multiball-Start Drop-Target Action enhancement

e The L8.3 Timed 3-Bank lamp fixes

e The L8.3 Ball-search bug fixes

For reference, the following page provides some basic addressing information on the T2-L8 ROM and is
applicable to all WPC ROMs (although the bank/page information differs depending on size of the ROM
image). When trying to understand the ROM modifications, it is important to understand the difference
between an address offset within the ROM image as compared to an address that the running WPC code
cites. To understand this requires some understanding of the paged ROM layout. In this document the
terms ‘bank’ and ‘page’ are used interchangeably. Also note syntax for representing hexadecimal values,
the use of the “S” symbol and “Ox” are used interchangeably.

When modifying strings in WPC code it is necessary to ensure the German and French strings are also
updated. All of the changes for L8.3 take all three languages into consideration.

Note that replacing a L-8 or L8.1 or L8.2 with L8.3 should not cause the game to reset to factory settings.
This is because the major version number (2™ byte of the checksum) ‘8’ is not changed and, as such, the
game will not trigger factory reset of settings. The L8.3 image utilizes 6 new feature adjustments.
Memory for these adjustments, while running L-8, L8.1 or L8.2 is set to 0 which corresponds to the initial
value for each of the 6 new adjustments when upgrading to L8.3. It is advised that the new
adjustments are checked to ensure desired values are set after installing L8.3.

ROM Image Size: 524288 bytes, ROM Address Range: 0x00000 - Ox7FFFF

ROM Address Range refers to addresses when looking at the ROM binary in a hex editor.
In this case bytes are addressed from 0x00000 to Ox7FFFF.

Code Addresses refer to addresses that the actual running code cites when jumping to
different functions or accessing fixed/constant data bytes. There is a non-paged
region which is always accessible to running code when it references addresses in this
range from 0x8000 through OxFFFF. System startup code and commonly used functions are
in this region. There is paged ROM regions which refer to code addressed from 0x4000
through O0x7FFF. When code wants to jump into a function in this range, it must
specify the bank number along with the address in the range of 0x4000 through Ox7FFF.
Code running in paged ROM may jump to other code or read ROM content within the same
page (0x4000 through Ox7FFF) as well as access the non-paged region.

o ——— o e o +
| Bank/Page | Bytes | ROM Address Range | Code Addresses |
—————————————————————— o
Bank 0x20	16384	0x00000 - OxO3FFF	0x4000 - OxX7FFF
Bank 0x21	16384	0x04000 - OxO7FFF	0x4000 - Ox7FFF
Bank 0x22	16384	0x08000 - OxOBFFF	0x4000 - Ox7FFF
Bank 0x23	16384	0x0C000 - OxOFFFF	0x4000 - OxX7FFF
Bank 0x24	16384	0x10000 - Ox13FFF	0x4000 - Ox7FFF
Bank 0x25	16384	0x14000 - Ox17FFF	0x4000 - Ox7FFF
Bank 0x26	16384	0x18000 - Ox1BFFF	0x4000 - OxX7FFF
Bank 0x27	16384	0x1C000 - Ox1FFFF	0x4000 - OxX7FFF
Bank 0x28	16384	0x20000 - Ox23FFF	0x4000 - Ox7FFF
Bank 0x29	16384	0x24000 - Ox27FFF	0x4000 - Ox7FFF
Bank O0x2A	16384	0x28000 - Ox2BFFF	0x4000 - OxX7FFF
Bank 0x2B	16384	0x2C000 - Ox2FFFF	0x4000 - OxX7FFF
Bank 0x2C	16384	0x30000 - Ox33FFF	0x4000 - Ox7FFF
Bank 0x2D	16384	0x34000 - Ox37FFF	0x4000 - OxX7FFF
Bank Ox2E	16384	0x38000 - Ox3BFFF	0x4000 - OxX7FFF
Bank O0x2F	16384	0x3C000 - Ox3FFFF	0x4000 - Ox7FFF
Bank 0x30	16384	0x40000 - Ox43FFF	0x4000 - Ox7FFF
Bank 0x31	16384	0x44000 - Ox47FFF	0x4000 - OxX7FFF
Bank 0x32	16384	0x48000 - Ox4BFFF	0x4000 - OxX7FFF
Bank 0x33	16384	0x4C000 - Ox4FFFF	0x4000 - Ox7FFF
Bank 0x34	16384	0x50000 - Ox53FFF	0x4000 - Ox7FFF
Bank 0x35	16384	0x54000 - Ox57FFF	0x4000 - OxX7FFF
Bank 0x36	16384	0x58000 - Ox5BFFF	0x4000 - OxX7FFF
Bank 0x37	16384	0x5C000 - OxS5FFFF	0x4000 - OxX7FFF
Bank 0x38	16384	0x60000 - Ox63FFF	0x4000 - Ox7FFF
Bank 0x39	16384	0x64000 - Ox67FFF	0x4000 - Ox7FFF
Bank Ox3A	16384	0x68000 - Ox6BFFF	0x4000 - OxX7FFF
Bank 0x3B	16384	0x6C000 - Ox6FFFF	0x4000 - OxX7FFF
Bank 0x3C	16384	0x70000 - Ox73FFF	0x4000 - Ox7FFF
Bank 0x3D	16384	0x74000 - Ox77FFF	0x4000 - OxX7FFF
Non-paged	32768	0x78000 - Ox7FFFF	0x8000 - OxXFFFF
Fom e o et o +

The L8.3 Fan-Club Adjustment Replacement

The “T2 FAN CLUB” adjustment at A2.18 is removed starting in L8.2. The L8.2 attract mode replaced the
calls for “T2 Fan Club” with calls to display other attract-mode sequences. The L8.3 ROM removes the
fan-club code from the ROM image entirely and re-uses its code region for new code used in other parts
of the L8.3 ROM image.

Shown below is how the A2.18 adjustment appears in ROM images L8.1 and older:

For reference, and perhaps as a final farewell to this rarely seen attract mode item, below is what the
fan-club message looked like, when shown during attract mode. This was a message that would only
play when enabled in the Feature Adjustments and when the system date is June 1992 or earlier. Please
note the phone number shown has most certainly been repurposed and should not be called.

The L8.2/L8.3 changes to attract mode

The L8.2 and L8.3 ROM modifications for attract mode are too numerous to list. Instead of depicting
each individual ROM change, here we will describe how the attract mode works and the changes that
are done to support the L8.2 and L8.3 attract mode sequences. The main T2 attract-mode loop code is
in page $30, starting at $793F,30 (ROM offset 0x4393F).

The flowchart on the next page depicts the attract mode for ROM images:
e 18.1 (which is same sequence as L-8)
e 18.2 (which replaces a few of the L8.1 elements and inserts some additional elements)
e 18.3 (which plays ‘cybernetic’ sound more frequently & displays custom ROM message)

When running the L8.3 ROM image, the sequence for the attract mode depends on how the “Attract
Mode” is configured in the Feature Adjustments menu:
e “L8.1”, All non-highlighted items and all blue highlighted items
o The “fanClub” item is shown for completeness as it was available in L-8 and the genuine
L8.1 ROM image. It has been removed in the L8.3 ROM completely and, as such, has
been shown but with strikethreugh as it will not appear when using L8.3 ROM image.
o “L8.2”, All non-highlighted items, all green, all yellow highlighted items
e “L8.3”, All non-highlighted items, all green, all yellow, all . highlighted items

Regardless of the “Attract Mode” setting, if the 8.3 feature of adding a custom message to the ROM
image is being utilized, the display of such message will take place wherever the - highlighted item
is shown.

The L8.3 attract mode (and added to L8.2, retroactively) also inhibits the report of “LastGameScores”
during the “l am a cybernetic organism” speech sequence. This retains the original L-8 dramatic effect
and alignment of the speech to the display during this period. This logic change is shown in -

In all modes, L8.1, L8.2 or L8.3, the L8.3 ROM image includes bug-fix for the _ thatis
shown during the Game-Over loop. The original L-8 code had a bug where it did not display scores the
first time through. Subsequently, when it was shown immediately after CyborgComputerReadout, it
may incur a flicker of the scores prior to revealing the display in a center-out reveal pattern.

The attract mode items listed on the flowchart each represent a certain sequence during the attract
mode. Sometimes an item consists of a single panel message on the display (such as ‘insert coin’) and
other times the item might consist of multiple panels of information (such as high-scores report). The
T2 attract mode can be observed and followed along to match the flowchart.

In some cases multiple items are shown on a single line, using /' character to separate them.
In cases where L8.2 replaced an L8.1 item, a hyphen ‘-“ is used to separate the L8.1 and new L8.2 items.

Power-Up

v

T2BashEffect

»
L
A

y

Terminator 2 Attract Mode
L-8.1, L8.2, L8.3

A 4

SpecialThanks / (SEORIROMMEssage
|
i 4

ReplayAt

HighScores

FanClubMessage - CreditsinsertCoin / LastGameScores
CreditsinsertCoin - ReplayAt
T2ShineyLogo

StaringArnold / GameOver
LastGameScores
WilliamsLogoDraw

Presents

T2BashEffect

HighScores

CreditsInsertCoin
WilliamsLogoBlocky

Presents

JudgmentDay

StaringArnold / LastGameScores
HighScores

CreditsInsertCoin

PullTrigger

ReplayAt

*CyberneticOrganism
TerminatorLightning
WilliamsLogoBlockyWipe
Presents

T2ShineyLogo

StaringArnold / LastGameScores_
*CyberdyneSeries800
CyborgComputerReadout
CreditsInsertCoin

PullTrigger

ReplayAt

HighScores

CreditsInsertCoin

JudgmentDay

StaringArnold / LastGameScores
ArnoldShootingShotgun
SayNoToDrugs

CustomMessage [IUSIOMROMMESSage

Only in L-8 and L8.1 blue highlighted item(s)
In L8.2, replaced L-8 & L8.1 items with green highlight
In L8.2, inserted new items with yellow highlight

Game-Over]

v

LastGameScores
HighScores

FanClubMessage - CreditsinsertCoin / LastGameScores
CastCredits - TerminatorLightning
SpecialThanks — CyborgComputerReadout

y

Has above block

NO

played 2 times?

IAmTheFuture

Has above block
played 5 times?

A"

NO

* Enable sounds for CyberneticOrganism and

CyberdyneSeries800 next pass through.

TimeDate / CastCredits

t <

\ 4

ReplayAt
GameOver
CreditsInsertCoin
HighScores

WilliamsBlockyLogo
Presents
T2BashEffect

LastGameScores
ReplayAt
HighScores
CreditsInsertCoin
PullTrigger
LastGameScores
ReplayAt
WilliamsLogoDraw
LastGameScores
HighScores

SayNoToDrugs

EanClubMessage - CreditsinsertCoin / LastGameScores

StaringArnold / GameOver

ArnoldShootingShotgun

CustomMessage [ICUSIOMROMNEssage

CyborgComputerReadout

!

Has above block

played 3 times?

YES

*The sounds for “CyberneticOrganism” only
play after logic has passed through the
block(s) indicated to the left to enable their
play during the main attract loop. After
these sounds are played during the main
loop, logic must pass through the block(s)
again before they play again.

The L8.3 “Cybernetic Organism” and “LastGameScores” changes

A change is made to the attract mode L8.2 where “LastGameScores” had been added after the
“StaringArnold” message. This change is highlighted in - in the attract mode flowchart earlier in this
document. Logic is updated so that when the “l am a cybernetic organism” speech is playing, the L8.2
addition of “LastGameScores” is not shown while Arnold speech is reporting his model number. This
particular change is being retroactively applied to the L8.2 attract mode (when “L8.2" is selected in
“Attract Mode” adjustment) as well as the “L8.3” attract mode because it provides a neater experience
during L8.2 or L8.3 attract modes alike when the “l am a cybernetic organism” sequence plays with the
intended, uninterrupted, sequence from L-8.

The original speech sequence is timed so that Arnold speech reporting his model number occurs in
conjunction with the display showing computer readout with similar information. For L8.2/L8.3 attract
modes, when the cybernetic speech is playing, the attract mode will not display the “LastGameScores”
information. If attract sounds are “off” no speech is occurring so the original L8.2 sequence will occur
with the “LastGameScores” being shown at such time.

Code changes are briefly depicted below. The original attract mode code related to this is in bank $30
(ROM image offset 0x40000 through 0x43FFF), specifically at $7A82 (ROM image offset 0x43A82):

7AT7F: BD FB E2 JSR SFBE2 ; AttractMode StaringArnold()
7A82: 7TE T7TA 85 ; <null>

Note the instruction at $7A82 is effectively a null, jump instruction to the very next instruction that
occurs after. This is likely a placeholder or debug hook used in original L-8. In L8.2 this null instruction
was replaced with a JSR instruction to a function that reports the “LastGameScores”. In L8.3 this is
replaced with a JSR instruction to jump to new code at $7F60.

7AT7F: BD FB E2 JSR SFBE2 ; AttractMode StaringArnold()
7A82: BD 7F 60 JSR STF60 ; Fixup Function

At $7F60 (ROM image offset 0x43F60) new code is added to previously unused ROM region:

7F60: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAddr ()

7F63: 64 23 3D ; Sets C-bit when ok play LastGameScores
TF66: 25 77 BCS S$TFDF ; Show LastGameScores if in L8.2 or L8.3 mode
7F68: 39 RTS ; Return without showing LastGameScores

The new function, above, calls yet another function that sets C-bit if it is safe to show LastGameScores.
Otherwise, if the “I am a cybernetic organism” is playing then C-bit is clear so function returns without
trying to show “LastGameScores”. The function at $6423 in bank $3D (ROM image offset 0x74000
through 0x77FFF) is depicted below. Function is located at ROM image offset 0x76423:

6423: BD 84 AD JSR $84AD ; GetMemoryFlag ()
6426: D9 ; 0xD9 indicating time to play ‘cybernetic’
6427: 25 0C BCS $6435 ; C-bit clear=no cyber, C-bit set=cyber

6429: BD 86 5B JSR $865B ; LookupGameAdjustmentParameterlandCheckIfEqualsParam?2 ()

; C-bit set when not-equal

642C: 10 00 ; 0x10 == Attract Sounds, C-set when not 0x00
642E: 24 03 BCC $6433 ; If C-bit is clear, sounds are OFF

6430: 1C FE ANDCC #$S00FE ; Clear C-bit

6432: 39 RTS ; Return C-clear, not okay for LastGameScores
6433: 1A 01 ORCC #50001 ; Set C-bit

6435: 39 RTS ; Return C-set, okay to show LastGameScores

Details of the above logic is left as an exercise to the reader.

The L8.1 “boom boom” bug fix

This fix takes place in page $35 (ROM region 0x54000 through Ox57FFF) which is where the “Boom Boom”
attract mode sequence is handled. Below are the two places in the code where it makes the call to play
the “Boom”. As there are 2 “booms” there are also 2 places where the sound call is made. For

simplicity purposes only the call to play the sound is depicted below. These are at ROM image offsets
0x57723 and 0x577B7:

7723: BD 85 46 JSR $8546 ; Play sound number 0x94, Boom!
7726: 94 ;

<and>

77B7: BD 85 46 JSR $8546 ; Play sound number 0x94, Boom!
77BA: 94 ;

The original code simply calls a function in the non-paged region at $8546 which plays the sound
number that was provided in the byte immediately after the JSR instruction. In this case it is sound
number 0x94. To fix this, we change the call from $8546 to call a new function added in an unused area
in this same bank at address $7FC0,35 (ROM image offset 0x57FCO) as depicted below:

7723: BD 7F CO JSR $TFCO ; Play sound number 0x94 if attract sounds are on, Boom!
7726: 94 ;

<and>

77B7: BD 7F CO JSR $TFCO ; Play sound number 0x94 if attract sounds are on, Boom!
771BA: 94 ;

The new function added at $7FC0,35 (ROM image offset 0x57FC0) performs the simple task of querying
the game feature adjustments to determine if “attract sounds” are “on” and, if so, proceed to play the
“boom” sound. If the “attract sounds” are “off” then the sound is not played. The actual code
disassembly of this new function is left as an exercise for the reader.

The L8.3 “Testing...” WPC Custom Message bug fix

During the creation of the L8.3 ROM image it was observed that there is a bug in the built-in WPC
custom message feature. Since the L8.3 involves an enhancement involving a custom (ROM embedded)
custom message, it seems appropriate to also fix the WPC custom message bug to complement the set
of updates in L8.3 being a ROM update with enhanced ‘custom message’ support.

This bug is present in several WPC titles and is related to how the WPC custom message is scrolled onto
the display to the left, revealing each frame of the WPC custom message in this way. This display
mechanism is internally utilizing the same code and memory that is also used for the display of the “Test
Report” which scrolls each test report message onto the display in this way (sliding to the left to reveal
each test report frame).

It turns out the power-up “Testing...” message is also written to this same region of memory when it is
first displayed. After power-up, as the attract mode is normally running, this “Testing...” message is
actually retained in this region of memory unnecessarily. This region of memory is cleared out when
entering and exiting the test menu and also cleared out at the end of the normal display of a WPC
custom message (if one is set).

The bug is when the WPC custom message is shown for the first time after a system power-up (if menu
system has not been entered/exited), this stale “Testing...” message is briefly shown and sliding to the
left as the first frame of the WPC custom message is revealed onto the display. It doesn’t matter if a
game is played or not, but the first display of the WPC custom message that occurs after a power-up (as
long as the coin door ‘enter’ button hasn’t been pressed) will show the “Testing...” message as the WPC
custom message is revealed for the first time. Subsequent displays of the WPC custom message won't
have this issue since the previous display of the WPC custom message left this region of RAM blank.

To demonstrate the bug, we create a single-frame WPC custom message with the following:

After saving this message, restart the game and wait for this message to appear (after the Arnold with
shotgun and then “Say no to drugs” message).

As shown above, the reveal of the WPC custom message briefly shows the “Testing...” message. A
careful examination of the WPC code reveals that this is an oversight in how the WPC custom message
uses the left-scrolling effect normally used by the ‘test report’ function. The WPC custom message code
is making false assumption that the memory has previously been cleared as it reveals the first frame of
the WPC custom message. This assumption is valid only after the test menu has previously been
entered/exited and after the WPC custom message has previously been shown. However after a game
power-up this is not the case.

To correct this problem, the attract-mode sequence now simply clears out the region of memory that is
retaining this stale “Testing...” message so that subsequent display of WPC custom message will display
without this problem.

The new function that clears this region of memory is located in page $30 (ROM region 0x40000 through
0x43FFF) in a previously unused space near the end of this bank starting at $7F79,30 (ROM image offset
0x43F79):

TF79: 34 14 PSHS X,B ;

7F7B: 8E 01 60 LDX #50160 ; 0x0160 is start of first panel
TFTE: C6 60 LDB #560 ; 0x60 = 96 bytes to clear.
7F80: 6F 80 CLR , X+ ;

TE82: 5A DECB ;

7F83: 26 FB BNE $7F80 7

7F85: 35 94 PULS B,X,PC ;

The memory address S0160 is where the stale “Testing...” message is retained. In this region is space to
accommodate 16 characters for the top row and 16 characters for the bottom row of text. The left-
scrolling code employs a method whereby each character takes up of 3 bytes in memory. One byte
contains the letter to be displayed and the remaining 2 bytes contain values used during the scrolling
effect (further study into the WPC code would be necessary to accurately report how these are used).
Since there are 32 characters total and 3 bytes per character, there are 96 bytes to clear in total.

Technically speaking, the memory immediately after these cleared 96 bytes could also be cleared as
they contain characters that are used in the left-scrolling logic (containing the next frame to reveal)
however to simply fix the bug at hand, only the first 96 bytes are being cleared.

This clearing takes place at the start of attract mode (both at power-up and at game-over). The stale
“Testing...” message is unconditionally cleared out of ram. In the event that a WPC custom message is
to be displayed it will no longer show the “Testing...” message as it is revealed onto the display.

The attract mode in L-8 begins in this same page $30 at $793F,30 (ROM image offset 0x4393F) with the
following code:

793F: BD FB AE JSR SFBAE ; Clear display data

7942: TE 79 45 JMP $7945 ; Jump to next instruction
7945: BD 84 AD JSR S84AD ; GetMemoryFlag ()

7948: D3 ; 0xD3 game-over mode

As shown, the L-8 attract mode starts out with some housekeeping code to clear out the display pixel
data and has a check if it is in game-over mode (or power-up mode) and proceeds from there. In these
instructions is a dummy instruction that simply jumps to the next instruction. This jumps from $7942 to
$7945. This may have been placeholder code for original s/w development for prototyping or
debugging the code. This dummy instruction is being replaced with a call to the new function depicted
above:

793F:
7942
7945:
7948:

BD FB AE
BD 7F 79
BD 84 AD
D3

JSR
JSR
JSR

SFBAE
STF79
$84AD

’

; Call bugfix function

’

’

’

Clear display data

GetMemoryFlag ()
0xD3 game-over mode

This will now, at start of attract mode, call the new function that clears out the stale “Testing...”
message and return back to $7945 to proceed with normal attract mode code. With this fix in place, the
first display of the WPC custom message now reveals the first frame without the stale “Testing...”

message:

The L8.3 “Last-Game-Scores” game-over attract mode bug fix

During the development of the T2 L8.3 image some additional bugs were noticed in the original T2 L-8
code. During the game-over attract mode loop, as depicted earlier in this document, there is a block of
sequences that plays for 3 times before transitioning to the normal attract mode loop. This block begins
with “LastGameScores” which is intended to display the scores from the previously played game. This
refers to the _ “LastGameScores” item in the attract-mode flowchart presented earlier in
this document. Two problems were found regarding this “LastGameScores” display and are fixed in L8.3:

e After any game, the first time the “LastGameScores” is (attempted to be) displayed during the
main Game-Over attract mode loop in L-8 or L8.1 it actually shows an empty/blank display. This
is after the “SpecialThanks” message is displayed after Game-Over in L-8 and L8.1. Thereis a
small period where the display is blank but the code intended to show the previous game scores.

e The subsequent 2 displays of the first “LastGameScores” at top of the game-over attract mode
loop also have a minor problem. This refers to when the display of “LastGameScores” is done
immediately after the “CyborgComputerReadout” when the game-over attract mode loop
restarts 2 more times. Using an emulator it is evident that there is a very brief display of the
screen with scores immediately followed by the intended center-out reveal of the display of the
“LastGameScores” information. I/t may be that this is only noticed in emulator and not real game.

Both of these issues are fixed in L8.3 and will be corrected regardless of which attract mode is selected
in the “Attract Mode” adjustment. The first time “LastGameScores” is (attempted to be) displayed, it
will actually be shown, and subsequent times through the game-over attract mode loop, there will be no
incorrect display of the “LastGameScores” screen as it is being revealed onto the display.

The “LastGameScores” Missing Display (L-8, L8.1 ROM images)

The missing display of “LastGameScores” during game-over attract mode sequence is depicted here. In
L-8 and L8.1 at the start of game-over attract mode sequence, there is a lengthy display of “CastCredits”
and a “SpecialThanks” messages. After the “SpecialThanks” message the code intended to display the
scores from the most recently played game. What actually takes place is a period of time of blank

display while the game is intending to display the “LastGameScores” sequence.

Blank display shown for period of time that the
“LastGameScores” is intended to be shown.

After the display period is over the next attract
mode item is shown, the “ReplayAt” value.

For the L8.3 ROM image, this bug is being fixed and will be observable when the “Attract Mode”
adjustment is set to “L8.1”. This problem does not happen for L8.2 or L8.3 attract-mode sequences
because of how they display “CyborgComputerReadout” in place of the “SpecialThanks” sequence
immediately prior to this display of “LastGameScores” which indirectly fixes the bug.

The “LastGameScores” Incorrect Display (L-8, L8.1, L8.2 ROM images)

The problem with incorrect display of “LastGameScores” during the game-over attract mode sequence is
depicted here. Since the game-over attract mode block is played 3 times, the transition from ending
“CyborgComputerReadout” back to the top “LastGameScores” sequence will take place 2 times before
the attract mode goes to the regular attract mode loop. For each of these 2 transitions, the display is as
follows:

Display of last game scores (not including

“credits”) is briefly shown briefly in dim

Normal center-out reveal then takes place

@ Display is then blanked

The brief display of scores prior to the reveal may not be noticeable on real display hardware, however
it is evident in an emulated environment. Out of completeness and to further improve the L8.3
software, this display issue is being corrected in the L8.3 image.

The L8.3 “Last-Game-Scores” game-over attract mode code fixes
The game-over attract mode code is located in bank $30 (ROM image offset 0x40000 through Ox43FFF).
The location where the first “LastGameScores” is called is at $7987,30 (ROM image offset 0x43987).

7987: BD 7B E1 JSR S7BE1 ; AttractMode LastGameScores ()

As part of this fix, the function call is replaced with a call to a new function located later in this bank in
previously unused region of ROM space:

7987: BD 7F 69 JSR $TF69 ; Call new bugfix function at $7F69, 30

Located in previously unused region near the end of bank $30 at $7F69,30 (ROM image offset 0x43F69)
is a small function added as part of the bug fix:

7F69: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAddr ()
7F6C: 64 OF 3D ; ——->LastGameScores DisplayClear ()
7F6F: 7E 7B E1 JMP S7TBE1 ; Jump to AttractMode LastGameScores ()

The new function, above, calls a function in bank $3D at $640F,3D which performs fix for the brief
display of scores prior to the reveal of the “LastGameScores”. Upon returning from that function, code
jumps to the original “LastGameScores” function at $7BE1,30. Using the JMP instruction in this way will
cause the $7BE1,30 function, when finished, to return back to the original starting point (returns to
instruction after $7987,30).

The fixup function at $640F,3D corresponds to ROM image offset 0x7640F which at the start of the
region of unused ROM space located in bank $3D. This fixup function is as follows:

640F: 34 16 PSHS X,B,A ; If B is not 0x03 then we're not

6411: C1 03 CMPB #$03 ; at start of game-over x3 loop

6413: 26 09 BNE $641E ; so we definitely want blank display

6415: 8E 7F 00 LDX #$7F00 ; Address of string #1. Each str 0x20 bytes
06418: BD 7F BS8 JSR STFBS8 ; Call subroutine to set B if there is a msg
641B: 5D TSTB ; If B!=0x00 there is a msg to show

641C: 26 03 BNE $6421 ; so we don't want to blank the display
641E: BD 7F D2 JSR $7FD2 ; Branch to routine that blanks the display
6421: 35 96 PULS A,B,X,PC ;

The fixup routine, above, is crafted to check whether the Game-Over attract loop is at the very first pass
and whether there was an L8.3 Custom ROM message to display. This also calls new code used by the
Custom ROM message that clears out the display so that the unexpected display of scores doesn’t take
place prior to the center-out reveal. The fixup routine will skip the display-blanking if there was a
custom ROM message to show since the center-out reveal of “LastGameScores” is shown neatly when it
is replacing an L8.3 custom ROM message.

Lastly, there is a code-change that is needed to fix the “AttractMode_LastGameScores()” function to
correct the display of “LastGameScores” so that the display is not blank when first shown (on L-8 and
L8.1). The original L-8 code for “LastGameScores” is located at $7BE1,30 (ROM image offset 0x43BE1):

7BEl: BD D3 60 JSR $D360
7BE4: BD 88 F5 JSR $88F5
7BE7: 6A F4 3B

7BEA: BD 88 F5 JSR $88F5
7BED: 7F 57 33

7BF0O: BD 83 46 JSR $8346
7BF3: 80

7BF4: 39 RTS

To fix the code for this function, the first JSR instruction is replaced with a jump to a new function as
shown below:

7BEl1: BD 7F 72 JSR STF72
7BE4: BD 88 F5 JSR $88F5
7BE7: 6A F4 3B

7BEA: BD 88 F5 JSR $88F5
7BED: T7F 57 33

7BFO: BD 83 46 JSR $8346
TBF3: 80

TBF4: 39 RTS

A new function is added near the end of bank $30 at $7F72,30 (ROM image offset 0x43F72) as shown
below:

7F72: BD D3 4C JSR $D34cC ; Load 0x3800 into $1799
7F75: BD D3 60 JSR $D360 ; Clear DMD data at $1799 pointer, 0x3800
TE78: 39 RTS ;

The new function simply calls a function SD34C to set value 0x3800 into $1799 and then calls the
function $D360 which was originally called at the start of the “LastGameScores” but replaced with the
call to this new function. The loading of 0x3800 into $1799 is the main fix for the blank display issue.
This, along with the changes described above for the center-out reveal display fix both result in the
correct display of “LastGameScores” on all versions of attract mode, L-8, L8.1, L8.2, L8.3.

The L8.3 FUA code inclusion

The database award code for L8.3 is updated to include the FUA logic from previous software where
FUA was (unofficially) supported. The database award code is located in bank $33 (ROM image region
0x4C000 through 0x4CFFF) and is updated to include the FUA text during the Database Award and
updated to perform the necessary sound call when FUA is the winning selection.

What is interesting about the Database Award sequence is that the order of the possible selections is
not random. There is a fixed list of 16 possible awards. A random starting point is chosen within this list
of 16 awards. The 8 awards from such starting position are displayed and a random selection is made
from those 8. The list of possible awards is shown below. The FUA code simply replaces the “100,000”
award with the FUA. The chances of winning FUA are identical to the chances of winning “100,000”.

Addr. Data Bytes Index String

4C04: 4E 3B ; 0xOb "POSSIBLE SELECTIONS:"
4C06: 4E 50 ; 0x0Oc "CHASE LOOP"

4C08: 4E 5B ; 0x0d "EXTRA BALL"

4COA: 4E 66 ; O0x0Oe "100,000"

4C0C: 4E 6F ; 0xOf "AUTOFIRE"

4COE: 4E 78 ; 0x10 "SECURITY PASS"

4C10: 4E 86 ; 0x11 "LITE SPECIAL"

4C12: 4E 2D ; 0x12 "HURRY UP"

4C14: 4E 93 ; 0x13 "1,000,000"

4Cl6: 4E 9F ; 0x14 "MULTIBALL"

4C18: 4E A9 ; 0x15 "LITE EXTRA BALL"
4C1A: 4E B9 ; Oxl6 "500,000"

4C1C: 4E C2 ; 0x17 "VIDEO MODE"

4ClE: 4E CD ; 0x18 "LITE KICKBACK"

4C20: 4E DB ; 0x19 "SPECIAL"

4C22: 4E E3 ; Oxla "LITE HURRY UP" <:::::j|%M0mNm0Wnﬂmﬂ%Pmm
4C24: 4E F1 ; Oxlb "3,000,000"

o2y

Below are a couple examples of the Database award where it is shown how the list of awards follows
the list shown above. The code specifically adjusts the left column of awards to the left by a few pixels
when FUA is enabled (when adjustment A2.18 is set to allow awarding FUA).

The L8.3 Display Animation flicker bug fix

During the L8.3 image development it was requested that the display animation ‘flicker’ problem of T2
to also be fixed. Some investigation into the nature of the problem ensued and the issue was found to
be reproducible in an emulator environment and, as such, is something that could be fixed as part of the
L8.3 image.

To demonstrate the problem, the “Pull trigger” animation is shown in a series of frames depicting the
flicker effect in slow motion as pixel data pages are put onto the display. Notice the changes in pixel
brightness as the frames progress.

To illustrate the speed of this flickering effect, the images captured below depict every transition of
display intensity during the first few seconds of the “Pull trigger” animation sequence. This depicts all
transitions up until the moment of the hand appearing in the sequence. During the entire sequence
with hand pulling the trigger, the same flickering effect continues until the animation is complete.
Shown below are 3 columns. Images are shown on the display starting at the top-left, then going down

each column and resuming at the top of the next column to the right.

The L8.3 Display Animation flicker problem analysis

The flickering appears to be due to the WPC code that interacts between the CPU board and the DMD
display driver board. For a given still image in an animation, the WPC software is simply switching back
and forth between 2 pages of medium and dim pixel data while the DMD display driver board expects to
receive 3 page updates per frame (consisting of 2 updates of ‘medium’ pixel data and single update of
‘dim’ pixel data).

A little background in WPC 3-color image data is in order. To neatly display a 3-color image (or 4-color if
you include black/off pixel color), the WPC software overlaps 2 planes of pixel data. One plane consists
of dots that should be dim and the other plane consists of dots that can be medium or bright. If a dot is
set in both planes it is to be displayed with bright intensity. If a dot is set in only the medium plane then
it is medium intensity. If a dot is set only in the dim plane then it is dim intensity.

A brief example of this can be depicted below. With understanding that there are 8 bits in a byte and
assumption that a single byte can represent 8 pixels in a horizontal line on the display, the table below
depicts how the intensity can be set for a series of 8 pixels in a row, with 4 different examples:

Dim plane Medium plane Resulting Pixel Intensities
0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x01
Hex Binary Hex Binary Pixel 8 Pixel 7 Pixel 6 Pixel 5 Pixel 4 Pixel 3 Pixel 2 Pixel 1
OxFO | 11110000 | OxAA | 10101010 | Bright Dim Bright Dim Medium | Off Medium | Off
OxAA | 10101010 | OxFO | 11110000 | Bright Medium | Bright Medium | Dim Off Dim Off
0x01 | 00000001 | OxFF | 11111111 | Medium | Medium | Medium | Medium | Medium | Medium | Medium | Bright
OxFF | 11111111 | 0x80 10000000 Bright Dim Dim Dim Dim Dim Dim Dim

A survey of the L-8 WPC code and comparison with other WPC titles (most notably, “The Getaway”
which also has an animation for ball-shooter control usage), it seems that the L-8 animation flicker
problem boils down to the way in which the L-8 software notifies the DMD driver board about which of
the pixel planes are to be used for dim/medium/bright.

After loading the DMD memory with the 2 planes (or “pages”) of pixel data, the WPC software then
repeatedly directs the DMD driver board the brightness levels to use for each of these memory planes.
Since the DMD driver board memory is already loaded with the necessary dim/medium pixel data, this
issue involves tiny messages between the CPU and DMD driver board that effectively say “use page X for
medium and page Y for dim”. The L-8 code is simply cycling between these messages, repeatedly,
during the display of these animation frames “use page X for medium and page Y for dim”, over and
over for the duration in which the image should appear on the display.

It seems, however, the DMD driver board doesn’t expect to receive a repeating pair of messages “use
page X for medium and page Y for dim”. It appears the DMD driver board expects to receive a repeating
triplet of messages whereby the CPU board should indicate the “use page X for medium” is sent 2 times
while the “use page Y for dim” is sent one time per frame, repeatedly.

Let’s explore how this might behave with some example image data. For the “Pull Trigger” animation
sequence, we have 2 pages of pixel data that get built up and sent to DMD driver board (by using

mapped memory), below is the DIM pixel data page:

Below is the data loaded into the MEDIUM pixel data page:

The intended/desired result is the blending of these pages as per previously described logic so the image
is as follows:

You can see in the previous image that the pixels that are set in both DIM and MEDIUM planes appear
brighter than the rest. The pixels that are only set in the MEDIUM plane are medium intensity and pixels
that are only in the DIM are dim intensity in the blended image (i.e. the “Pull Trigger” text).

As depicted in previous display images, the actual result from L-8 is not the constant blended image but

a varying intensity image as pixels are changing in intensity as their dim/medium/bright status is rapidly

changing while the image is on the display.

Let’s examine the mismatch between what the WPC software sends to the DMD driver board compared
to what the DMD driver board actually expects. Utilizing the previously indicated DIM and MEDIUM
planes example images we can see how the DMD board behaves.

Sent from L-8 CPU to DMD driver board

Resulting image

_/

/|

A

—

<

—

/]

z

N

»
»

The display images on the left, above, represents the L-8 software sending the DIM/MEDIUM repeatedly
while the images on the right depict how the WPC DMD driver board interprets each message, expecting
groups of 3. The displayed image represents the 3 most recent messages received from the CPU board.
As depicted in these images, the resulting display seemingly flickers bright and medium as the most
recent 3 messages refer to mostly MEDIUM to mostly DIM page indicators, respectively.

The L8.3 Display Animation flicker affected animations
The problematic code has been identified and can be discovered by how it creates the animation
sequences by way of the following:

e Calls function SFB88 which initializes DMD related memory elements and establishes an
interrupt service routine (ISR) at SEE91 to repeatedly send messages to the DMD driver board
for the duration of the animation sequence.

e Populates pixel data into DMD memory and updates memory values for the ISR to use while
sending messages to the DMD driver board. Medium DMD ram page number stored in $B5.
Dim DMD ram page number stored in $B6.

e Finishes by flagging memory that it is done so that the ISR knows to stop sending display-page
messages to the DMD driver board. This involves writing a value other than 0x00 or OxFF to
memory location $B4. Not all animations sequences do this.

e C(Clears out display memory in anticipation for what is drawn to memory next.

A survey of the L-8 ROM image reveals 19 locations where the SFB88 initialization function is invoked.
Each such invocation represents an animation display sequence that may be experiencing the flicker
problem. Each of the 19 locations has been analyzed and described in the table below. Included in this
table are memory values used during the animation (more info described next).

Example

| ROM WPC Addr | Sequence | $B4 Values $B5 Medium
Offset $Addr:Value | $B6 Dim
1 0x100A3 | $40A3,24 | Doors SFB8C:0x00 OxOF
Opening 0x10
revealing
award text
based on
value of the
B register.
2 0x101F9 | $41F9,24 | Huntership | SFB8C:0x00 0x01,0x03
0x02,0x04
3 0x10294 | $4294,24 | “Fire at will” | SFBSC:0x00 0x05,0x01,0x03
crosshairs 0x06,0x02,0x04
4 | 0x10426 | $4426,24 | Pull Trigger | SFB8C:0x00 0x01,0x03
to shoot ball | S44AA,24:0x55 | 0x02,0x04
5 0x4F880 | $7880,33 | Jackpot SFB8C 0x00 0x01
$788C,33:0x55 | 0x02
6 | Ox4FA49 | $7TA49,33 | Replay SFB8C 0x00 0x01
0x02
7 Ox4FA73 | STAT73,33 | Special SFB8C 0x00 0x01
0x03,0x04,0x05
8 0x57392 | $7392,35 | Shoot Again | SFB8C 0x00 0x01
0x02
9 | 0x57740 | $7740,35 | “Boom”1 | $FBSC 0x00 0x01,0x03
$7759,35:0x55 | 0x02,0x04
10 | 0x577B1 | $77B1,35 | “Boom” 2 SFB8C 0x00 0x05
$77C2,35:0x55 | 0x06
11 | 0x5787C | $787C, 35 | Judgment SFB8C 0x00 0x01
day $7888,35:0x55 | 0x02
12 | Ox578AA | $78AA,35 | T2 SFB8C 0x00 0x01
S78E7,35:0x55 | 0x02
13 | 0x57990 | $7990, 35 | Kickback Lit | SFB8C 0x00 0x01,0x03,0x05
0x02,0x04,0x06
This
function is
also used by
bonus

multiplier.

14 | 0x57D9%4 | $7D9%4, 35 “l am the SFB8C 0x00 0x01,0x03
future” S7DC6,35:0x55 | 0x02,0x04
15 | Ox57DF1 | $7DF1, 35 | Kickback SFB8C 0x00 0x01,0x03
S7E32,35:0x55 | 0x02,0x04
16 | Ox57E5B | $7E5B, 35 | Arnold with | SFB8C 0x00 0x01,0x03
shotgun S7EA3,35:0x55 | 0x02,0x04
17 | 0x57F54 | $7F54, 35 | Elevator SFB8C 0x00 0x05
doors closed 0x06
18 | Ox57F6F | $7F6F, 35 | T-1000 SFB8C 0x00 0x07
blasted 0x08
19 | 0x57F98 | $7F98, 35 | T-1000 self- | SFB8C 0x00 0x05
healed 0x06

As shown in the table, above, all animations start with init code at SFBSC setting SB4 to 0x00. Not
depicted is the fact that during the display of the animation $SB4 toggles from 0x00 to OxFF, at each
toggle, the ISR sends to the WPC driver board, the medium pixel page index number from $B5 or the
dim pixel page index from SB6. Some animations involve code that sets $B4 to 0x55 to notify the ISR
that it is done. When $B4 is set to a value other than 0x00 or OxFF it essentially tells the ISR to stop
updating the DMD driver board with dim/medium pixel plane index numbers.

The $EE91 Interrupt Service Routine

As mentioned, the problem animations utilize an interrupt route located in non-banked ROM region at
address SEE91 (ROM image offset 0x7EE91). Shown below is the assembly code along with some C-like
comments describing the code logic.

EE91: 34 02 PSHS A ;
EE93: 86 FF LDA #SFF ;
EE95: 98 B4 EORA $B4 H
EE97: 97 B4 STA $B4 ; Flip bits in $B4
EE99: 27 08 BEQ SEEA3 ; 1f ($B4 was OxFF but we just changed it to 0x00)
i Aq
EE9B: 81 FF CMPA #SFF ; if ($B4 was NOT 0x00, and not OxFF)
{
EE9D: 26 0OC BNE SEEAB ; goto S$SEEAB
}
; // Here when $B4 was 0x00 and changed to OxFF
EE9F: 96 B6 LDA $B6 ; A gets dim pixel plane number from $B6
EEAl: 20 02 BRA SEEAS ;)

; else

i q

; // Here when $B4 was OxFF and changed to 0x00
EEA3: 96 B5 LDA SB5 ; A gets medium pixel plane number from $B5

i}

EEA5: B7 05 37 STA $0537 ; Put selected dim/medium plane into $0537

EEA8: B7 3F BF STA $3FBF ; Put selected dim/medium plane into S$3FBF
EEAB: 86 04 LDA #504 ;

EEAD: B7 3F BD STA $S3FBD ; Put 0x04 into $3FBD

EEBO: 35 02 PULS A ;

EEB2: 3B RTI

This interrupt routine is called regularly during WPC software runtime. The 68B09 CPU has an interrupt
vector table at the last 16 bytes of the ROM. At location IRQ vector SFFF8 (ROM offset Ox7FFF8) is the
address 0xD9CO which is the start of the main interrupt service routine which eventually calls this SEE91
DMD Driver board update interrupt routine (This SEE91 address is loaded into SOA:S0B to notify the
main ISR to call this function as part of its work). This gets called periodically as the IRQ input line into
the CPU (at pin 3) toggles. Further details into the nature of the IRQ itself are left as an exercise to the
reader. A quick look at the WPC schematics reveals that the IRQ comes in from the ASIC which likely
toggles the IRQ line at a regular, fixed, rate.

Below is the initial setup function that each of the affected animations calls at the start of the animation
sequence. Some animations are done in such a way that each frame of the animation runs through this
init code and interacts with the SEE91 distinctly for each frame, such as ‘Fire at will’.

FB88: 34 12 PSHS X,A ;

FB8A: 34 02 PSHS A ;

FB8C: OF B4 CLR $B4 ; Clear $B4

FB8E: 8E EE 91 LDX #SEE91 ;

FB91: 9F 0OA STX $SO0A ; Put OxEE91 into $0A:$0B to tell ISR to call it
FB93: 86 04 LDA #504 ;

FB95: B7 3F BD STA $S3FBD ; Put 0x04 into $3FBD DMD driver board register
FB98: 35 02 PULS A ;

FB9A: 97 B5 STA SB5 ; Store medium pixel page number into $B5

FBOC: 4C INCA ;

FB9D: 97 B6 STA SB6 ; Store dim pixel page number into $B6

FBOF: 4A DECA ;

FBAO: 35 92 PULS A,X,PC ;

As can be seen in the init code, above, the previously mentioned memory locations are cited, $B4, SB5
and SB6. The SB4 value will be given extra scrutiny since its usage will be altered to effectively fix the
flicker problem.

[ISR Start]
!

Is SB4 OxFF or
0x00

Toggle $B4 0xFF/0x00

v

Is SB4 now
OxFF?

Write medium pixel page
index from $B4 to $3FBF
and save it in ram at $537

Write dim pixel page
index from $B5 to $3FBF
and save it in ram at $537

»ld
Ll
A 4

Write 0x04 to S3FBD

!

[ISR Done]

Depicted above is a summary flowchart of the SEE91 interrupt function in how it interacts with the DMD
driver board using values from memory. As shown, the $B4 value alternates between OxFF and 0x00 to
determine whether to push the medium or the dim pixel page index to the WPC display driver board.

The Getaway L-5 Interrupt Service Routine
To get an idea on how to repair the T2 L-8 SEE91 code, another WPC title was used as a basis to fix the
T2 code. The Getaway title has some similarities with T2 especially in the fact that it also contains an
animation depicting how to use the shifter lever to shoot the ball comparable to the T2 “Pull Trigger”
animation. The comparable routine from The Getaway (L-5) is as follows:
EB4A: 34 02 PSHS A ;
EB4C: OA D1 DEC SD1 ; Decrement $D1, cycles from $D4 val to 0x01

; $D1 goes from 0x03 to 0x02, load med pixels

; $D1 goes from 0x02 to 0x01l, load med pixels
; $D1 goes from 0x01 to 0x03, load dim pixels

EB4E: 2E 08 BGT SEB58 ; If $D1 decrements from 0x0l1 to 0x00 then
EB50: 96 D4 LDA $D4 HER

EB52: 97 D1 STA $D1 ; Reset $D1 back to $D4 restart value
EB54: 96 D3 LDA $D3 ; A gets $D3 (dim pixel page index)

EB56: 20 02 BRA SEB5A ;)

; else

EB58: 96 D2 LDA $D2 ; A gets $D2 (medium pixel page index)
EB5A: B7 05 41 STA $0541 ; Store A into $0541

EB5D: B7 3F BF STA $3FBF ; Store A into $3FBF

EB60: 86 04 LDA #504 ;

EB62: B7 3F BD STA $S3FBD ; Store 0x04 into $3FBD

EB65: 35 02 PULS A ;

EB67: 3B RTI ;

The init code from The Getaway which is called at start of animations sequences or at start of each
frame (as what T2 L-8 does for some animation sequences):

EB68: 34 07 PSHS B,A,CC ;

EB6A: C6 02 LDB #502 ; Load B with restart value: 0x02

EB6C: 20 04 BRA SEB72 ;

EB6E: 34 07 PSHS B,A,CC 7

EB70: C6 03 LDB #503 ; Load B with restart value: 0x03

EB72: D7 D4 STB $D4 ; $D4 gets restart value

EB74: 1A FO ORCC #S$S00F0 ;

EB76: 97 D2 STA $D2 ; $D2 gets medium pixel data page index

EB78: 4C INCA ;

EB79: 97 D3 STA $D3 ; $SD3 gets dim pixel data page index

EB7B: 86 03 LDA #5503 ;

EB7D: 91 D1 CMPA $D1 ; Compare $D1 with 0x03.

EB7F: 22 02 BHI SEB83 ; If $D1 has 0x01, branch down to SEB83
; If $D1 has 0x02, branch down to SEB83
; If $D1 >= 0x03, no branch, set it to 0x03

EB81: 97 D1 STA $D1 ; $D1 gets 0x03

EB83: CC EB 4A LDD #SEB4A ;

EB86: DD 0A STD SO0A ; SOA:$0B gets OxEB4A

EB88: 86 04 LDA #504 ;

EB8A: B7 3F BD STA $3FBD ; S3FBD gets 0x04

EB8D: 35 87 PULS CC,A,B,PC ;

The Getaway logic, above reveals how the DMD Driver board will be loaded with 3 page indexes in a
repeating loop. When initiated with the call to SEB6E, the restart value 0x03 is loaded to $D4 and, as
the routine runs, the memory $D1 is decremented from 0x03 to 0x02 to 0x01 and back to 0x03 (getting
the Ox03 restart value from SD4). As the $D1 is decremented to 0x02 and 0x01 it pushes the medium
pixel page index from $D2 to the DMD driver board. When $D1 is decremented to 0x00 it pushes the
dim pixel page index from $D3 to the DMD driver board.

An interesting observation is that The Getaway also has some support for the T2 L-8 method whereby
the init route being called at SEB68 will establish a reset value of 0x02 into SD4 which would effectively
result in the T2 L-8 flickering behavior however this appears to be unused in The Getaway. Searching
The Getaway ROM image reveals zero hits for a JSR instruction to the SEB68 while there are many such
JSR instructions to the SEB6E init address. The corresponding flowchart for The Getaway is as follows:

ISR Start

A 4

Decrement $D1

Reset SD1 with value
from SD4

Is SD1 now
0x00?

\ 4

Write medium pixel page Write dim pixel page
index from SD2 to $3FBF index from $D3 to $3FBF
and save it in ram at $541 and save it in ram at $541

<
<

v
Write 0x04 to $3FBD

!

[ISR Done]

The Getaway logic is fairly straightforward and will be used as the basis of the T2 L-8 fix for the same
part of the code. Some analysis is needed to ensure the use of T2 L-8 $B4 can be adapted to this model.

Analysis of T2 memory $B4 for new logic

The preceding text paints the picture for updating the T2 DMD ISR routine at SEE91 so that it behaves
similar to what The Getaway does in its comparable function. It seems that the $B4 memory should
simply decrement from 0x03 to 0x02 to 0x01 to 0x00 and reset back to 0x03. The medium/medium/dim
triplet could then be sent for each frame to match what it appears the DMD driver board expects.

The way in which T2 L-8 animation code pushes a non-0x00/non-0xFF byte into $B4 to stop the routine
from pushing page indexes to the driver board can also be leveraged. Since it appears the L-8 code
typically pushes a large value such as 0x55 into SB4 the new code can simply check for values greater
than 0x03 and assume that such a value means the existing L-8 code invoked its code to disable the
interrupt routine from pushing page data into the WPC Driver board, and react accordingly.

The whole T2 L-8 ROM was evaluated for how it interacts with memory location $B4 to ensure this fix
will be consistent and predictable. For example if some animation sequence elected to write value 0x01
to the SB4 (as a non-0x00/non-OxFF value) then it would conflict with the fix where $B4 cycles from 0x03
to Ox01. A survey of the T2 L-8 ROM was performed for all places where $B4 is written and summarized
in the following table.

ROM Image | WPC Addr | Instruction(s) | Opcode Usage

Offset Bytes

0x102B9 $42B9, 24 LDA #5555 0x86 0x55 At end of “Pull trigger” animation preceding
0x102BB $42BB, 24 STA $B4 0x97 0xB4 “Fire at will” in some circumstances hits this
0x104A8 $44A8,24 LDA #8355 0x86 0x55 At end of “Pull trigger” animation preceding
0x104AA $44AR,24 STA $B4 0x97 0xB4 “Fire at will” in most circumstances hits this
0x4F88A $788A,33 LDA #$55 0x86 0x55 At end of “Jackpot” animation

0x4F88C $788C, 33 STA SB4 0x97 0xB4

0x572B7 $72B7,35 LDA #8537 0x86 0x37 Uncertain. Appears to be around code that
0x572B9 $72B9, 35 STA $B4 0x97 0xB4 plays bonus multiplier and kickback animations.
0x57757 $7757,35 LDA #$55 0x86 0x55 At end of first “Boom” animation in the “Boom
0x57759 $7759, 35 STA SB4 0x97 0xB4 Boom” sequence

0x577C0 $77C0, 35 LDA #$55 0x86 0x55 At end of second “Boom” animation in the
0x577C2 $77C2,35 STA $B4 0x97 0xB4 “Boom Boom” sequence

0x57886 $7886,35 LDA #8855 0x86 0x55 At end of “Judgement day” animation sequence
0x57888 $7888, 35 STA SB4 0x97 0xB4

0x578E5 $78E5, 35 LDA #$55 0x86 0x55 At end of “T2” animation sequence

0x578E7 $78E7,35 STA S$SB4 0x97 0xB4

0x57DC4 $7DC4, 35 LDA #5555 0x86 0x55 At end of “I am the future” animation sequence
0x57DC6 $7DC6, 35 STA S$B4 0x97 0xB4

0x57E30 $7E30,35 LDA #$555 0x86 0x55 At end of Kickback animation

0x57E32 $7TE32,35 STA S$SB4 0x97 0xB4

0x57EAl $7EAL, 35 LDA #5555 0x86 0x55 At end of Arnold with shotgun animation
0x57EA3 $TEA3, 35 STA S$B4 0x97 0xB4

0x7EE93 SEE93 LDA #S$FF 0x86 OxFF This is the original L-8 SEE91 ISR routine where it
0x7EE95 SEE95 EORA $B4 0x98 0xB4 flips the bits in $B4

0x7EE97 SEE97 STA S$SB4 0x97 0xB4

0x7FB8C SFB8C CLR $B4 0x0F 0xB4 The SEE91 ISR Init clearing of $SB4

Other methods of modifying $B4 have been searched in the L-8 image such as:

e STB SB4, 0xD7 0xB4, 15 occurrences in the ROM but as an address used in JSR instruction.
e COM $B4, 0x03 0xB4, 2 occurrences in the ROM but as data bytes, not executable code.

There are other indirect methods in which code could modify $B4 however it seems fairly conclusive

that the use of $B4 memory location is limited to these animations listed in preceding text and used only

in the ways described above. The non-0x00/non-0xFF byte values used to stop the ISR are 0x55 and, in

one location,

0x37.

Corrections to Animation Init Code and ISR Code for L8.3
As mentioned, the affected animations consist of two parts of code:

Animation Initialization Code

Original L-8

SFB88 - SFBA1

ROM Offset: Ox7FB88 — 0x7FBA1

 ——

Original L-8
Animation ISR Code
SEE91 - SEEB2
ROM Offset: Ox7EE91 — Ox7EEB2

Initial Fix in L8.3 Beta

For posterity, it is worth noting the original L8.3 code in beta completely replaced the original
initialization and ISR code with corrected animation code based on The Getaway. The new initialization
code was larger than the old so some unused ROM space (in the copyright message text) was
repurposed as code to complete the initialization code.

Beta L8.3 Beta L8.3
New Animation Initialization Code New Animation ISR Code
SFB88 - SFBA1 — SEE91 - SEEB2
ROM Offset: 0x7FB88 — 0x7FBA1 ROM Offset: OX7EE91 — OX7EEB2
ﬂ ﬁ The L8.3 Beta replacement of the L-8 animation
Beta L8.3 initialization and ISR code is depicted here for
Continued Animation Init Code completeness. Final L8.3 code retained original L-8
SFFA3 - SFFAD and added corrected new animation code selectable
ROM Offset: 0x7FFA3 — Ox7FFAD by a new Feature Adjustment, described below.

Final Fix in L8.3 Release Image

Preliminary testing of the L8.3 Beta “new and improved” animation code revealed that some 3™ party
DMD displays were designed to overcome the flicker problem from the original L-8 software. Such
displays were designed to receive the 2-updates per-frame method that causes flickering on original gas-
plasma display panels. Due to this finding, it was deemed necessary to have a new Feature Adjustment
that allows selection between original animation code or corrected animation code.

The need to have such an adjustment is what lead to the introduction of new adjustments for L8.3 and
the variety of new feature adjustments. Prior to this, the early L8.3 beta releases had the Fan Club
adjustment repurposed to allow selection of Attract Mode and Profanity mode. With the L8.3 utilizing
new Feature Adjustments, the Fan Club adjustment was simply left disabled as it was in L8.2.

The resulting set of code changes allow the original L-8 animation initialization code to remain and the
original animation ISR code to remain in place. A minor change in the initialization code was added to
check the Feature Adjustment to have the animation sequence utilize original or new code.

Original L-8 Original L-8

Animation Initialization Code Animation ISR Code
$FB8S - SFBA1 — SEE91 - SEEB2
ROM Offset: 0x7FB88 — 0x7FBA1 ROM Offset: OX7EE91 — OX7EEB2
11
L8.3 Release L8.3 Release
New Animation Initialization Code New Animation ISR Code
SFFS5 - SFF83 — SFF84 - SFFAS
ROM Offset: 0x7FF55 — Ox7FF83 ROM Offset: 0x7FF84 — Ox7FFAS

A minor change to the start of the original animation initialization code at SFB88 is done to jump to the
new code at SFF55. The new code at SFF55 will first check the Feature Adjustment value. If “Original”,
then code jumps back to the original animation init code where the original L-8 animation code
proceeds, which includes the establishment of original ISR function SEE91 for the animation display
routine.

If the Feature Adjustment value is “Corrected” then instead of going back to original animation
initialization code, the new animation initialization code proceeds which establishes new animation ISR
function at SFF84 to perform the animation routine.

For L8.3, the animation init function is updated as shown below.

FB88: 7E FF 55 JMP SFF55 ; Jump to new code to pick original or corrected

FB8B: 12 NOP ;

FB8C: OF B4 CLR SB4 ; Clear S$B4

FB8E: 8E EE 91 LDX #SEE91 ;

FB91: 9F 0OA STX SO0A ; Put OxEE91 into $0A:$0B to tell ISR to call it
FB93: 86 04 LDA #504

FB95: B7 3F BD STA $3FBD ; Put 0x04 into $3FBD DMD driver board register
FB98: 35 02 PULS A

FB9A: 97 B5 STA $B5 ; Store medium pixel page number into $BS

FBOC: 4C INCA

FB9D: 97 B6 STA SB6 ; Store dim pixel page number into $B6

FBOF: 4A DECA ;

FBAO: 35 92 PULS A,X,PC ;

The animation initialization code replaces two PSHS instructions with a JMP to new code at SFF55. This
is code added where the original ROM had copyright message text (the copyright message was moved,
in its entirety, to the end of bank S3D).

FF55: BD 86 5B JSR $865B ; LookupGameAdjustmentParameterlandCheckIfEqualsParam? ()
; C-bit set when not-equal

FF58: 18 ; 0x18 == Animation Mode, Config setting returned in A

FF59: 00 ; 0x00 == Original. Compare adjustment against 0x00.

; C-bit set = "Corrected"

; C-bit clear = "Original"
FF5A: 25 07 BCS SFB88 ; If C-bit is set, skip down and do new "Corrected" ISR.

; We are doing "original" animation code

FF5C: 34 12 PSHS X,A ; Perform original instruction from $FB88

FF5E: 34 02 PSHS A ; Perform original instruction from S$FB8A

FF60: 7E FB 8C JMP SFB8C ; Go back to $FB8C and resume original animation code
FF63: 34 06 PSHS B,A ; We are doing "corrected" animation code

FF65: 97 B5 STA SB5 ; Store medium pixel page number into $B5

FF67: 4C INCA ;

FF68: 97 B6 STA SB6 ; Store dim pixel page number into $B6

FF6A: 0D B4 TST $B4 ; If $B4 is currently 0x00 we decrement it to OxFF
FF6C: 26 02 BNE SFF70 ; so that code flow then inits it 0x03

FF6E: OA B4 DEC SB4 ; This lets 0x00 value get reset to 0x03, below
FF70: 86 03 LDA #503 ;

FF72: 91 B4 CMPA $B4 ; Compare $B4 current countdown value with 0x03
FF74: 22 02 BHI SFF78 ; If $B4 >= 0x03, no branch, force it to 0x03
FF76: 97 B4 STA SB4 ; SB4 gets 0x03

FF78: CC FF 84 LDD #SFF84 ;

FF7B: DD OA STD $O0A ; Put OxEE91 into $0A:$0B to tell ISR to call it
FF7D: 86 04 LDA #504 ;

FF7F: B7 3F BD STA $S3FBD ; Put 0x04 into $3FBD DMD driver board register
FF82: 35 86 PULS A,B,PC ;

The new animation code, above, is performed when the new Feature Adjustment is set to “corrected”.
The corrected animation initialization routine starting at SFF63, above is modeled after The Getaway
logic. Unlike The Getaway, it uses hard coded 0x03 restart value and doesn’t need to store itin a
memory location. Code will always use 0x03 as the reset value. The function resets $B4 to 0x03 only if
it is 0x00 or anything greater or equal to 0x03. Otherwise, if it is 0x02 or 0x01, the $SB4 is unchanged.
This allows the initialization function to seamlessly update certain animation sequences that, for each

IM

frame in the animation, invokes the init routine to start the next frame (“Fire at will” and extra ball

award animations).

The new animation init logic establishes new function $SFF84 to handle the animation during the ISR.
The new function is located immediately after the initialization code, using the portion of ROM that
previously contained copyright message text.

FF84: 34 02 PSHS A ;

FF86: 96 B4 LDA SB4 ; A gets the countdown byte value

FF88: 4A DECA ; Decrement the countdown by 1

FF89: 27 0A BEQ SFF95 ; If decremented to 0x00 go do dim pixel work

FF8B: 81 03 CMPA #$S03 ; Compare to 03 (ie subtract 03 from A, C-clr if borrow)
FF8D: 24 OF BCC SFFOE ; If C-clear then large value was put in $B4, no update
FF8F: 97 B4 STA $B4 ; Save new decremented value 01 or 02 back into $B4
FF91: 96 B5 LDA $B5 ; A gets medium pixel plane number from $B5

FF93: 20 06 BRA SFFI9B ; Skip down to push medium plane number to $3FBF

FF95: 86 03 LDA S#03 ; A gets reset value 0x03

FF97: 97 B4 STA $B4 ; Save the reset value 03 back into $B4

FF99: 96 B6 LDA $B6 ; A gets dim pixel plane number from $B6

FF9B: B7 3F BF STA S3FBF ; Put selected dim/medium plane into $3FBF

FFO9E: 86 04 LDA #3504 ;

FFAO: B7 3F BD STA

$3FBD

FFA3: 35 02 PULS A

FFA5: 3B

RTI

; Put 0x04 into $3FBD

The new animation ISR at SFF84, above, is modeled after The Getaway as described above. The $B4 is
treated as a circular counter going from 0x03 = 0x02 = 0x01 - 0x00 and back to 0x03, continuously. If

a value greater than 0x03 (or a 0x00 byte is found, unexpectedly) in SB4 then it is assumed that
animation code pushed such value into $B4 to cause the SEE91 function to cease updating the
medium/dim DMD page index into the DMD driver board.

With the above changes in place, the T2 L8.3 ROM will neatly display the DMD animations without the

flicker issue previously described.

With the flicker issue cleared up, there may still be other coding errors in the display of the animations

which are not due to the SFF84 routine but, instead, due to issues in the code specific to the animation

code that invokes the SFB88 animation initialization code while the “Animation Code” is set to

“Corrected’. An analysis of each of the animations has been performed and described in the next

section of this document.

The L8.3 Display Animation Analysis and Fixes
With the L8.3 fixing a specific set of display animations (as described above), a further round of analysis
was performed on each of the affected animations to ensure they are properly being displayed. Using a

smartphone to record each animation and playback at very slow speed, with a frame by frame analysis,

some additional artifacts were observed in some of the animation sequences. Each of the animations

was checked in this way and reported in the table below. Some of the additional issues are being fixed

as part of the L8.3 software patch. A visual check was done comparing the observed anomalies in the

emulator frame-by-frame analysis and videos posted online. A majority of the emulator frame-by-

frame issues mentioned below do not appear to be noticeable on real hardware and, as such, are not
being addressed in L8.3, however will be documented here for posterity.

Sequence

Animation Example

Doors
Opening
revealing
award text
based on
value of the
B register.

Hunter ship

Observation

Problem Example

End of animation
sometimes gets
bright pixels
immediately before
transitioning back
to scores. This
might be perceived
as a flicker.

Function: $4088,24 - $412B,24
This issue is noticeable on real
hardware and is addressed in L8.3
so pixels don’t go bright when

transitioning to the score display.

This is first frame
prior to crosshairs
animation. No

Function: $41CD,24 — $42DC,24
No changes to this in L8.3.

issues as animation
changes from this
to crosshairs.

“Fire at will”
crosshairs

Explosion
animation when
target is hit is good.
If no trigger is
pulled or target
missed, animation
ends with partial
display of hunter
ship as it
transitions to
showing scores.

Function: $41CD,24 — S42DC,24
This is not noticeable in videos of

real hardware and not being
addressed in L8.3.

Pull Trigger
to shoot ball

No problems when
shown in attract
mode or prior to
“Fire at will”.

Function: $4412,24 — $44B2,24
No changes to this in L8.3.

Jackpot

Full image is briefly
flickered prior to
the text build-up of
the jackpot image.

Function: S783F,33 — $78C6,33
This issue was not noticed in
videos of real hardware and is not
likely to be noticeable during the
excitement of game pay. Not
being addressed in L8.3

Replay

Likely an
intentional
brightness change /
flicker as the replay
animation changes

Function: $7A20,33 — $7A53,33
No changes to this in L8.3.

to multi-color
image.

Likely an
intentional
brightness change /
flicker as the
special animation
changes to multi-
color image.

Same effect when
shown as database
award or when
collected at
outlane.
Mentioned here
for completeness.

Function: S7A56,33 — $7A91,33
No changes to this in L8.3.

No problems with
display of the
“SHOOT” and
“AGAIN”
sequences.

Function: $735F,35
No changes to this in L8.3.

No problems

Function: S76CB,35
No changes to this in L8.3.

7 Special

8 | Shoot Again

9 “Boom” 1

10 | “Boom” 2

11 | Judgment
day

No problems

Function: $76CB,35
No changes to this in L8.3.

Animation itself is
good but the
“StaringArnold”
sequence
afterwards has
minor issue.

Prior to vertical
column reveal,
some of the
“Starring” text is
briefly shown.

Function: $7862,35
Not noticeable in videos of real
hardware. No changes to this in

Vertical column reveal continues

12

T2

13

Kickback Lit

This
function is
also used by
bonus
multiplier.

Animation itself is
good but the
“StaringArnold”
sequence
afterwards has
minor issue.

Prior to vertical
column reveal,
some of the
“Starring” text is
briefly shown.

Function: $7892,35

Not noticeable in videos of real
hardware. No changes to this in
L8.3.

Vertical column reveal continues

14

“l am the
future”

Autofire, no
problems when
awarded via
database award or
targets alike.

2X, 4X, 6X, 8X, no

Function: $798C,35
No changes to this in L8.3.

15

Kickback

16

Arnold with
shotgun

problems.
No problems Function: $7D82,35

No changes to this in L8.3.
No problems Function: $7DD5,35

No changes to this in L8.3.

17

Elevator
doors closed

No problems in
either of the 2
places when
displayed during
attract mode.

Function: S7E43,35
No changes to this in L8.3.

18

T-1000
blasted

No problems

Function: S7F25,35
No changes to this in L8.3.

No problems.
Doors are bright
colored during
shotgun blast for
several frames as
part of the effect.

Function: S7F25,35
No changes to this in L8.3.

T-1000 self- Sometimes at end Function: S7F25,35

healed of animation, the This issue is noticeable on real
pixels flicker bright | hardware and is addressed in L8.3
as the animation so pixels don’t go bright when

transitions back to | transitioning to the score display.
the score display.

Animation Fix: Security Levels

Depicted as animation #1, above, the security levels animation can cause pixels to get bright for a brief
moment during the switch back to score display. To fix this, the end of the animation code will be
updated to blank the display prior to the score display. This will prevent the flicker of pixel brightness.
The animation function is from $4088,24 through $412B,24. The final instruction of the function at
$412B,24 (ROM image offset 0x1012B) is as follows:

412B: 7TE C9 52 JMP $C952 ; jump to function done

The function ending jump instruction is modified to jump to a previously unused area at the end of the
current bank (bank $24) where it will clear the display and then jump to the $C952 to end the animation.
412B: 7E 57 49 JMP $5749 ; jump to fixup code

The code now jumps to $5749,24 (ROM image offset 0x11749) where the unused ROM region is now
populated with the following code:

5749: 34 02 PSHS A ;

574B: 86 55 LDA #5$55 ;

574D: 97 B4 STA SB4 ; Store 0x55 into $B4 to cease DMD update
574F: 35 02 PULS A ;

5751: BD FB AE JSR SFBAE ; Call function clear DMD page memory
5754: 7E C9 52 JMP $C952 ; jump to function done

With this change in place, the pixels do not get bright as the transition to score display takes place. A
very slow-motion playback does reveal that the bright/medium dots go away and then the dim dots go
away as screen is blanked which should be unperceivable during game play and not produce a flicker
when animation transitions back to the score display anymore.

Animation Fix: T-1000 Self-Healed/Extra Ball Award

Depicted as animation #19, above, the “T-1000 self-healed” animation (at extra ball redeem) ends with a
brief display of bright pixels as the display transitions to the score display. To fix this, the end of the
animation code will be updated to use the same method described above for “Security Levels” fix. The
animation function ends at S7FA2,35 (ROM image offset 0x57FA2) with the end of the function as
follows:

7F96: 86 05 LDA #$05 ; DMD Page selector 0x05

7F98: BD FB 88 JSR SFBR88 ; Init for DMD prior to drawing to it.
7F9B: 7E T7F 9E JMP STEFOE ; <nop>

7F9E: BD 83 46 JSR $8346 ; Sleep ()

T7FAl: 20 ;

7FA2: 35 B6 PULS A,B,X,Y,PC ;

Analysis of the function reveals there is a JIMP instruction at $7F9B which simply jumps to the very next
instruction which then performs a delay (of value 0x20, which is 1/2 second) to retain the T-1000 image
on the display for a brief moment before transitioning back to score display. To fix the bright-pixels
issue, the code will be re-arranged so that we can perform a JSR instruction to new code that clears the
display in a way similar to the fix for Security Levels display issue (described previously).

7F96: 86 05 LDA #$05 ; DMD Page selector 0x05
7F98: BD FB 88 JSR SFB88 ; Init for DMD prior to drawing to it.

7FA2: 35 B6 PULS A,B,X,Y,PC ;

As depicted in the new code, the JMP instruction was removed and a JSR instruction was inserted prior
to the function ending. The new JSR instruction jumps to code at S7EDC,35 (the same bank as running
code, $35) which corresponds to ROM image offset 0x57EDC.

The fixup routine at $7EDC,35 is added to ROM region immediately prior to this T-1000 Self-Healed
function. At this region of ROM is the function for displaying the T2 Fan-Club message. Since L8.3
removes the calls to this function completely from the ROM, this now represents an unused region in
the ROM which can be repurposed. A survey of the L8.3 ROM was done to confirm there are no calls to
the fan-club function however out of an abundance of safety, the first instruction in the repurposed
function is an RTS so that any attempts to invoke the fan-club function at its original address S7EDB,35
will simply return without performing any work. To neatly repurpose the function, the now-unused
bytes are also being set to OxFF to more easily highlight the fact that the ROM space is now unused.

The new content of the ROM region for fan-club at $7EDB,35 (ROM image offset 0x57EDB) is as follows:

7EDB: 39 RTS ; Fan-club entry point now just returns
7EDC: 34 02 PSHS A ; Start of display-clear fixup routine

7EDE: 86 55 LDA #$55 ;

7EEO: 97 B4 STA SB4 ; Store 0x55 into $B4 to cease DMD update
TEE2: 35 02 PULS A ;

7EE4: BD FB AE JSR SFBAE ; Call function clear DMD page memory
TEE7: 39 RTS ; Done

7EE8: FF FF FF FF ; <unused ROM region>

7EEC: FF FF FF FF ; <unused ROM region>

7EFO0: FF FF FF FF ; <unused ROM region>

7EF4: FF FF FF FF ; <unused ROM region>

7EF8: FF FF FF FF ; <unused ROM region>

7EFC: FF FF FF FF ; <unused ROM region>

7700: FF FF FF FF ; <unused ROM region>

7F04: FF FF FF FF ; <unused ROM region>

7708: FF FF FF FF ; <unused ROM region>

7F0C: FF FF FF FF ; <unused ROM region>

7F10: FF FF FF FF ; <unused ROM region>

7Fl4: FF FF FF FF ; <unused ROM region>

7F18: FF FF FF FF ; <unused ROM region>

7F1C: FF FF FF FF ; <unused ROM region>

7F20: FF FF FF FF ; <unused ROM region>

TF24: FF ; <unused ROM region>

With this fix in place, instead of a momentary flicker of bright pixels, the extra-ball redeem animation
neatly blanks prior to display of the game scores.

The L8.3 Custom Message support in the ROM

As part of the L8.3 image a special function is added in to allow T2 owners and hobbyists to customize
their ROM with an attract mode message that is part of the ROM image and, as such, becomes a
permanent part of the attract mode sequence. This provides some functionality exceeding what the
WPC “custom message” allows. The standard WPC “custom message” feature is still present and part of
L8.3.

The L8.3 ROM support of custom message support has the following characteristics:
e Only a single frame may be created using this feature
e Upto 3 lines may be entered, up to 32 characters on each line
e (Can specify any of the available fonts
e Can specify where on the DMD each line is shown
e Can specify an optional sound call that is played at the time of the custom message
e Can specify a wipe-pattern how the message is revealed, or instant-on display
e (Can specify how much time the message is shown before attract mode proceeds to next item

The idea is that some trial and error would need to take place when crafting a custom message in the
ROM especially since some fonts might end up causing wrap of characters on the display. Selecting the
coordinates of where to place each line might also take some time to dial in.

This enhancement provides the ability to have a sound call added with the display of the message. Any
of the existing sound calls can be specified. There is support to play a sound without any custom
message if the desire is to have a periodic sound call during attract mode without any custom text on
the display.

By default, the custom message is empty, nothing is shown. If any of the 3 lines contain text then the
default characteristics are to use font and vertical line placement similar to the WPC “custom message”
feature and default is to have instant-on display of the message without any wipe-mode effect to reveal
the message.

Each line needs to end with a 0x00 or OxFF byte to indicate end of the line. When first byte is 0x00 or
OxFF it means nothing should be printed for that line. Code enforces a limit of 32 characters per line and
there are 32 bytes of ROM space set aside for each line. Ending 0x00 or OxFF is not used if all 32 bytes
are used. If font is too large and/or if too many characters are used on a line, the text may wrap.

To prevent the “U6 Cksum Error” test report, the checksum for the image must be recalculated and
updated in the ROM image. Details on generating a valid checksum are outside the scope of this
document. Check online resources to help generate a valid checksum. The 2" byte of the checksum
needs to be 0x08 for proper operation and in order to not trigger a factory settings reset when changing
from an existing L-8, L8.1 or L8.2 ROM image.

The L8.3 Custom Message Assembly Code

The following code is inserted into the L8.3 ROM image toward the end of bank $3D at WPC address
S$7F65,3D (ROM image offset 0x77F65). Some of the user adjustable values are directly in this function
while the actual text strings are located in unused ROM region prior to this function.

TE65:

TE67 :
TE69:

TF6B:
TF6E:
TE70:
TF71:

TF73:

TET5:

TET7:
TF79:
TEIC:
TFTE:
TETFE:

TF81:
TF83:
7TF86:
TE88:
7TF89:

7TF8B:
7E8D:
TF90:
TF92:
TF93:

34

86
8D

8E
8D
5D
27

34

8D

8D
BD
00
01
40

8D
BD
00
01
40

8D
BD
00
01
40

BD
12

35
4D
26

86
8D

BD
co
35

16

00
5A

TF
48

35

02
5B
31
D7
00
07
27
D7
00
11
1D
D7

00

1C

E2

12

02

04

00
21

83

96

00

99

99

99

74
12

46

LDA
BSR

LDX

BSR

TSTB

BEQ

PSHS

BSR

BSR
JSR

BSR
JSR

BSR
JSR

JSR

PULS
TSTA
BNE

LDA
BSR

JSR

X,B,A

#500
$TFC5

#$7F00
STFB8

$TFA8

$7TFD2

STFAA
$D799

$TFAA
$D799

$TFAA
$D799

SE274

A

$TFA4

#3500
$TFC5

$8346

A,B,X,PC

Sound call number to play (pre-reveal)
Call routine to play sound if attract-sounds are on

Address of string #1. Each string is 0x20 bytes
Call subroutine to set B if there is a msg

If B=0x00 there is no msg to show, skip to the end

At this point we are committed to play a message.
Save the pre-reveal sound index onto stack

Call subroutine to clear DMD ram/display

Routine to copy string from X to $0386 and X+=0x20
Write string from $0386 to display ram

Font index 0x01 = 7 high single stroke
Center horizontally, bottom starts at line 7

Routine to copy string from X to $0386 and X+=0x20
Write string from $0386 to display ram

Font index 0x01] = 7 high single stroke
Center horizontally, bottom starts at line 17

Routine to copy string from X to $0386 and X+=0x20
Write string from $0386 to display ram

Font index 0x01 = 7 high single stroke
Center horizontally, bottom starts at line 28

The next 6 bytes adjust the reveal/wipe pattern

BD E2 74 12 12 12 == instant-full frame display
BD 88 F5 7F 57 33 == Center-out vertical split reveal
BD 88 F5 7C F5 33 == Alternating vertical columns

Load the pre-reveal sound from stack back into A
If pre-reveal sound was non-zero then we skip over
the post-reveal sound to avoid 2x sound call attempts

Sound call number to play (post-reveal)
Call routine to play sound if attract-sounds are on

Sleep () to keep message on display

; Adjust 0xCO to desired period.

additional new helper functions are

not depicted and left as an exercise for the reader.

The L8.3 Custom Message Adjustable Values Table

Bank $3D ROM Image Default Value Info
Addr Addr
Line 1 Text 0x7F00 - 0x77F00 - OxFF .. OxFF Up to 32
OX7F1F 0x77F1F (no text) characters
Line 1 Font 0x7F7E 0x77F7E 0x01 See below for
valid font
values
Line 1 X-position | Ox7F7F 0x77F7TF 0x40 0x40 =
centered
Line 1 Y-position | 0x7F80 0x77F80 0x07 Bottom pixel
row of line
Line 2 Text 0x7F20 - 0x77F20 - OxFF .. OxFF Up to 32
O0x7F3F 0x77F3F (no text) characters
Line 2 Font 0x7F88 0x77F88 0x01 See below for
valid font
values
Line 2 X-position | 0x7F89 0x77F89 0x40 0x40 =
centered
Line 2 Y-position | 0x7F8A 0x77F8A 0x11 Bottom pixel
row of line
Line 3 Text 0x7F40 - 0x77F40 - OxFF .. OxFF Up to 32
Ox7F5F 0x77F5F (no text) characters
Line 3 Font 0x7F92 0x77F92 0x01 See below for
valid font
values
Line 3 X-position | 0x7F93 0x77F93 0x40 0x40 =
centered
Line 3 Y-position | 0x7F94 0x77F94 0x1C Bottom pixel
row of line
Sound Call 0x7F68 0x77F68 0x00 Sound index
Pre-Reveal number
Reveal/Wipe 0x7F95 - 0x77F95 - 0xBD 0xE2 0x74 6 bytes wipe/
Pattern O0x7F9A O0x77F9A 0x12 0x12 0x12 reveal mode
Sound Call Ox7FAL O0x77FAL 0x00 Sound index
Post-Reveal number
Display Period O0x7FA7 0x77FAT 0xCO 0x00 - OxFF

display period

The L8.3 Custom Message Adjustable Values Info

Additional details for each of the adjustable items are provided below. In some cases it is an exercise of
trial and error to see how the modifications result in the updated custom message on the display. Itis
suggested that a WPC emulation environment is first used to test changes.

Line Text

As mentioned, up to 32 characters are allowed for each line. As in most cases when there are less than
32 characters on a line, the line text should end in OxFF or 0x00. The code specifically looks for OxFF or

0x00 as the line ending. If the line contains the maximum 32 characters then it must not be ended with
OxFF or 0x00 byte since code will automatically end the line at 32 characters. There are fixed locations

in the ROM image for each line:

Text for.. | ROM Image offset
Line 1 0x77F00 - Ox77F1F
Line 2 0x77F20 — 0x77F3F
Line 3 0x77F40 - Ox77F5F

Any or all of the 3 lines may be used. When choosing larger fonts it may be necessary to only use 2 lines
or a single line to get the characters to display properly. The default font and placement uses a 7-high
font which allows for all 3 lines to contain text without having to adjust the default font or x/y
placement for each line.

An example modification to each of the 3 lines in a hex editor might look like the following:

ooa7FE Yo
ooa7?7FE0
Qoa7TFa0
o007 7F Al

In the example, above, each line was ended with the OxFF byte. The single byte after each line text
could also have ended with 0x00 byte for those who like to follow more common programming syntax.

0O07?FOO |4C 557427 73 FFFFFFFFFFFFFFFFFFFFFF

SDET35340Z23D5E58D31ED DY 92000001 40
Q78D EZ7ED D7 990000014011 5D 1D ED D799
00000140 1CBDE: 741212 123502 4D 2604
860080 Z1BD 8546 C0O35968D3B2006 100

Let' s¥yVYVFVIVYYY

00077F10 [FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VYV VY Y
00077F20 |S06C 6179 FFFFFFFFFFFFFFFFFFFFFFFF Flayi@iieiiiiiiy
00077F30 [FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VYV VYV YY
D0077F40 |50 69 6E 62 61 6C 6C FFFFFFFFFFFFFF FFFF Pinbal l¥ ¥4 F7§vy
00077FS0 [FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VYV VIV Y
00077F60 [FFFFFFFFFF34 16560050 5A8E 7F 00 5D 45 yoyyvaTt 1220 1 H

15490 [0 1%=m ri

o] 'pxm ra4) ==
rd »atlllsined

t ['®wFFAS-] @ —;

This example message, when using the default values for the line position and font, will appear on the

display as follows:

As can be observed with this example, the default font uses a font with fixed width characters and also
allows for lower-case letters and punctuation characters. When using lower case letters it is important
to consider how some characters contain descenders that show pixel data lower than the rest of the line.
Not all fonts allow for lower-case letters or punctuation. Later section of this document will explore the
various fonts that could be used.

Line Font

There are various fonts used in the game. Fonts vary in how tall they are and their stroke width. Fonts
may also vary in which characters they will allow. Some fonts, for example, only display number digits
and some fonts are upper-case letters only. There are also special symbols supported in some fonts.
The game also supports some game animation sequence images in the form of font characters although
selecting such things are not the intent of this custom message feature of L8.3.

Refer to the fonts section later in this document for a depiction of the fonts that are supported and their
byte value that needs to be modified in the custom message code for font selection for each line.
Remember that in addition to selecting a font, the line X/Y position values may need to be updated so
the different sized font will display in a desirable way.

The default fault is 0x01 for each of the 3 lines and highlighted in red in the hex-editor view, below.

ooa?yEYo
ooa7FFE0
ooa7FrFo0
QooYYEF LD

SDE2V3553402 8D 5EED31BD DY SS000001 40
073D E7EBDDTS90000014011 5D 1D ED DT 99
00000140 1CEBEDES 741212 123502402604
G6003D0Z1BD 35346 C0359650 362006 100

DOO7?FO0 |4C 657427 73 FFFFFFFFFFFFFFFFFFFFFF Let' s ¥y¥¥yvVvyivyvy
0DO0Y3F10 \FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFF YV dyydddyddy
0O0%YF20 (E0ECEL79FFFFFFFFFFFFFFFFFFFFFFFF Playy¥ V¥ ¥V yvivyvy
DO0OY?F30 |[FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF YV yyddyddy
DO077?F4A0 |E0696E G2 61 6C 6CFFFFFFFFFFFFFFFFFEFF Finbhal l¥¥§¥V¥iivy
0O0Y?FS0 |[FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VYV VTPV VYV VVYvyvyY
DO077Fe0 |[FFFFFFFFFF34 16860080 54 8E7F0O0ED 48 vV vaTt 1zz0 1 H

1'5490 [0 1%== @

o] ' rpxm R
rB wac]llsined

t+] '%FfFAS-] ;: —;

The font byte for each line can be changed to the desired font byte value.

Line X-Position
The X-Position specifies where on the display, horizontally, the line of text will appear. By default the

value 0x40 (decimal 64) is used which centers the line on the 132-wide pixel display. Some amount of

care is needed to choose values other than 0x40 to adjust the message to the left or to the right. Since

the value specifies the ‘center’ of the text, a value must be chosen that doesn’t cause the line to wrap if

the center point pushes the side of the message around the screen to the other side.

Continuing the example, we will center the first line at 0x20 (decimal 32), keep the second line centered

at 0x40 (decimal 64) and have the third line centered at 0x60 (decimal 96) as noted in the red

highlighted bytes in the hex editor:

o007 YFOo0
0ao7YF 10
0g0o7yYFZ0
0o0o7YF30
0007 YF40
0ao7yYF S0
0ao7YFed
Qoo YFT0
0ao7YFa0
ogo7yYFe0
0007 YFAQ

4C a5 T ET VI FFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
S06CE17SFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
S0696E6Z 6l aCeCFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFF 341656 005D SASEYFOOSD 45
SDET3I5340Z3D5E8D31ED DY 2200000120
073D E7EBDDTS200000140115D 1D ED DT 99
00000160 1CEDEZ 741212 123502402604
Se003DZ1BD 35346 C0359658D3BE2006 100

Let'sY¥ ¥V VVVV¥y vy
TV YV VT ay
Playy¥¥§¥¥¥Fvivyddy
YV YV VYV VVYYVY
Pinball¥¥¥V¥¥¥vy
TV YV VT ay
Fyviyidart [220 [H
15470 [0 1%==
o] 'rgaT rdd] rpw=
r- maclllsqned
t+ ['%FfFAS-] ; —;

The resulting message on the display using these X-Position values is as follows:

Hacker’s Tip: You
can change the
line print functions
from SD799 to
SD77D and the line
X-position specifies
absolute x-position
instead of center
point!

Some experimentation reveals the valid values for the X-Position byte are 0x00 through 0x7F (127

decimal) to pick where on the X-axis the text is centered on the 128-wide pixel display.

Line Y-Position
The Y-Position byte for each line indicates where, vertically, on the display the line should be printed.

This refers to the bottom of the line of text. In the examples shown, above, using default font and Y-

Position values, the first line has value 0x07, second line has 0x11 (decimal 17) and the third line uses

0x1C (decimal 28). Since the default font is 7 pixels high it makes sense the first line uses Y-position

value of 0x07 so the line of text fits at the top region of the display. The next line starting at Ox11

(decimal 17) using the 7-high font means there would be 3 pixel row gap between the bottom of the

first line and top of second line. The third line having Y-position 0x1C (decimal 28) would mean there 4

pixel gap between the bottom of the second line and top of the third.

Some experimentation has shown that the Y-Position values are 0-based which means valid values
would be 0x00 through 0x1F (31 decimal). This means the first line showing a 7-high pixel font with Y-
position value 0x07 would display the line with a single row of unlit pixels on the top-most row of the
display.

Continuing the example using some different Y-values to move the vertical position of the example lines

of text:

OO077FO0 |4C 65742773 FFFFFFFFFFFFFFFFFFFFFF Let' sy ¥evivyoeyy
O0077F10 |FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF HREE VUV
O0077FZ0 |506C 61 79FFFFFFFFFFFFFFFFFFFFFFFF Plaviiisdiidydidy
O0077F30 |FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF HVV VYV
O0077F40 |50 69 6E6Z 61 6C 6CFFFFFFFFFFFFFFFFFF Finbal l¥¥¥iyievy
O0077FS0 [FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VYV VYV
O0077FE0 [FFFFFFFFFF34 16560050 SASE TFO0SD 458 vvdvart 1220 1 H
OO077F70 (502755340280 5E8D31EDD722000001 20 1'5470 [0 1%==

00077FE0 |178D027EDD799000001401ES8D 1DED D799 40 "R pRe] wxm
OO077F90 (00000160 AIFEDEZ 7412 12 123502402604 r~ maclllsinmed
OO077FA0 (560050 21BDE3 46 C0359658D 362006 4100 t+ 0 '®=fFAS-]: —;

As shown in the red highlighted byte values, the Y-Position values for the three lines of text are changed
to 0x17 (23 decimal), 0x1B (27 decimal), and Ox1F (31 decimal), respectively. This means the 3™ line will
be on the bottom-most line on the 32-line display. The bottom of the 2" line is at row 28 (of 32 rows)
and the bottom of the 1% line is at row 24 (of 32 rows). The result of this continued example is as
follows:

In this case we can display each 7-high font line with overlapping Y-position values since we've

previously adjusted the X-position to ensure they are located in different horizontal positions on each
line.

Sound Call
The L8.3 custom message feature also supports the ability for a sound to be played in conjunction with
the display of the custom message.

A sound index can be specified during the reveal of the message or after the reveal of the message. This
allows some fine tuning of when the sound plays especially when a wipe/reveal pattern is used to

display the message over a perceivable period of time. It might be preferred to have the sound play
during or play after the reveal pattern is complete. Code will only allow for a single sound to be used. If
a sound call is specified in both positions, only the first, pre-reveal, sound call will be used.

By default the sound call value is 0x00 which means no sound call will be attempted. When a value
other than 0x00 is used then the sound-call will be sent to the sound board if “Attract Sounds” is
configured to “on”. If the attract sounds are not enabled, then there will be no sound played with the
message. Inthe case where no text is defined to be shown (All 3 lines start with 0x00 or OxFF byte) only
the pre-reveal sound will be supported to play a sound without displaying any custom message on the
display. This allows flexibility of having a selected sound play periodically during attract mode but not
with an accompanying custom message on the display (it will play the pre-reveal sound while showing
whatever is next in the attract mode sequence).

The single byte sound number that is specified is passed into a function that the game uses to play the
desired sound number. Sound numbers that may be specified are listed in the table below:

Sound Number | Sound Effect

0x00 Disabled, no sound

0x01 <none>

0x02 <none>

0x03 Missile flyby

0x04 Waszhwawawawu

0x05 Laser shot

0x06 Engine rev-up (doesn’t stop!)
0x07 Tingtingtingting

0x08 Dwoh (database award sound)
0x09 Dwang (database award sound)
0x0A Twing (database award sound)
0x0B Da do do woo

0x0C Dit dit da doot doot doo
0x0D Fwizzzzzp

0x0E Fwzip fwzip

0xOF Space ship up with drumbeat
0x10 Splat

0x11 Zip dip dip

0x12 Klew

0x13 Blew

0x14 Zap zap whap whap

0x15 Space ship up away

0x16 Blip (skill shot?)

0x17 Zeeeee phweeee

0x18 Zee fwa fwa fwa fwa

0x19 Zee wahm zee zorm

0x1A Zee wohm zee zohm
0x1B Zee wohm zee wohm
0x1C Zee wohm mee wohm
0x1D Space email notification
0x1E Space doorbell

0x1F Zippzeooo

0x20 Bzeweww

0x21 Spaceship takeup

0x22 Scwooph

0x23 Bzeww weoo0

0x24 Game show prize award
0x25 Computery doowhip
0x26 Computery bangy
0x27 Computery sudden
0x28 Computery alarmy noise
0x29 Computery ramp-up blongy award
0x2A Computer gun load
0x2B Spacey computer whirz
0x2C Spacey drill whir

0x2D Bluzz

0x2E Quuz

0x2F Wfuz

0x30 Pfz

0x31 Pfuz

0x32 Pfaz

0x33 Pfiz

0x34 Wraaa

0x35 Low-pitch dramatic standoff music (music plays)
0x36 Computer wizzzz

0x37 Computer acute fare
0x38 Computer blipnoise
0x39 Computer ban fribblezee
0x3A Computer bang fribble
0x3B Spooky warble

0x3C Do do dat dwoo

0x3D Computer flsmish

0x3E Computer smoozmle
0x3F Computer flashzm
0x40 Computer smashzle
0x41 Computer sizzle

0x42 Computer sizzle

0x43 Computer scramble
0x44 Downward low zip
0x45 Downward foreboding

0x46 Bonus foreboding
0x47 Computer splaws
0x48 Computer kblawz
0x49 Computer splat

0x4A Twilight zoney

0x4B Boom (during match?)
0x4C Spacey twang down
0x4D Spacey engine

0x4E Spacey vlarble

0x4F Spacey vle vle vle
0x50 Vu-vilp

0x51 Twangz

0x52 Door slam

0x53 Helicopter buzz by
0x54 Crack

0x55 Whack

0x56 Kabash

0x57 Patter patter patter patter
0x58 Shot

0x59 Shatter

0x5A Blast

0x5B Drop smash

0x5C Slam

0x5D Engine revving

0x5E Motorcycle

0x5F Swoosh

0x60 Crash

0x61 Smash

0x62 Gunshot

0x63 Punch/smack

0x64 Collision

0x65 “Take your best shot”
0x66 “Fire at will”

0x67 “You missed”

0x68 “Direct hit”

0x69 “Great shot”

0x6A “Lock sequence initiated”
0x6B “Get the extra ball”
0x6C <none>

0x6D “Extra ball”

0x6E Bang sound higher pitched (?)
0x6F Bang sound lower pitched (?)
0x70 “I'll be back”

0x71 “It’s payback time”

0x72 “Get the jackpot”

0x73 “Jackpot”

0x74 “Checkpoint 1 secured”
0x75 “Passcode secured”
0x76 “Silent alarm deactivated”
0x77 “Vault key secured”
0x78 “Get the CPU”

0x79 “Hurry up”

0x7A “Autofire”

0x7B “Video mode”

0x7C “Load the cannon”
0x7D “Shoot again”

0x7E “Get out”

0x7F “Well done”

0x80 “Awesome”

0x81 “Nice shot”

0x82 “Judgment day”

0x83 “Let’s go”

0x84 “Gol!”

0x85 “Run”

0x86 “I am the future”

0x87 “You are superior”
0x88 “Get the super jackpot!”
0x89 “Big Points”

0x8A “Autofire Deactivated”
0x8B “Way to go“

0x8C “No”

0x8D “Hasta la vista, baby“
0x8E “Chill out”

0x8F “Excellent”

0x90 “Get down”

0x91 “He’ll live”

0x92 FUA (Sound board needs profanity ROM U14)
0x93 “Woopdadidoo”

0x94 Boom (attract mode)
0x95 “Deactivated”

0x96 “Activated”

0x97 “Time to go”

0x98 “Right now”

0x99 “Don’t move”

0x9A “They’re here”

0x9B “Out of the way”

0x9C “Look out”

0x9D “I am a Cyberdyne Systems series 800 terminator”

0x9E “Reloaded”

0x9F “Destroy everything”

0xA0 “Terminated”

0xA1 “You’re targeted for termination”
0xA2 “Get behind me if you want to live”
0xA3 “No way, Jose”

0xA4 “No problemo"

0xA5 “I am a cybernetic organism”
0xA6 “You missed everything”
0xA7 Crash

0xA8 Lengthy award

0xA9 Motorcycle rev and drive by
0xAA Motorcycle shifting gears
0xAB “Video mode activated”
0xAC “Hurryup activated”

0xAD Pzwee

OxAE Gunshot

0xAF Fizzle wizzle

0xBO Balink

0xB1 Short trouble wrabble
0xB2 Elevating wrabble

0xB3 Dat dat dat do woo

0xB4 Elevating wribble

0xB5 Laser fizzle

0xB6 Smashey

0xB7 Punchy

0xB8 Boulder rumble

0xB9 “Destroy everything”

0xBA “Well done”

0xBB “Extra ball”

0xBC Short smack

0xBD - OxFF <none>

The sound effect names in the table, above, were derived using a pinball emulator and modified ROM
image to manually trigger each sound. The names of each sound were quickly derived based on what
was heard from the emulated sound board. Sounds were sampled with the L-8 sound ROM set and also
with the sound ROM U14 replaced with the “profanity” sound ROM. The only observed difference was
the sound 0x92 would play the FUA quote with profanity U14 ROM while it would play nothing with the
regular U14 ROM.

An example of having sound modification at ROM offset 0x77F68 changing the 0x00 byte to “Chill out”
we change the pre-reveal sound byte value to Ox8E as shown by the red highlighted byte below:

ooa77FO0

ooa77Fe0

4C a5 T EV VI FFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFF34 1686 5SESD SASEVFOOSD 45

Let's¥y¥¥¥¥yyvyvyyy

DO0OY?F10 |[FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF YV yyddyddy
DO0OY?FE0 |E0GC G179 FFFFFFFFFFFFFFFFFFFFFFEFF PlayyV¥v¥¥vVVviivvy
0O0Y?FI0 |FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VYV VTPV VYV VVYvyvyY
DO077F40 |E0696E6Z 6l 6C 6CFFFFFFFFFFFFFFFFFF Finbhal 1§ §¥yyidivy
000%YF50 (FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF YV VYV Vv ddy

divivartil 220 1 H

O0077F70 |ED273534028D5E8D31EDD799000001 20 1'5490 [0 1%=2
00077?FE0 |178027ED DT 9900000140 1E5D 1DED D799 40 "= [Re] wxm
O0077F90 (00000160 1FEBDEZ 741212 123502402604 r watlllsqned
OO077FAD |36008D21E08346C035968D 3620064100 t+] '%FFAS-] ; —;

If a reveal/wipe pattern is selected (described in next section) and the desire is to have the sound play
after the reveal is complete then the sound byte at 0x77FA1 should contain the desired sound byte
value and the byte at 0x77F68 should be 0x00 so that the post-reveal sound is played.

The hex-editor example below shows the post-reveal sound-call byte at 0x77FA1 set to Ox8E to play
“Chill out” after the reveal of the message is complete. The following also depicts the pre-reveal sound
at Ox77F68 set to 0x00.

OO077FOO0 |4C 65742773 FFFFFFFFFFFFFFFFFFFFFF Let' s¥¥¥¥¥yyivyy
OOC077F10 (FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VYV VvV EVY
OOC077FZ0 |506C 6179 FFFFFFFFFFFFFFFFFFFFFFFF Plaviviiyiyyivyy
OO077F30 (FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VY
O0077F40 (5069 6E6Z 61 6CGCFFFFFFFFFFFFFFFFFF Pinkbal Ly ddidy
O0077FS0 (FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Y
O0077F60 [FFFFFFFFFF34 1686 008D 54 8E 7F 008D 48 yvdvart 1220 1 H
0O0077F70 |ED27353402805E8D31ED D7 22000001 20 1'5490 [0 1%==

O0077F30 (178D 27 ED 79900000140 1E&D 1D ED D7 99 40 ' rB«l ==
00077F20 00000160 1FEDEZ 741212 123502402604 r waclllsqned
OO077FAD |36SESD21EDS346C035968D 3620064100 tZ] '%FFAS-] : —;

Reveal /Wipe

When the custom message is displayed there are a few ways in which the custom message may be
revealed (or “wiped”) onto the display. There are 6 contiguous bytes that are used to select the desired
reveal pattern, as shown in the table below.

ROM Offset Data Bytes Reveal / Wipe mode

0x77F95 OxBD OxE2 0x74 0x12 0x12 0x12 Instant-on display

0x77F95 O0xBD 0x88 OxF5 0x7F 0x57 0x33 Center-out vertical split reveal

0x77F95 0xBD 0x88 0xF5 0x7C OxF5 0x33 Alternating vertical columns up/down reveal

At ROM offset 0x77F95 is the start of the 6-byte pattern. By default, the Instant-on display is used. The
way in which the custom ROM message feature for L8.3 is designed, the display will be blank prior to the
reveal of the custom message.

For all reveal/wipe modes, after the full message is shown, the post-reveal sound is played, if specified,
and the delay period is observed before the attract mode proceeds to the next sequence.

Instant-on display

The instant-on display simply displays the message instantly without any fancy pattern or effect. This is
the default method used to display the custom ROM message in L8.3. The default reveal/wipe mode is
specified by the 6 bytes starting at ROM offset 0x77F95, as shown in red, below:

OO0077FO00 |4C 657427 73FFFFFFFFFFFFFFFFFFFFFF Let ' syyiyidivvyy
OO077F10 |[FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VYV VYV Vvvy
OO0077FZ0 |S0GCE17IFFFFFFFFFFFFFFFFFFFFFFFF Playiyiyiyidivvyy
O0077F30 |[FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF PGV TV VRV VY
OO0077F40 |S0696E62 61 6CGCFFFFFFFFFFFFFFFFFF Pinbal iy
OO0077FS0 [FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VTV
D00Y7F60 (FFFFFFFFFFS34 1686 008D SAGE7FO0GD 45 Pi¥vyvart [220 1 H
OO077F70 |SD273534028D5E8D31BDD79900000120 15470 [0 1%== |

0O0077YFE80 |07 8D 27EBDD79200000140118D 1D EBD D799] 'gam radq) w=m
0O0077F90 |000001601FEDEZ 7412 12 123502 4D 2604 r- maclllsymed
OO077FAD |S6008D21EDS83 46 C035968D 362006 4100 t 0 '®FFAS-0: —;

Center-out vertical split reveal

The center-out vertical split reveal is used by a few attract mode messages and can be enabled for the

custom message. Example hex-editor output selecting this reveal pattern is depicted below.

ooa77FO0
ooa7TFFE10
ooa?yFa20
Qo0 TFFI0
ooa77FE40
ooa?7Fs0
ooa77Fe0
ooa?yFE Yo
QooYYFE0
ooa7FFEs0
o007 7Fad

Using this reveal mode to display the example message is depicted below. Starting with blank display,
the message starts to appear from the center of the display, exposing the message outwardly exposing
each column of pixels of text in a smooth reveal, despite the screen shots, below, depicting the reveal

4C a5 T EV VI FFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
S06Cel17SFFFFFFFFFFFFFFFFFFFFFFEFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
S50696E6Z 61 6CeCFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFF34 16586 0058D SASEYFOOSD 45
SDEV35340Z28D5ESD31ED DY 99000001 20
178D Z7EBDDT92000001401ESD 1D ED DV 932
00000160 1FEDSSEFSYFS73335024D 2604
Se8ESDZ1EBD S5 46 CO035968D3B2006 100

more coarsely.

Let's¥ V¥V FVVyyvy
AR R AR AR Rt SR R
Playy¥¥¥ivvyivivy
YV VYV V VYV VVVVYVY
Pinbal l¥¥Fydiddy
FY V¥V VFydvviveey
diviveart 1220 1 H
1'5490 [0 1%=2
A0 '2exm pRel mx™

re ®-alussgmed
tE] '®wFfFAS-] ;: —;

Alternating vertical columns up/down reveal

The alternating vertical columns up/down reveal is also used by a few attract mode messages and can
be enabled for the custom ROM message feature. Example hex-editor output selecting this reveal

pattern is depicted below.

0oo7YFod
0ao7YF10
0g0o7yYFZ0
0oo7YF30
0007 YF40
0oo7YFSs0
0007 YF el
oaoy7yYFY0
0ao7YFa0
ogo7yYFe0
0007 YFad

Using this reveal mode to display the example message is depicted below. Starting with blank display,
the message starts to appear from the top and bottom of the display in alternating columns. The
columns are revealed exposing each vertical column of the message in a smooth reveal, despite the

4C a5 THET IS FFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
S06CE17SFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
S0696EGZ 61 6CeCFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFF34 16586 005DSASEVFOOSD 45
SDET35340Z3D5E8D31ED DY 29000001 20
178D Z7EDDTO9000001401ES8D 1D ED DT 99
00000160 1FEDSEFSYCFS3335024D 2604
SE8ESDZ1EBD S5 46 CO035968D3B2006 100

screen shots, below, depicting the reveal more coarsely.

Let' sy ¥ ¥ Fviyydy
TV YV VT ay
Playy¥¥§¥¥¥Fvivyddy
FY V¥V VY ivyiveey
Pinball¥¥¥FV¥¥¥vy
YV YV VYV VVYYVY
divdveart 1220 1 H
15470 [0 1%==
10 ' wxm pRe] wem
r ko B| B35 Me
t+Z] '%FFAS-] ; —;

O UL UL UL UL TS UL UL

Display Period
The custom ROM message feature also allows the delay period to be specified which controls how long
the message stays on the display prior to proceeding to the next normal attract mode sequence.

The byte at ROM offset 0x77FA7, by default is set to 0xCO to provide a decent delay. This byte can be
modified larger or smaller within the range of 0x00..0xFF to make the message appear for a shorter or

longer period, respectively. Value 0x40 corresponds to 1 second. Value OxCO is 3 seconds.

For example, below, the message is set to appear for 1 second by making the value 0x40.

00077?FO0 |40 657427 73 FFFFFFFFFFFFFFFFFFFFFF Let' s¥¥iviiviviyy
00077?F10 |[FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VYTV VYV Vv vy
00077F20 |SO06CE1 79 FFFFFFFFFFFFFFFFFFFFFFFF Plavyiiy ¥V ¥y Vv yvvy
O007VF30 [FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Vv iy yvvy
00077F40 |50 69 6EGEZ 61 6C 6CFFFFFFFFFFFFFFFFFF Pinbal l¥y¥vVVivvy
00077FS0 |[FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF VYV ViV iy ¥vey
00077F60 [FFFFFFFFFF34 165860050 54 SE7FO0SD 45 yvevart 1220 1 H
00077F70 |S0p27353402 8D SEED31EBDD79900000120 1' 5490 [0 13==
00077FE0 |178027EDD799000001401E5D 1DED D799 40 "= [Re] wxm
O0077F20 (00000160 1FBEDSSFS7CFS3335024D 2604 - % " &|8357M1s]
00077FAD |S6SESLZ1EBDS3 4640359680 3E2006 4100 tE] I%FFRS-1 ; —;
Fonts

Some characters are shown, below, for each of the supported fonts. Some fonts support various special
characters and punctuation characters and some fonts also support lower case letters. Not all
characters are shown, below, for each font.

Font is specified on a per-line basis. It is important that the X/Y location bytes are also adjusted to
ensure the display of the font character doesn’t cause wrap on the display. A valid combination of font
and X/Y location must be used so that it appears on the display in a pleasing way.

The font selector byte for each line is summarized as the following:

Font for.. | ROM Image offset
Line 1 0x77F7TE
Line 2 0x77F88
Line 3 0x77F92

The default value for L8.3 is font selection 0x01 which provides a 7-high single-stroke font. A summary
of all fonts in the T2-L8 font table is as follows. For completeness, all font table info is listed. The fonts
that are used for graphics/animations are listed and grayed out. Ranges of supported characters are
shown in < > brackets such as <0-9> to indicate support for digits 0 through 9 (where it shows <=> it is
depicting support for the 3 characters ‘<’, ‘=, and >’). Spacebar character support is denoted with “< >”

Font | Description Support Character Support

0x00 | 7-high, single stroke Full character support < >U7HSRET () ¥+, = /<0-9>:;<=>2@<A-Z>[\]"_<a-z>{|}~
0x01 | 7-high, single stroke Full character support < SUTESSE’ () * 4, —. /<0-9>:;<=>?@<A-Z>[\]* <a-z>{|}~
0x02 5_high’ single stroke Upper-case alpha, number, symbol [< > ”7#$% / ()*+,-./<0-9>: = ? <A-Z>[\]
0x03 7-high' single stroke Comma, period, digits (scoring) , . <0-9>

0x04 7-high' single stroke Comma, period, digits (scoring) , . <0-9>

0x05 7_high' single stroke Comma, Period, digits (scoring) < >), <0-9>

0x06 | 13-high double stroke | Comma, Period, digits (scoring) , . <0-9>

0x07 13_high double stroke | Comma, Period, digits (scoring) , . <0-9>

0x08 | 13-high double stroke | comma, Period, digits (scoring) ;. <0-9>

0x09 10_high double stroke | Misc, Upper-case letters, digits [‘) -./<0-9>; = <A-7>
0x0A 15_h|gh outlined Misc, Upper-case letters, digits | < >!” = [<0=9> ? <A-7>
0x0B 22_high outlined Misc, Upper-case letters, digits ? -. <0-9> ? <A-Z>
0x0C | 26-high triple-stroke | Misc, Alpha, digits <> . <0-9>: <B-7> <a-z>
0x0D Graphics Terminator Robot 0x01 - 0x0C

0xO0E | Graphics Shiny Pinball 0x01 - 0xOB

0xO0F | 7-high single stroke Full character support < SITESSET () R4, . /<0-9>1; <=>2@<A-2>[\]"_<a-z>{|}~
0x10 | 15-high triple stroke Misc, Upper-case letters, digits | < >!”) ,-. <0-9> = ? <A-Z>
0ox11 27_h|gh wide stroke Comma, period, digits (scoring) , . <0-9>

0x12 | 32-high wide stroke Digits only <0-9>

0x13 | 25-high wide stroke Digits only <0-9>

0x14 | 20-high wide stroke Digits only <0-9>

0x15 | 13-high wide stroke Digits only <0-9>

0x16 | 8-high wide stroke Digits only <0-9>

0x17 4_high tiny Misc, Upper-case letters, digits | < > , <0-9> <A-7>
0x18 | 5-high tiny Misc, Upper-case letters, digits | < > , . <0-9> <A-Z>
0x19 13_h|gh double stroke | Misc, Upper-case letters, digits [< > , <0-9> <A-Z>
0x1A | 26-high wide stroke Digits only <0-9>

0x1B Graphics Large spinning digits and ‘X’ 0x01 — 0x2D

0x1C Graphics Large spinning plank 0x01 - 0x06

0x1D Graphics Used in Pull Trigger animation 0x01 - 0x16

0x1E Graphics Used in Match animation 0x01 - Ox1F

0x1F Graphics Circular shape 0x01 - 0x04

0x20 | Graphics Super Jackpot 0x01, 0x02

0x21 Graphics Terminator Robot (same as 0x0D) 0x01 - 0x0C

0x22 Graphics Circular shape (same as 0x1F) 0x01 - 0x04

0x23 | Graphics Motorcycle left 0x01 - 0x04

0x24 | Graphics Motorcycle left (same as 0x23) 0x01 - 0x04

0x25 Graphics Motorcycle wheelie 0x01 - 0x0A

0x26 | Graphics Explosion 0x01 - 0x06

0x27 | Graphics Explosion 0x01 - 0x03

0x28 | Graphics Explosion 0x01 - 0x05

0x29 | Graphics Fire at will 0x01 - 0x02

0x2A Graphics Fire at will (same as 0x29) 0x01 - 0x02

0x2B | Graphics Video mode 0x01 - 0x08

0x2C | Graphics Video mode 0x01 — 0x08

0x2D | Graphics Video mode 0x01 - 0x0B
0x2E | Graphics Video mode 0x01 - 0x08
0x2F | Graphics Video mode 0x01 - 0x08
0x30 | Graphics Video mode 0x01 - 0x06
0x31 | Graphics Video mode 0x01 - 0x06
0x32 | Graphics Video mode 0x01 - 0x0B
0x33 | Graphics Video mode 0x01 — 0x08
0x34 | Graphics Hunter ship 0x01 - 0x02
0x35 | Graphics EB Award 0x01 - 0x02
0x36 | Graphics Terminator 0x01 - 0x02
0x37 | Graphics Hunter ship 0x01 - 0x02
Font 0x00

Font 0x00 is a 7-high pixel, single-stroke font with lower-case letters.

Font 0x01
Font 0x01 appears to be identical to font 0x00, the internal code likely points to the same font data.

Font 0x02
Font 0x02 is a 5-high font supporting only numbers, letters and some symbols.

Font 0x03

Font 0x04
Font 0x04 is also a 7-high scoring font. This font is slightly wider than previous font.

Font 0x05
Font 0x05 is another 7-high scoring font, slightly wider than previous font.

Font 0x06
Font 0x06 is a 13-high double-stroke scoring font.

Font 0x07
Font 0x07 is another 13-high scoring font, slightly larger than the previous.

Font 0x08
Font 0x08 is another 13-high scoring font, slightly larger than the previous.

Font 0x09
Font 0x09 is a 10-high double-stroke font with numbers and upper-case letters.

Font 0x0A
Font Ox0A is a 15-high outlined font with numbers and upper-case letters.

Font 0x0B
Font OxOB is a 22-high outlined font with numbers and upper-case letters.

Font 0x0C
Font 0xOC is a 26-high triple-stroke font with numbers and upper-case letters. This font also has lower-

case letters of varying heights. Only a small sample is depicted below.

Font 0x0F
Font OxOF is a 7-high font containing upper and lower case letters and numbers.

Font 0x10
Font 0x10 is a 15-high triple-stroke font with numbers and upper-case letters.

Font 0x11
Font Ox11 is a 27-high thick-stroke scoring font.

Font 0x12
Font 0x12 is a huge 32-high number-only font.

Font 0x13
Font 0x13 is a large 25-high number-only font.

Font 0x14
Font x014 is a large 20-high number-only font.

Font 0x15
Font 0x15 is a medium 13-high number-only font.

Font 0x16
Font 0x16 is a smaller 8-high number-only font.

Font 0x17
Font 0x17 is a tiny 4-high font with numbers and upper-case letters.

Font 0x18
Font 0x18 is a tiny 5-high font with numbers and upper-case letters.

Font 0x19
Font 0x19 is a 13-high double-stroke font with numbers and upper-case letters.

Font 0x1A
Font Ox1A is a 26-high scoring font.

The L8.3 Feature Adjustments Additions

Originally, the L8.3 was going to re-purpose the “Fan Club” adjustment to allow various selections to
pick attract mode and profanity (FUA) mode. As additional enhancements were added to select
Animation Code and Lamp Driver, it became apparent that adding new “Feature Adjustments”
selections would be a superior solution over a repurposed “Fan Club” adjustment.

The L-8 code was analyzed to get a better understanding of how the existing Feature Adjustments are
designed and how they are stored into static (battery-backed) RAM. This analysis determined that the L-
8 code is designed to accommodate 10 new Feature Adjustments without much trouble. Six of these
new Feature Adjustments were utilized in L8.3, leaving room for 4 new adjustments in the future. While
surveying the code, it also appears that, if needed, additional adjustments are also possible by altering
the adjustment code to take advantage of the fact that 2 bytes are used for each adjustment even if the
adjustment only actually uses one byte to store the adjustment setting. For future WPC ROM
modifications coding technique may be exercised to store 2 adjustments in the space of one, if not
enough spare/unused adjustments are available.

The following sections describe how the number of available adjustments were determined along with
the necessary changes to 4 data tables that are necessary in order to add new adjustments:

e Feature Adjustments Metadata Table

e Feature Adjustments String Table, English
e Feature Adjustments String Table, German
e Feature Adjustments String Table, French

Determining Total Number of Adjustments

Part of determining whether L-8 has ‘spare’ Feature Adjustments involves determining how many
adjustments the L-8 code currently accommodates. There is a code startup function that is called which
establishes the memory address of the starting point in SRAM for Feature Adjustments and it also
checks the total number of adjustments against a fixed limit. This function is shown below:

9388: 34 36 PSHS Y,X,B,A ;

938A: 8E 81 EC LDX #S$81EC ; X gets Pointer to StandardAdjustmentsTablel[]

938D: BD AC 38 JSR SAC38 ; GetTableXEntryCountIntoY ()

9390: 1F 20 TFR Y,D ; D has number of standard adjustments

9392: 86 02 LDA #3502 ; A gets 2 since each adjustment is 2-bytes in ram
9394: 3D MUL ; D now has number of SRAM bytes of non-feature adjstmts
9395: 8E 1B 1D LDX #$1B1D ; X gets start of RAM for Standard Adjustments: $1B1D
9398: 30 8B LEAX D,X ; Advance X by number bytes of non-feature adjstmts
939A: BF 03 39 STX $0339 ; Result into $0339. SRAM start of Feature Adjustments
939D: 1F 20 TFR Y,D ; Reload D with number of standard adjustments

939F: 8E 81 EF LDX #S81EF ; X gets Pointer to FeatureAdjustmentsTablel]

93A2: BD AC 38 JSR SAC38 ; GetTableXEntryCountIntoY ()

93A5: 31 AB LEAY D,Y ; Advance Y by D. Y has # of Std <and> Feature adjstmts
93A7: 10 8C 00 6E CMPY #$006E ; Compare Y with 0x006E, sanity check that there are no

; more than 0x006E (110) total adjustments:

; Standard Adjustments: O0x4E, 78 table entries
; Feature Adjustments : 0x16, 22 table entries
; Unused 16-bit RAMs : 10

93AB: 23 04 BLS $93B1 ; If Y is lower or same as 0x006E (110), good return
93AD: BD 82 98 JSR $8298 ; Otherwise, call this error handler function

93B0: 6C ; with error code 0x6C to indicate adjustment error
93B1l: 35 B6

The highlighted instruction, above, reveals that code is designed for a total of 110 adjustments. Further
surveys into the other parts of the code reveals that the first part of adjustments consists of 78
adjustments while the second part accommodates 32 (22 Feature Adjustments and, apparently, room
for 10 additional adjustments). The L-8 code was exhaustively investigated to ensure that these,
presumed, 10 additional adjustments are not actually used by anything in L-8. This investigation results
in the determination that the additional 10 adjustments are, indeed, unused in L-8. The code does not
refer to the memory associated with the 10 additional adjustments, nor does run-time check of L-8
reveal any access to these additional 10 adjustments memory other than when code reads the entire
block of adjustments memory when determining adjustment checksum. Checksum is used by the code
to help determine if memory corruption has taken place.

The L-8 Adjustments Memory Map
Although the code shown above refers to “Standard Adjustments” and “Feature Adjustments”, the
game further divides the area that are referred to as “Standard Adjustments” into:

e Standard Adjustments
e HTSD Adjustments

e Pricing Adjustments

e Printer Adjustments

The WPC code utilizes various functions to fetch an adjustment value and return its setting in a 16-bit or
8-bit result register. The various functions are designed to accept an input index that is known by the
caller to such function to refer to the desired adjustment index that is known by both the caller and the
function. A detailed analysis of such lookup functions is left as an exercise for the reader.

The table, below, was gathered from the investigation into the L-8 Adjustments:

Overall SRAM Bytes Table-and-Index WPC Menu Name WPC Lookup

Index Index
0x00 (0) S1B1D:S1B1E @ StandardAdjustment000 NULL/Placeholder 0x00
0x01 (1) | $1B1F:$1B20 | StandardAdjustment001 Balls per game 0x01
0x02 (2) @ $1B21:$1B22 @ StandardAdjustment002 Tilt warnings 0x02
0x03 (3) | S1B23:S1B24 | StandardAdjustment003 Max E.B. Count 0x03
0x04 (4) @ S1B25:51B26 @ StandardAdjustment004 Max E.B per B.I.P. 0x04
0x05 (5) | S1B27:51B28 | StandardAdjustment005 Replay System 0x05
0x06 (6) @ S$S1B29:S1B2A StandardAdjustment006 Replay Percent 0x06
0x07 (7) | $1B2B:51B2C | StandardAdjustment007 Replay Start 0x07
0x08 (8) @ S$1B2D:S1B2E @ StandardAdjustment008 Replay Levels 0x08
0x09 (9) | $1B2F:S1B30 | StandardAdjustment009 Replay Level 1 0x09
Ox0A (10) $1B31:51B32 StandardAdjustment010 Replay Level 2 0x0A

0x0B (11)
0x0C (12)
0x0D (13)
0xOE (14)
0xOF (15)
0x10 (16)
0x11 (17)
0x12 (18)
0x13 (19)
0x14 (20)
0x15 (21)
0x16 (22)
0x17 (23)
0x18 (24)
0x19 (25)
0x1A (26)
0x1B (27)
0x1C (28)
0x1D (29)
0x1E (30)
Ox1F (31)
0x20 (32)
0x21 (33)
0x22 (34)
0x23 (35)
0x24 (36)
0x25 (37)
0x26 (38)
0x27 (39)
0x28 (40)
0x29 (41)
0x2A (42)
0x2B (43)
0x2C (44)
0x2D (45)
0x2E (46)
0x2F (47)
0x30 (48)
0x31 (49)
0x32 (50)
0x33 (51)
0x34 (52)
0x35 (53)
0x36 (54)

$1B33:51B34
$1B35:51B36
$1B37:51B38
$1B39:51B3A
$1B3B:S$1B3C
$1B3D:S1B3E
S1B3F:$1B40
$1B41:51B42
S1B43:51B44
$1B45:51B46
$1B47:51B48
$1B49:51B4A
$1B4B:51B4C
$1B4D:S1BAE
S1B4F:$1B50
$1B51:51B52
$1B53:51B54
$1B55:51B56
$1B57:51B58
$1B59:51B5A
$1B5B:$1B5C
$1B5D:S1B5E
$1B5F:$1B60
$1B61:51B62
$1B63:51B64
$1B65:51B66
$1B67:51B68
$1B69:51B6A
S1B6B:S1B6C
$1B6D:S1B6E
S1B6F:S1B70
$1B71:51B72
S1B73:51B74
S$1B75:51B76
S1B77:51B78
$1B79:51B7A
S1B7B:S1B7C
S1B7D:S1B7E
S1B7F:5$1B80
$1B81:51B82
$1B83:51B84
$1B85:51B86
$1B87:51B88
$1B89:51B8A

StandardAdjustment011
StandardAdjustment012
StandardAdjustment013
StandardAdjustment014
StandardAdjustment015
StandardAdjustment016
StandardAdjustment017
StandardAdjustment018
StandardAdjustment019
StandardAdjustment020
StandardAdjustment021
StandardAdjustment022
StandardAdjustment023
StandardAdjustment024
StandardAdjustment025
StandardAdjustment026
StandardAdjustment027
StandardAdjustment028
StandardAdjustment029
StandardAdjustment030
StandardAdjustment031
StandardAdjustment032
StandardAdjustment033
HtsdAdjustment001
HtsdAdjustment002
HtsdAdjustment003
HtsdAdjustment004
HtsdAdjustment005
HtsdAdjustment006
HtsdAdjustment007
HtsdAdjustment008
HtsdAdjustment009
HtsdAdjustment010
HtsdAdjustment011
HtsdAdjustment012
HtsdAdjustment013
HtsdAdjustment014
PricingAdjustment001
PricingAdjustment002
PricingAdjustment003
PricingAdjustment004
PricingAdjustment005
PricingAdjustment006
PricingAdjustment007

Replay Level 3
Replay Level 4
Replay Boost
Replay Award
Special Award
Match Award

Ex. Ball Ticket
Max. Ticket/Player
Match Feature
Custom Message
Language

Clock Style

Date Style

Show Date + Time
Allow Dim Illum.
Tournament Play
Euro. Scr. Format
Min. Vol. Override
Gl Power Saver
Power Save Level
Ticket Exp. Board
No Bonus Flips
Game Re-start
Highest Scores
HTSD Award
Champion Htsd
Champion Credits
HTSD 1 Credits
HTSD 2 Credits
HTSD 3 Credits
HTSD 4 Credits
HS Reset Every
Backup Champion
Backup HTSD 1
Backup HTSD 2
Backup HTSD 3
Backup HTSD 4
Game Pricing

Left Units

Center Units
Right Units

4th Slot Units
Units/Credit
Units/Bonus

0x0B
0x0C
0x0D
Ox0E
OxOF
0x10
Ox11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
Ox1A
0x1B
0x1C
0x1D
Ox1E
Ox1F
0x20
0x21
0x22
0x23
0x24
0x24
0x26
0x27
0x28
0x29
0x2A
0x2B
0x2C
0x2D
Ox2E
Ox2F
0x30
0x31
0x32
0x33
0x34
0x35
0x36

0x37 (55)
0x38 (56)
0x39 (57)
0x3A (58)
0x3B (59)
0x3C (60)
0x3D (61)
0x3E (62)
O0x3F (63)
0x40 (64)
0x41 (65)
0x42 (66)
0x43 (67)
0x44 (68)
0x45 (69)
0x46 (70)
0x47 (71)
0x48 (72)
0x49 (73)
O0x4A (74)
0x4B (75)
0x4C (76)
0x4D (77)
Ox4E (78)
0x4F (79)
0x50 (80)
0x51 (81)
0x52 (82)
0x53 (83)
0x54 (84)
0x55 (85)
0x56 (86)
0x57 (87)
0x58 (88)
0x59 (89)
0x5A (90)
0x5B (91)
0x5C (92)
0x5D (93)
Ox5E (94)
Ox5F (95)
0x60 (96)
0x61 (97)
0x62 (98)

$1B8B:51B8C
$1B8D:S1B8E
S1B8F:$1B90

$1B91:51B92

$1B93:51B94

$1B95:51B96

$1B97:51B98

$1B99:51B9A
$1B9B:S1B9C
$1B9D:S1B9E
S1B9F:S1BAO

S1BA1:51BA2
S1BA3:$1BA4
S1BA5:51BA6
S1BA7:51BAS8
S1BA9:S1BAA
S1BAB:S1BAC
S1BAD:S1BAE
S1BAF:$1BBO
$1BB1:51BB2

$1BB3:51BB4
$1BB5:51BB6
$1BB7:51BB8
$1BB9:S1BBA
$1BBB:S1BBC
$1BBD:S1BBE
S1BBF:$1BCO

$1BC1:51BC2

S1BC3:51BC4
S1BC5:51BC6

S1BC7:51BC8

$1BC9:S1BCA
S1BCB:S1BCC
S1BCD:S1BCE
S1BCF:$1BDO
$1BD1:51BD2
$1BD3:51BD4
$1BD5:51BD6
$1BD7:51BD8
$1BD9:$1BDA
$1BDB:S1BDC
$1BDD:S1BDE
S1BDF:S1BEO

S1BE1:51BE2

PricingAdjustment008
PricingAdjustment009
PricingAdjustment010
PricingAdjustment011
PricingAdjustment012
PricingAdjustment013
PricingAdjustment014
PricingAdjustment015
PricingAdjustment016
PricingAdjustment017
PricingAdjustment018
PricingAdjustment019
PricingAdjustment020
PricingAdjustment021
PricingAdjustment022
PricingAdjustment023
PricingAdjustment024
PrinterAdjustment001
PrinterAdjustment002
PrinterAdjustment003
PrinterAdjustment004
PrinterAdjustment005
PrinterAdjustment006
FeatureAdjustment000
FeatureAdjustment001
FeatureAdjustment002
FeatureAdjustment003
FeatureAdjustment004
FeatureAdjustment005
FeatureAdjustment006
FeatureAdjustment007
FeatureAdjustment008
FeatureAdjustment009
FeatureAdjustment010
FeatureAdjustment011
FeatureAdjustment012
FeatureAdjustment013
FeatureAdjustment014
FeatureAdjustment015
FeatureAdjustment016
FeatureAdjustment017
FeatureAdjustment018
FeatureAdjustment019
FeatureAdjustment020

Bonus Credits
Minimum Units
Coin Door Type
Collection Text
Left Slot Value
Centr Slot Value
Right Slot Value
4th Slot Value
Maximum Credits
Free Play

Hide Coin Audits
1-Coin Buy-in
Base Coin Size
Coin Meter Units
Dollar Bill Slot
Min. Coin Msec.
Slamtilt Penalty
Column Width
Lines Per Page
Pause Every Page
Printer Type
Serial Baud Rate
Serial DTR
NULL/Placeholder
Special Percent
Extraball Percnt
Extraball Memory
Consolation Ball
Drop Targt Count
Three Bank Count
Kickback Setting
Skill Shot Timer
Drop Targt Timer
Three Bank Timer
Hurry Up Timer
Payback Timer
Jackpot Timer
Millions Plus
Timed Plunger
Attract Sounds
Drt Tgt Autofire
T2 Fan Club
Flipper Trigger
Drop Trgt. Broken

0x37
0x38
0x39
0x3A
0x3B
0x3C
0x3D
Ox3E
Ox3F
0x40
0x41
0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49
Ox4A
0x4B
0x4C
0x4D
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
Ox0A
0x0B
0x0C
0x0D
OxOE
OxOF
0x10
Ox11
0x12
0x13
0x14

0x63 (99)
0x64 (100)
0x65 (101)
0x66 (102)
0x67 (103)
0x68 (104)
0x69 (105)
Ox6A (106)
0x6B (107)
0x6D (108)
Ox6E (109)

N/A

S1BE3:S1BE4
S1BE5:51BE6
S1BE7:51BES8
S1BE9:S1BEA
S1BEB:S1BEC
S1BED:S1BEE
S1BEF:$1BFO
S1BF1:51BF2
S1BF3:51BF4
S1BF5:51BF6
S1BF7:51BF8
S1BF9:51BFA

FeatureAdjustment021
FeatureAdjustment022
FeatureAdjustment023
FeatureAdjustment024
FeatureAdjustment025
FeatureAdjustment026
FeatureAdjustment027
FeatureAdjustment028
FeatureAdjustment029
FeatureAdjustment030
FeatureAdjustment031

DrpTrgt Dwn Mlti

*Profanity
*Attract Mode

*Animation Code

*Lamp Driver

*Mb Start Dt Actn

*Timed 3Bank
<unused>
<unused>
<unused>
<unused>

0x15
0x16
0x17
0x18
0x19
Ox1A
0x1B
0x1C
0x1D
Ox1E
Ox1F

Lamp

<Adjustments Checksum>
* New adjustments in L8.3 shown for reference. Profanity was also used in the original “Profanity ROM”.

The above describes how it was determined that SRAM can accommodate the extra 10 Feature
Adjustments. The underlying set of functions for accessing game adjustments has been analyzed and
appears to access the 10 unused elements as if they were Feature Adjustments and, as such, the 10

SRAM locations are not treated as any other type of element.

In order to utilize these 10 slots as actual game adjustments, several other areas of ROM data need to
be updated to allow for the game to present the new adjustments to the user in the game adjustments

menu. Such areas of ROM are further described below.

Feature Adjustments Metadata Table
The various game-adjustment functions for Feature Adjustments all cite a common data table in the

ROM which contains data about each adjustment. This is being referred to as the Feature Adjustments
Metadata Table (where ‘metadata’ meaning that it is data that contains information about other data).

This table contains a number of elements that are consistent with the number of available Feature
Adjustments. This means the table is made to be larger to accommodate the new adjustments. Since
the table is located in ROM with other meaningful bytes immediately afterwards, for L8.3 the table is
moved to an unused region of ROM where it can be made larger. The table below summarizes the
details of the moved table:

Feature Adjustments Metadata Table:

Item

Address of Table Pointer
Table Pointer Value (table location)

Table Entries
Table Entry Size

Feature Adjustments Metadata Table:

Old Value
ROM: 0x781EF, WPC: S81EF
ROM: 0x75680, WPC: $5680,3D

0x0016 (22)
0x0C (12 bytes each)

Feature Adjustments Metadata Table:
New Value

<unchanged>

ROM: 0x77680, WPC: $7000,3D

0x001C (28)
<unchanged>

The new Feature Adjustments Metadata Table is shown below. The first 22 rows are identical as the
original L-8 table content, however the additional items starting at the 23" entry are new in L8.3.

7000: 00 1C ; Table entries is 1C (28 entries)
7002: OC ; Bytes per table entry is 0C (12 bytes)
7003: 00 00 00 00 00 00 00 01 00 8E BC FF ; Default value entry
700F: 00 03 00 00 00 OA 00 01 00 71 E8 3A ; Feature Adjustments, A2.01, Special Percent,
701B: 00 OA 00 00 00 23 00 01 00 71 E8 3A ; Feature Adjustments, A2.02, Extraball Percnt
7027: 00 01 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.03, Extraball Memory
7033: 00 01 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.04, Consolation Ball
703F: 00 01 00 00 00 03 00 01 00 72 79 3A ; Feature Adjustments, A2.05, Drop Trgt Count
704B: 00 02 00 00 00 04 00 01 00 72 79 3A ; Feature Adjustments, A2.06, Three Bank Count
7057: 00 02 00 00 00 04 71 E7 31 72 70 3A ; Feature Adjustments, A2.07, Kickback Setting
7063: 00 02 00 00 00 04 71 E7 31 72 70 3A ; Feature Adjustments, A2.08, Skill Shot Timer
706F: 00 OB 00 05 00 63 00 01 00 71 B2 31 ; Feature Adjustments, A2.09, Drop Targt Timer
707B: 00 OF 00 05 00 63 00 01 00 71 B2 31 ; Feature Adjustments, A2.10, Three Bank Timer
7087: 00 OF 00 07 00 63 00 01 00 71 B2 31 ; Feature Adjustments, A2.11, Hurry Up Timer
7093: 00 14 00 0A 00 63 00 01 00 71 B2 31 ; Feature Adjustments, A2.12, Payback Timer
709F: 00 0C 00 08 00 63 00 01 00 71 B2 31 ; Feature Adjustments, A2.13, Jackpot Timer
70AB: 00 01 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.14, Millions Plus
70B7: 00 00 00 00 00 78 00 01 00 71 C7 31 ; Feature Adjustments, A2.15, Timed Plunger
70C3: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.16, Attract Sounds
70CF: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.17, Drp Trg Autofire
70DB: 00 01 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.18, T2 FAN CLUB
70E7: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.19, Flipper Trigger
70F3: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.20, Drop Trgt. Broken
70FF: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.21, Drptrgt Dwn M1lti
; NEW ADJUSTMENT METADATA BELOW
710B: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.22, Profanity
7117: 00 02 00 00 00 02 00 01 00 65 7C 3D ; Feature Adjustments, A2.23, Attract Mode
7123: 00 01 00 00 00 01 00 01 00 65 C5 3D ; Feature Adjustments, A2.24, Animation Code
712F: 00 00 00 00 00 01 00 01 00 65 F3 3D ; Feature Adjustments, A2.25, Lamp Driver
713B: 00 00 00 00 00 05 00 01 00 66 54 3D ; Feature Adjustments, A2.26, MB Start DT Action
7147: 00 00 00 00 00 01 00 01 00 65 3D 3D ; Feature Adjustments, A2.27, Timed 3Bank Lamp
7153: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.28, <placeholder>
715F: 00 00 00 00 OO 00 00 01 00 8E BC FF ; Feature Adjustments, A2.29, <placeholder>
716B: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.30, <placeholder>
7177: 00 00 00 00 OO 00 00 01 00 8E BC FF ; Feature Adjustments, A2.31, <placeholder>

As shown in the new metadata table, above, the table first 2 bytes report that it has 28 entries however
the actual content of the table has placeholders for 4 additional entries at the end. This makes it easier
to add additional adjustments in the future as the first 2 bytes in the table indicating number of entries

would need increased and the “<placeholder>” row data would need updated for the new adjustments.

Each 12-byte metadata table entry contains information for each adjustment. A breakdown of the 12
bytes is as follows:

Adjustment Metadata Table Entry Bytes [0..11] Description

Bytes [0..1], making a 16-bit value Default Adjustment value used by factory reset and compared
during menu display so the “factory setting” indicator can be
reported.

Bytes [2..3], making a 16-bit value Minimum Adjustment Value

Bytes [4..5], making a 16-bit value Maximum Adjustment Value

Bytes [6, 7, 8] Adjustment value selector metadata Value depends on the next 3 bytes. When next 3 bytes is a string
look up function ($7270,3A in L-8) these 3 bytes contain WPC

address of a table containing string index number for each of the
possible adjustment values.
In other cases, these 3 bytes contain the increment value when
plus/minus are used.
Bytes [9, 10, 11] making a WPC Address which is the | Address of function that gets called to handle the display of the
Adjustment value selector function current adjustment value. The previous 3 bytes are used in
conjunction with this address.

Below is a summary of each of the new adjustments. The information below helps illustrate how the
adjustments metadata 12-byte entry is used.

Feature Adjustment: Profanity
This adjustment data is modeled after the metadata for this adjustment used in the original “Profanity
ROM”. The 12-byte metadata table for this new adjustment is as follows:

Adjustment Metadata Table Entry Bytes [0..11] Value / Description

00 00 Default Adjustment value O

00 00 Minimum Adjustment value 0

0001 Maximum Adjustment value 1

7413 3A Address of String table used by the $7270,3A string selector.
7270 3A Common String Selector Function

For “Profanity” adjustment, the table shows 2 possible values 0, and 1. Displayed strings for each of
these numeric values is derived by a common selector function $7270,3A which will cite table at
$7413,3A. Shown below is the content of the string table (at ROM offset 0x6B413):

7413: 80 F2 ; String index corresponding to "OFF"
7415: 80 F3 ; String index corresponding to "ON"

The bytes at $7413,3A contain string index numbers that correspond to the “OFF” and “ON” string,
respectively. The $7270,3A function will only access one of these 2 strings based on the fact that the
other metadata table content defines possible values of 0 and 1. The common WPC string lookup
functions in L-8 will convert the 0x80F2 and 0x80F3 into an appropriate lookup into a string table where
“OFF” and “ON” are stored. Such string lookup logic is outside the scope of this analysis but it is worth
noting that the high bit is an indicator of which table to cite, and the remaining bits are the index into
such table.

Feature Adjustment: Attract Mode
This adjustment data is defined to show the possible values for “Attract Mode” adjustment.

Adjustment Metadata Table Entry Bytes [0..11] Value / Description
0002 Default Adjustment value 2 (corresponding to L8.3)

00 00
00 02
0001 00
65 7C3D

Minimum Adjustment value 0 (L8.1)

Maximum Adjustment value 2 (L8.3)

Value used for metadata when custom Selector function is used.
Custom String Selector Function for “Attract Mode”

The value 00 01 00 is used in conjunction with the $657C,3D Custom String Selector function. Current

understanding is that this ensures numeric values are incremented and decremented by 1 when values

are cycled and such numeric value is compared against min/max and such value is passed into the

custom string selector function. Further code analysis is needed for added certainty.

The $657C,3D function (ROM offset 0x7657C) is shown below for reference and guidance on how a
custom adjustment string selector function can be defined. Its helper function at $6571,3D is also

shown.

02
04
FE
02
01

CMPB #3502
BNE $6579
ANDCC #SFE
BRA $657B
ORCC #3501

RTS

; AdjustmentWriteASCIIValueCclear ()

657C:
657E:
6580:
6581:
6583:
6585:
658A:

F3
01

50
05
B9
DO

51

$6571
$6581

U, X
$658A
$B951
X,U, PC

"Attract Mode" adjustment selection text function

; A has adjustment index

B has code. 02 = write the adj value ASCII string at pointer Y
U has the current value
Y has address of where to put ASCII string (when B is 02)

; AdjustmentWriteASCIIValueCclear () // helper function

If C-bit is clear, need to wring ASCII string into Y
If C-bit is set, RTS now. Do not write ASCII string to Y.

Checks U and returns with X set to desired string addr
CopyASCIIStringFromXtoYandVerifyLength ()

658A:
658D:
6591:
6593:
6596:
6597:
659B:
659D:
65A0:
65A1:

65
83
04
65

83
04
65

83

AB
00

B6

00

BB

00

LDX
00 CMPU
BNE
LDX
RTS
01 CMPU
BNE
LDX
RTS
02 CMPU

#S$S65AB
#$0000
56597

#565B6

#50001
$S65A1
#S$65BB

#5$0002

Load default/error string
Check if at "L8.1"

Check if at "L8.2"

Check if at "L8.3"

65A5: 26 03 BNE $65AA
65A7: 8E 65 CO LDX #565C0 ;
65AA: 39 RTS

65AB: 4D 45 4E 55 20 45 52 52 4F 52 00 ; "MENU ERROR"

65B6: 4C 38 2E 31 00 ; "L8.1"
65BB: 4C 38 2E 32 00 ; "Ls8.2"

65C0: 4C 38 2E 33 00 ; "L8.3"

The string selector function for “Attract mode”, above, is fairly straightforward, writing the ASCII string
corresponding to the current index number into address pointed to by Y. This new function directly
contains the new strings “L8.1”, “L8.2", etc so that the standard WPC string table doesn’t need to be
modified to provide a desired string for a given (new) string index value.

Feature Adjustment: Remaining New Adjustments

The remainder of the new adjustments for “Animation Code”, “Lamp Driver”, MB Start DT Action” and
“Timed 3Bank Lamp” are constructed similar to the “Attract Mode” adjustment, described above. Each
of these new adjustments have their own string selector function which has similar logic to that shown
above. For reference, the address of these string selectors is listed below. A disassembly of each of
these functions is left as an exercise for the reader.

New Adjustment Custom String Selector Function
Animation Code WPC: $65C5,3D ROM: 0x765C5
Lamp Driver WPC: $65F3,3D ROM: 0x765F3
MB Start DT Action WPC: $6654,3D ROM: 0x76654
Timed 3Bank Lamp WPC: $653D,3D ROM: 0x7653D

Feature Adjustments String Tables

The previous text described how the Feature Adjustments Metadata Table needs to be increased in size
to accommodate new feature adjustments. In order for the remainder of the WPC code to operate
properly with the added adjustments, there are 3 additional tables that need similar treatment,
increasing their total entry count by the number of new adjustments. For L8.3 these tables were
increased from 0x0016 (22) to 0x001C (28) entries.

The three additional tables are as follows:

e Feature Adjustments String Table, English
e Feature Adjustments String Table, German
e Feature Adjustments String Table, French

These string tables are used when the new feature adjustment is shown during the adjustments menu.
For each of the 3 possible language selections, the appropriate table is used to display the adjustment

string in the desired language. In coding the term “string” generally refers to a series of displayable
character bytes followed by 0x00 byte to signify the end of the string.

Similar to the Metadata table, in order to add new entries to these tables, the old table is relocated to
unused region of ROM so that new data can be added to the end of each table. The table, below,
summarizes the addresses and information about each of these tables.

Table: Item Old Value New Value

Address of Table Pointer: English ROM: 0x78261, WPC: $8261 <unchanged>

Address of Table Pointer: German ROM: 0x78264, WPC: $8264 <unchanged>

Address of Table Pointer: French ROM: 0x78267, WPC: $8267 <unchanged>

Table Pointer Value: English ROM: 0x400D5, WPC: $40D5,30 ROM: 0x76700, WPC: $6700,3D
Table Pointer Value: German ROM: 0x404AB, WPC: $S44AB,30 ROM: 0x76A00, WPC: S6A00,3D
Table Pointer Value: French ROM: 0x407EA, WPC: S47EA,30 ROM: 0x76D00, WPC: S6D00,3D
Table Entries: English 0x0016 (22) 0x001C (28)

Table Entries: German 0x0016 (22) 0x001C (28)

Table Entries: French 0x0016 (22) 0x001C (28)

Table Entry Size: English 0x02 (2 bytes each) <unchanged>

Table Entry Size: German 0x02 (2 bytes each) <unchanged>

Table Entry Size: French 0x02 (2 bytes each) <unchanged>

As indicated, the string tables contain a 2-byte entry for each entry. The 2 bytes for each entry are a
WPC address corresponding to the first character/byte of the indexed string. Every WPC address in the
table corresponds to the location of the string located in the same bank as the table itself. This concept
applies to a large number of string tables in WPC software.

Since the string table contains a list of WPC addresses to strings in the same bank, and since the string
tables were moved from bank $30 to bank $3D, this necessarily means that all of the actual strings for
English, German, and French Feature Adjustments were also moved along with these three tables. It
was necessary to move these tables from bank 530 to bank 53D due to lack of unused ROM bytes in the
530 bank.

Since the table and the WPC addresses of the strings were moved to a new bank, all of the data in the
new table is subject to change due to the new addresses where the strings were placed in the new bank.

Depicted below is the new English strings table and the new location of its strings. Similar treatment to
the German and French string tables for Feature Adjustments was also performed. Disassembly of
German and French tables is left as an exercise to the reader.

6700: 00 1C ; Number of entries in this table is 0x1B, or 27

6702: 02 ; Each table entry is 2-bytes. See below.

6703: 67 43 ; Feature Adjustments, English, String000, "NULL"

6705: 67 48 ; Feature Adjustments, English, String001, "SPECIAL PERCENT"

6707: 67 58 ; Feature Adjustments, English, String002, "EXTRABALL PERCNT"

6709:
670B:
670D:
670F:
6711:
6713:
6715:
6717:
6719:
671B:
671D:
671F:
6721:
6723:
6725:
6727
6729:
672B:
672D:
672F:
6731:
6733:
6735:
6737 :
6739:
673B:
673D:
673F:
6741:

6743:
6748 :
6750:
6758:
6760:
6768:
6769:
6771:
6779:
677A:
6782:
678A:
678B:
6793:
679B:
679C:
67R4:
67AC:
67AD:
67B5:
67BD:
67BE:
67C6:
67CE:
67CF:
67D7:
67DF:
67E0:
67ES8:
67F0:
67F1:
67F9:

67
67
67
67
67
67
67
67
67
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
67
67
67
67

4E
53
50
45
4C
00
45
4C
00
43
49
00
44
47
00
54
4E
00
4B
20
00
53
4F
00
44
47
00
54
4E
00
48
20

69
TA
8B
9C
AD
BE
CF
EO
Fl
00
OE
1cC
2A
38
47
58
64
74
86
97
Al
AE
BD
Cc9
DA
43
43
43
43

55
50
45
58
20

58
20

4F
4F

52
54

48
4B

49
53

4B
54

52
54

48
4B

55
54

4C
45
52
54
50

54
4D

4E
4E

4F
20

52
20

43
45

49
20

4F
20

52
20

52
49

4C
43
43
52
45

52
45

53
20

50
43

45
43

4B
54

4C
54

50
54

45
54

52
4D

00
49
45
41
52

41
4D

4F
42

20
4F

45
4F

42
54

4C
49

20
49

45
49

59
45

41
4E
42
43

42
4F

4C
41

54
55

20
55

41
49

20
4D

54
4D

20
4D

20
52

4C
54
41
4E

41
52

41
4C

41
4E

42
4E

43
4E

53
45

41
45

42
45

55
00

20
00
4C
54

4C
59

54
4C

52
54

41
54

4B
47

48
52

52
52

41
52

50

Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Feature

Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,
Adjustments,

Adjustments,

Adjustments,

Adjustments,

Adjustments,

Adjustments,

Adjustments,

Adjustments,

Adjustments,

Adjustments,

Adjustments,

Adjustments,

Adjustments,

English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,
English,

English,

English,

English,

English,

English,

English,

English,

English,

English,

English,

English,

English,

String003,
String004,
String005,
String006,
String007,
String008,
String009,
String010,
StringO1l1,
String012,
String013,
String014,
String015,
String016,
String017,
String018,
String019,
String020,
String021,
String022,
String023,
String024,
String025,
String026,
String027,
String028,
String029,
String02A,
String02B,

String001,

String001,

String002,

String003,

String004,

String005,

String006,

String007,

String008,

String009,

String010,

String011,

"EXTRABALL MEMORY"
"CONSOLATION BALL"
"DROP TARGT COUNT"
"THREE BANK COUNT"
"KICKBACK SETTING"
"SKILL SHOT TIMER"
"DROP TARGT TIMER"
"THREE BANK TIMER"
"HURRY UP TIMER"
"PAYBACK TIMER"
"JACKPOT TIMER"
"MILLIONS PLUS"
"TIMED PLUNGER"
"ATTRACT SOUNDS"
"DRP TGT AUTOFIRE"
"T2 FAN CLUB"
"FLIPPER TRIGGER"

"DROP TRGT. BROKEN'
"DRPTRGT DWN MLTI"
"PROFANITY"

"ATTRACT MODE"
"ANIMATION CODE"
"LAMP DRIVER"

"MB START DT ACTN"
"TIMED 3BANK LAMP"
<placeholder>
<placeholder>
<placeholder>
<placeholder>

"NULL"

"SPECIAL PERCENT"

"EXTRABALL PERCNT"

"EXTRABALL MEMORY"

"CONSOLATION BALL"

"DROP TARGT COUNT"

"THREE BANK COUNT"

"KICKBACK SETTING"

"SKILL SHOT TIMER"

"DROP TARGT TIMER"

"THREE BANK TIMER"

"HURRY UP TIMER"

(*)

(*)

*

6800: 50 41 59 42 41 43 4B 20 ; Feature Adjustments, English, String012, "PAYBACK TIMER"
6808: 54 49 4D 45 52 00 ;
680E: 4A 41 43 4B 50 4F 54 20 ; Feature Adjustments, English, String013, "JACKPOT TIMER"
6816: 54 49 4D 45 52 00 ;
681C: 4D 49 4C 4C 49 4F 4E 53 ; Feature Adjustments, English, String014, "MILLIONS PLUS"
6824: 20 50 4C 55 53 00 ;
682A: 54 49 4D 45 44 20 50 4cC ; Feature Adjustments, English, String015, "TIMED PLUNGER"
6832: 55 4E 47 45 52 00 ;
6838: 41 54 54 52 41 43 54 20 ; Feature Adjustments, English, String016, "ATTRACT SOUNDS"
6840: 53 4F 55 4E 44 53 00 ;

6847: 44 52 50 20 54 47 54 20 ; Feature Adjustments, English, String017, "DRP TGT AUTOFIRE"
684F: 41 55 54 4F 46 49 52 45 ;
6857: 00 ;

6858: 54 32 20 46 41 4E 20 43 ; Feature Adjustments, English, String018, "T2 FAN CLUB"

6860: 4C 55 42 00 ;

6864: 46 4C 49 50 50 45 52 20 ; Feature Adjustments, English, String019, "FLIPPER TRIGGER"
686C: 54 52 49 47 47 45 52 00 ;

6874: 44 52 4F 50 20 54 52 47 ; Feature Adjustments, English, String020, "DROP TRGT. BROKEN"
687C: 54 2E 20 42 52 4F 4B 45 ;

6884: 4E 00 ;

6886: 44 52 50 54 52 47 54 20 ; Feature Adjustments, English, String021, "DRPTRGT DWN MLTI"
688E: 44 57 4E 20 4D 4C 54 49 ;

6896: 00 ;

6897: 50 52 4F 46 41 4E 49 54 ; Feature Adjustments, English, String022, "PROFANITY"

689F: 59 00 ;

68A1: 41 54 54 52 41 43 54 20 ; Feature Adjustments, English, String023, "ATTRACT MODE"
68A9: 4D 4F 44 45 00 ;

68AE: 41 4E 49 4D 41 54 49 4F ; Feature Adjustments, English, String024, "ANIMATION CODE"
68B6: 4E 20 43 4F 44 45 00 ;

68BD: 4C 41 4D 50 20 44 52 49 ; Feature Adjustments, English, String025, "LAMP DRIVER"
68C5: 56 45 52 00 ;

68C9: 4D 42 20 53 54 41 52 54 ; Feature Adjustments, English, String026, "MB START DT ACTN"
68D1: 20 44 54 20 41 43 54 4E ;

68D9: 00 ;

68DA: 54 49 4D 45 44 20 33 42 ; Feature Adjustments, English, String027, "TIMED 3BANK LAMP"
68E2: 41 4E 4B 20 4C 41 4D 50 ;

68EA: 00 ;

(*)Note that this table, above, contains some entries marked with (*). These entries correspond to
strings that were found to be cited by other tables in the original $30 bank. For example, the
“Consolidation Ball” string is also used by the “Audits” string table in bank $30. Other strings are, for
example, shared by the German and French tables. In the original location of this table, bank $30,
although the table of 2-byte addresses can be moved (and removed), the strings themselves need to be
retained in their original location in ROM since they are referenced by other tables in bank $30. This
means it is important, in general, to closely examine the ROM and/or retain all old strings in the event
that their WPC address is cited in other string tables in the same bank. For T2 L-8 the entire bank $30
was disassembled in order to determine how strings are shared between different tables.

Referencing the table, above, it is evident how string lookup is performed. Consider the example where
the string for “TIMED 3BANK LAMP” is needed. A lookup is performed on index 0x001B (27) from which
the table returns the 2-byte entry at $6739 containing the 2 bytes 0x68 OxDA. These 2 bytes form the
WPC address $68DA which is where the starting byte of the string is found, above. The string is read
until the ending 0x00 byte is reached.

The table also includes extra placeholders for the 4 unused Feature Adjustments. If new adjustments
are enabled, then the first 2 bytes of the table are increased and these extra placeholder bytes are
updated to contain the WPC addresses of the new strings containing the names of the new Feature
Adjustments located in the same bank as the table.

The L8.3 Text String Corrections

In L8.3 a large focus on the German text strings was performed. Correction to German text strings was
extensively performed to improve the game play experience for T2 owners operating their machine with
the language adjustment set to German.

As mentioned earlier, in coding “string” generally refers to a series of displayable character bytes with a
0x00 byte signifying the end of the string.

There are two types of string corrections:

e The new string consists of same or fewer number of characters as the old string, and
e The new string consists of more characters as the old string.

In cases where same or fewer characters are in the new string, it is fairly evident to most observers that
the old string simply needs to be overwritten with the new string in the ROM. After the last character,
the 0x00 byte is appended to indicate the end of the string.

In cases where more characters are needed to accommodate the new string, the new string needs to be
placed in unused region in the same ROM bank as the old string and the pointer to the old string needs
to be updated to the address of the new string. Refer to the previous section describing the Feature
Adjustments string table for a depiction of a string table and description of how the table contains
addresses to the first character of the string located in same bank as the string table itself.

For these string changes there is only a single pointer that cites each string. When making changes to
string pointers consideration needs to be done to see if multiple pointers need updated. For example,
referring to Feature Adjustments string table, if “Consolidation Ball” string was changed to something
larger, then the English Feature Adjustments string table pointer would need updated and also the
English Audits string table would need to have its pointer updated as well since, as mentioned, that same
string is cited by multiple tables.

Below is a summary of text corrections in L8.3 with indicators of new string addresses, in cases where
new string was made larger than the old string it replaces.

Old String New String Old String String Move Info
Address

“ZIET” “ZEIT” 0x40576, $4576,30 <not moved>

“CHEK POINT” “CHECKPOINT” O0x41A9E, S5A9E,30 | <not moved>

“FREIS SPIEL” “FREISPIEL” 0x62CD9, S6CD9,38 | <not moved>

“NETHERLND” “HOLLAND” 0x70CA7, $4CA7,3C | <not moved>

“MITWOCH”
“SANTAG”
“GELDESCHT”
"HAUPT MENUE”
“MEUE n
"PUNCTE”
"HAUPTE MENUE”
"HILPE”

"DEUTSCE "
"FREIS SPIEL”
"Ziehe”

"Vor Abschuss”
"START DRUCKEN”
"KITBACK BEL."
"KITBACK BE"
"KITBACK "
"KITBA"

"KITB"

IIKITII

||KI”

IIKII

"MIT FLIPPER TASTEN”

"BILD WECHSELN”

“MITTWOCH”
“SAMSTAG”
"GELOESCHT”
"HAUPTMENUE”
"NEUE n
"PUNKTE”
"HAUPTMENUE"
"HILFE”
"DEUTSCH "
"FREISPIEL”
"Zielen Und Den"
"Abzug Ziehen"
"DRUECKE START”
"KICKBACK BEL."
"KICKBACK B"
"KICKBAC"
"KICKBA"
"KICKB"

"KICK"

IIKIC“

IIK“

"MIT FLIPPERTASTERN”
"DAS VISIER BEWEGEN"

0x71D1C, $5D1C,3C
0x71D37, $5D37,3C

0x71D85, $5D85,3C
0x71E79, $5E79,3C
0x721A1, $61A1,3C
0x72285, $6285,3C
0x7229F, $629F,3C
0x722D7, $62D7,3C
0x7248B, $648B,3C
0x72500, $6500,3C
Ox41AEE, $5AEE,30

Ox41AF4, S5AF4,30
0x41C00, $5C00,30
0x41B36, $5B36,30
0x41B43, $5B43,30
Ox41B4E, S5B4E,30
0x41B58, $5B58,30
Ox41B5E, S5B5E,30
0x41B63, $5B63,30
0x41B67, $5B67,30
0x4166A, $566A,30

0x41DB7, $5DB7,30
0x41DCA, $5DCA,30

0x73F9B, $7F9B,3C new location of string
0x7192A, $592A,3C was 5D 1C, now 7F 9B
0x73FA4, $7FA4,3C new location of string
0x71930, $5930,3C was 5D 37, now 7F A4
<not moved>

<not moved>

<not moved>

<not moved>

<not moved>

<not moved>

<not moved>

<not moved>

Ox41B4F, $5B4F,30 new location of string
0x41864, $5864,30 was 5A EE, now 5B 4F
0x400F0, S40F0,30 new location of string
0x41866, $5866,30 was 5A F4, now 40 FO
<not moved>

<not moved>

0x41B44, S5B44,30 new location of string
0x4187E, S587E,30 was 5B 43, now 5B 44
0x41103, $5103,30 new location of string
0x41880, $5880,30 was 5B 4E

0x4110B, $S510B,30 new location of string
0x41882, $5882,30 was 5B 58

0x41112, $5112,30 new location of string
0x41884, $5884,30 was 5B 5E

0x41118, $5118,30 new location of string
0x41886, $5886,30 was 5B 63

0x4111D, $511D,30 new location of string
0x41888, $5888,30 was 5B 67

<no change, shown here for completeness>
<not moved>

Ox41AEE, S5AEE,30 new location of string
0x41952, $5952,30 was 5D CA

A careful examination of the ROM changes for text corrections will reveal that in some cases, the old

location of moved strings is being reused as the new location for other moved strings. This

demonstrates the flexibility of using the WPC string pointer tables.

It should also be noted that in cases where strings are being made longer, careful examination of the

longer strings during game play (or attract mode) should be made to ensure the longer string will display

properly. If the longer string doesn’t appear properly it is then possible to alter the font that the code

uses for displaying the string or alter the placement of the string on the display. For L8.3 all new strings

have been tested for proper display and such modifications are not needed and, therefore, such ROM
modification is not depicted here.

The L8.3 Sound Test Updates

During the L8.3 development, some attention was given to the WPC “Sound Test”. ROM changes
related to the sound test are described below.

Sound Test Update: Sound 05 Playing Unexpectedly

Initially a problem was reported with a 3" party sound board and with how the “Running” sound test
behaves as it cycles past sound “05 Database Backgr.” On some 3" party sound boards, the sound from
05 continues to play, unexpectedly, as the “running” test cycles to sound 06, and 07, etc. The correct
behavior is that sound 05 stops as the test cycles to sound 06 (100K Award sound).

It was found that the 3" party sound package classified the sound for “05 Database Backgr.” As a “jingle”
and not “music” which may be the reason that the sound behaves this way during the WPC Sound Test.

Sound 05 Classification
The L-8 ROM content was examined for possible reasons for the 05 sound behaving differently on 3"
party boards. An oddity in the sound test table was found. The sound test table is shown below:

490D: 00 OB ; Entries

490F: 03 ; Entry size

4910: 00 00 00 ; Null

4913: 03 00 00 ; 0x03 == Main play

4916: 04 00 00 ; 0x04 == Get jackpot tune
4919: 07 00 00 ; 0x07 == M.Ball 1lit tune
491C: 14 00 00 ; 0x14 == Video mode tune
491F: B2 00 60 ; 0xB2 == Database Backgr.
4922: BF 00 60 ; 0xBF == 100K Award

4925: C6 00 60 ; 0xC6 == Alarm Sound
4928: 25 01 60 ; 0x25 == "Get the cpu"
492B: 27 01 60 ; 0x27 == "Autofire"

492E: 28 01 60 ; 0x28 == "Video mode"

As shown, the sound test table contains an entry for each of the sounds that are played during the
“Sound Test” mode. Each table entry consists of 3 bytes which, in summary, are shown below.

Sound Test Table Byte Description
Byte[0] Sound byte value used in the sound call command to sound board.
Byte[1] Flag byte indicating whether sound is a voice callout. When non-zero, the
sound call command includes a 0x7A byte prior to the sound index byte.
Byte[2] Timer value used during sound test.

e During “repeat” mode:
o Non-zero value defines how long the sound is allowed to play
before being re-queued (0x60 is 1.5 seconds).

o Value 0x00, sound plays indefinitely (such as for music).
e During “running” mode:
o Non-zero value is used as the period the sound is allowed to
play before advancing to next sound (0x60 is 1.5 seconds).
o Value 0x00 causes a time period of 0xB4 (just under 3 seconds)
to be used before next sound is played.

For completeness, below are the sound-call commands sent to the sound board when the sound test
wishes to play the current sound:

Sound Test Sound Table Byte Command Sent to Sound Board
Main Play 0x03 Ox7E 0x7D Ox7F 0x03
Get Jackpot Tune 0x04 0x7E 0x7D Ox7F 0x04
M.Ball Lit Tune 0x07 O0x7E 0x7D Ox7F 0x07
Video Mode Tune 0x14 Ox7E 0x7D Ox7F 0x14
Database Backgr. 0xB2 0x7E 0x7D Ox7F 0xB2
100K Awark OxBF Ox7E 0x7D Ox7F OxBF
Alarm Sound 0xC6 0x7E 0x7D 0x7F 0xC6
“Get the CPU” 0x25 Ox7E 0x7D Ox7F Ox7A 0x25
“Autofire” 0x27 Ox7E Ox7D Ox7F Ox7A Ox27
“Video mode” 0x28 Ox7E 0x7D Ox7F Ox7A 0x28

With focus on the sound 05, another look at the Sound Table entry for sound 05 is in order:

During L8.3 this 3-byte entry for sound 05 came to be in question. The 3™ byte having value 0x60, as
mentioned, means that:
e During “running” test, the test will advance to next sound after 0x60 (1.5 seconds), and
e During “repeat” test, the sound will be re-queued to the sound board every 1.5 seconds.
o It may be unnoticeable that on L-8 that this sound is restarted every 1.5 seconds during
“repeat” test mode, depending on the sound board in use.

It may be the original T2 software design specifically determined this behavior however for L8.3 a
change was made as part of effort to help resolve the behavior of the sound test on 3™ party sound
boards. The sound test table entry was changed to have the following contents:

491F: B2 00 00 ; 0xB2 == Database Backgr.

Note: The sound test table gets relocated in L8.3, refer to “Relocated Sound Test Table”, later
in this document for actual address where the above change to this sound table entry is made.

Using value 0x00 as the 3" byte changes the behavior so that:
e During “running” test, the test will advance to next sound after 3 seconds (period of 0xB4), and
e During “repeat” test, the sound will not be re-queued every 1.5 seconds.

Sound 05 Explicit Stop

During the development of L8.3, as part of investigation efforts into the nature of sound 05 on 3™ party
sound boards, a change was put in place for beta testing which altered the command sent to the sound
board when the sound test advances from sound 05 to sound 06. This modification added an extra
“stop” command to help ensure the sound 05 is no longer playing when sound transitions to 06. This is
the same “stop” command used when sound test is exited.

As it turns out, this change to sound test code ended up remaining in final L8.3 image although it was
originally expected to not be part of L8.3. This minor oversight is being documented here for
completeness, transparency and to give some information for hobbyists to do further experiments and,
possibly, remove this code if needed. Any future T2 ROM revision may be subject to having this code
removed.

For this code change, consider this function that sound test code calls whenever advancing to the next
sound (regardless of whether from ‘running’ test mode or ‘plus’ coin-door button).

; AdvanceNextSoundIndex ()
; Either via plus button or during 'running'

6D87: 34 02 PSHS A ;

6D89: 8D 24 BSR $S6DAF ; SoundTestTableEntryCountGetIntoA ()
6D8B: 6C 41 INC $0001,U ; Increment sound test index

6D8D: Al 41 CMPA $0001,U ;

6D8F: 22 04 BHI $6D95 ;

6D91: 86 01 LDA #5501 ; Reset index to #1

6D93: A7 41 STA $0001,U ;

6D95: BD 6D F3 JSR $6DF3 ; StopCurrentSound ()

6D98: 81 02 CMPA #502 ;

6D9A: 35 82 PULS A,PC ;

This code, above, checks if the sound index needs to wrap back to 1 (in case where the sound advances
past the last sound test (“Video mode”) and then calls a function that is intended to stop the current
sound. As the problem with 05 (on some 3" party sound boards) is that the sound 05 doesn’t actually
stop, the function was augmented to call a different ‘stop’ when the sound is advancing from 05 to 06.

; AdvanceNextSoundIndex ()

; Either via plus button or during 'running'
6D87: 34 02 PSHS A ;
6D89: 8D 24 BSR S6DAF ; SoundTestTableEntryCountGetIntoA ()
6D8B: 6C 41 INC $0001,U0 ; Increment sound test index

6D8D: Al 41 CMPA $0001,U ;

6D8F: 22 04 BHI $6D95 ;

6D91: 86 01 LDA #5501 ; Reset index to #1
6D93: A7 41 STA $0001,U ;
6D98: 81 02 CMPA #502 ;
6D9A: 35 82 PULS A,PC ;

As highlighted, a new function is being called in place of the S6DF3. The new function is added at
S7A0B,3A which has the content shown below.

; StopCurrentSound BugFix()

7A0B: 34 02 PSHS A ;

7A0D: BD 6D F3 JSR $6DF3 ; StopCurrentSound(), Call original ‘Stop’ routine
7A10: A6 41 LDA $0001,U0 ; Get new/current sound test index

7Al12: 81 02 CMPA #506 ; Check if advanced to sound 06

7A14: 26 03 BNE $TA19 ; If not, then done.

7A16: BD CO A5 JSR $SCOAS ; If so, Call Sound text exit (escape button pressed)
7A19: 35 82 PULS A,PC ;

The new function, above, first calls the original “StopCurrentSound()” to retain original logic and then an
added check is performed to see if the new sound index is 06. If new sound index is 06 it means the
sound test has advanced from 05 to 06 and, therefore, subject to having the problem on 3™ party sound
boards where the sound 05 may still be playing. If sound index is 06 then an existing function at SCOA5
is called which is same function that the escape-button handler function also calls. It was found that
calling SCOAS is what the escape-button handler does when it wants to ensure sound board is ‘off’.

The above changes appear to be harmless and found to address the issue of 05 play continuance. In the
event that this change needs to be undone, the simplest fix is to:

e Leave the function at S7A0B,3A (ROM Offset 0Ox6BAOB) unaltered, and

e Restore original function, at $6D95,3A (ROM Offset 0x6AD95) change BD 7A 0B back to BD 6D F3

To further document the sound commands that are involved with sound test, and to show the
commands sent to the sound board as part of the sound test, the table below summarizes all of the
commands sent to the sound board during “Sound Test” mode. For completeness, this table includes
the commands previously listed in a table above so all commands are available in this single table.

Function Command Sent to Sound Board
Play: Main Play 0x7E 0x7D 0x7F 0x03
Play: Get Jackpot Tune 0x7E Ox7D Ox7F 0x04
Play: M.Ball Lit Tune 0x7E 0x7D Ox7F 0x07
Play: Video Mode Tune 0x7E Ox7D Ox7F 0x14
Play: Database Backgr. 0x7E Ox7D Ox7F 0xB2
Play: 100K Awark 0x7E Ox7D Ox7F OxBF

Play: Alarm Sound 0x7E 0x7D 0x7F 0xC6
Play: “Get the CPU” 0x7E Ox7D 0x7F Ox7A 0x25
Play: “Autofire” 0x7E Ox7D Ox7F Ox7A 0x27
Play: “Video mode” 0x7E Ox7D Ox7F Ox7A 0x28
Stop Current Sound (sent between ‘Play’ commands) Ox7E 0x7D Ox7F
Escape-Sound (coind-door escape button pushed) 0x7F 0x58

Minus-Sound (coin-door minus button pushed) 0x7F 0x50

Plus-Sound (coin-door plus button pushed) 0x7F 0x51

Enter-Sound (coin-door enter button pushed) Ox7F 0x57

End All Sounds (when escape button is pushed) 0x00

Observing the above sequences and confirming with commands that an emulator reveals, some

observations can be made.

The sequence of “Ox7E 0x7D Ox7F” is sent 2 times between sounds. Once for when the logic
specifically wants to turn off the current sound and again as part of the command to play the
next sound.
In the case of 3™ party sound board not stopping sound 05 when transitioning to 06, the
problem can be described as follows:
o When sound board gets command to play 05 “0Ox7E 0x7D 0x7F 0xB2” to play sound, and
o When sound board subsequently gets command “Ox7E 0x7D 0x7F” to stop such sound
o Sound board doesn’t stop playing the sound 05.
The L8.3 code adds the command “0x00” after the “Ox7E 0x7D 0x7F” as an added effort to have
the sound board stop playing the sound 05. Immediately after this 0x00, sound board then
receives command to play 06 “Ox7E 0x7D 0x7F OxBF” which appears to then correctly play.

Note: Future ROM update will re-analyze whether explicit stop at sound 05 can be removed.

FUA Inclusion Into Sound Test

As an added bonus to L8.3 and to serve as an Easter Egg and a coding exercise, the L8.3 includes
updated Sound Test where the FUA (Profanity) sound call is added into the sound test but only when the
“Profanity” adjustment is set to “On”.

Relocated Sound Test Table
In order to add a new sound to the test, the “Sound Test Table” which was previously shown, needed to

be made larger to accommodate an extra row. As mentioned for other such table expansions, the table

is moved to an unused region of ROM where the extra row can be safely added. When any table is

moved, all references to such table need to be updated so they read the new table at its new location.

These things are described below.

The original L-8 Sound Test Table is located at $490D,3D (ROM Offset 0x7490D). The relocated table is
moved to unused region of the same bank $3D at $7183,3D (ROM Offset 0x77183).

7183:
7185:

00 0C ; Entries
03 ; Entry size

7189: 03 00 00 ; 0x03 == Main play

718C: 04 00 00 ; 0x04 == Get jackpot tune
718F: 07 00 00 ; 0x07 == M.Ball 1lit tune
7192: 14 00 00 ; 0x14 == Video mode tune
7195: B2 00 (00 ; 0xB2 == Database Backgr.
7198: BEF 00 60 ; OxBF == 100K Award

719B: C6 00 60 ; O0xC6 == Alarm Sound
719E: 25 01 60 ; 0x25 == "Get the cpu"
71Al1: 27 01 60 ; 0x27 == "Autofire"

71A4: 28 01 60 ; 0x28 == "Video mode"
71A7: 3F 01 CO ; 0x3F == "FUA"

Note: This moved table also contains the changed byte for “Database Backgr.” As described earlier.

This new table entry contains these attributes:
e 0x3F, Sound command for FUA callout
e 0x01, Indicating this is a voice callout, causing 0x7A byte in the sound board command
e 0xCO, Time period for this sound call is 0xCO corresponding to 3 seconds

As this call-out is lengthier than the others, the time period is increased to 0xCO so that the sound call is
not prematurely interrupted during the sound test. Given that 0x40 is 1 second, value 0xCO corresponds
to 3 seconds. The resulting sound board command for this new entry is: 0x7E 0x7D 0x7F Ox7A Ox3F.

With the relocated sound table, next step is to updated references to the old table so they now look at
the new table. An examination of the L-8 code reveals there are two places during sound test where the
sound table is referenced, such as the following in a function that is responsible for determining the
total number of sounds for the test (so that code knows when to reset the sound test index back to 1
after playing the last sound in the test).

; SoundTestTableEntryCountGetIntoA ()

6DAF: 34 34 PSHS Y,X,B ;

6DBl: 8E 81 FB LDX #S81FB ; SoundTestTable[] pointer

6DB4: BD AC 38 JSR SAC38 ; GetTableXEntryCountIntoY ()

6DB7: 1F 20 TFR Y,D ; Put SoundTestTable[] entry count into D

6DB9: 1F 98 TFR B,A ; Move 8-bit SoundTestTable[] entry count into A
6DBB: 35 B4 PULS B,X,Y,PC ;

Note: The content of this function is altered as part of the FUA Easter Egg, described later

The function, above, shows how the code gets the address of the SoundTestTable[] from a pointer
stored at S81FB. This address S81FB corresponds to non-banked ROM region where various table
pointers are kept. This is at ROM offset 0x781FB which contains the 3 bytes: 49 0D 3D corresponding to
WPC address $490D,3D which is where the original SoundTestTable is located (as depicted earlier). To
have the sound test code use the new location of the SoundTestTable, the bytes at S81FB are changed
from 49 0D 3D to 71 83 3D so code reads the sound test table from $7183,3D.

Updated Sound Test Logic for FUA

With the relocated and expanded sound table, alone, the sound test will include the FUA call-out as an
ordinary part of its sound test. The goal is to only have this last entry of the sound test only appear
when “Profanity” adjustment is “On”, so additional work is needed to accomplish this.

As shown, above, the Sound Test code utilizes a common function to simply obtain the total number of
sounds in the test. In order to have the last row appear only when “Profanity” is enabled, the function
logic is updated so that:

e It returns total number of rows in the new Sound Test Table when “Profanity” is “On”, and
e It returns total number of rows minus 1 when “Profanity” is “Off”

By implementing the new logic, above, the sound test will behave as if there are 11 rows in the table
when “Profanity” is “Off” and will provide all 12 rows in the table when “Profanity” is “On”, thus giving
the effect that the FUA call hidden until the “Profanity” adjustment is set to “On”.

; SoundTestTableEntryCountGetIntoA ()

6DAF: 34 34 PSHS Y,X,B ;

6DBl: 8E 81 FB LDX #S81FB ; SoundTestTable[] pointer

6DB4: BD 79 FE JSR $7T9FE ; GetTableXEntryCountIntoY AdjustedForProfanity ()
6DB7: 1F 20 TFR Y,D ; Put SoundTestTable[] entry count into D

6DB9: 1F 98 TFR B,A ; Move 8-bit SoundTestTable[] entry count into A
6DBB: 35 B4 PULS B,X,Y,PC ;

As highlighted above, the function is altered so that instead calling a common function that simply
returns the first 2 bytes of the table (which is the number of table entries in such table), the code is
updated to call a new function at $79FE which will provide the number of table entries adjusted based
on the value of “Profanity” adjustment.

This new function at S79FE is called within same bank, S3A. This is a new function added to unused
ROM bytes near the end of bank $3A, corresponding to ROM offset Ox6B9FE.

; GetTableXEntryCountIntoY AdjustedForProfanity ()

79FE: BD AC 38 JSR SAC38 ; GetTableXEntryCountIntoY ()

7A01: BD 86 5B JSR $865B ; LookupGameAdjustmentParameterlandCheckIfEqualsParam? ()
; C-bit set when not-equal

7A04: 16 00 ; 0x16, $1BE5S:$1BE6 FeatureAdjustment022, Profanity

7A06: 25 02 BCS $S7AOA ; If C-set then Profanity is ON, return full table size

7A08: 31 3F LEAY S$FFFF,Y ; Profanity is OFF, decrement table size by 1, no FUA

7A0A: 39 RTS ;

The new function, above, retrieves the total number of Sound Test Table entries, and then calls a
common WPC function that retrieves the current value of an adjustment (0x16 Profanity in this case)
and compares its value to a value (0x00 in this case), returning C-bit set when non-equal. The

subsequent code then returns the full number of table entries (including the FUA row) when C-bit is set
since the “Profanity” adjustment is not equal to 0x00 (since 0x00 is “Off” and 0x01 is “On). When the C-
bit is clear (or “not set”), the “Profanity” adjustment is equal to 0x00 (“Off”) so the code will use the
LEAY SFFFF,Y instruction to cause the value in Y to decrement by 1, thus artificially reducing the size of
the sound test table to exclude the FUA callout.

With all of the above code changes in place, the desired effect of FUA call-out only when “Profanity” is
“On” takes effect.

The L8.3 Multiball Bug-Fixes

During L8.3 development, it was mentioned that a bug exists in L-8 regarding multiball. The bug was
described as the game effectively forgetting that multiball is taking place. There are multiple balls on
the playfield however game play proceeds as if the multiball is over. This can be especially troubling
when a video mode is started or a “fire at will” cannon shot is initiated while multiple balls are playing
on the playfield in ordinary play mode.

Investigation proceeded whereby several issues were observed regarding multiball.

e “Forgotten Multiball” can happen in various scenarios.

o When hunter ship is hit, during its explosion animation if ball is immediately locked.

o When hunter ship is hit, during its explosion animation if ball is immediately drained.
e Locking a ball causes display to report “Jackpot Multiplied 0x=0".

o When 2 balls remaining and each are locked in database and top lock simultaneously.

o After this message, both balls are ejected back onto playfield in multiball.

o Expected behavior is one locked and other in play with “Load the Gun” on the display.
e Missing ‘Load The Gun” period can happen in some scenarios at multiball end.

o When 2 balls remaining and one ball is locked and other is drained simultaneously.

There were multiple parts of the code involved for fixing all of these issues. They can be boiled down to
the following:

e Multiball startup code needing corrections.

e Multiball maintenance/continuation loop code needing corrections.

e Switch-handler code for lock shots needing corrections (left lock, top lock, ball-popper).
e Switch-handler code for outhole needing corrections.

There were various timing problems that were identified and corrected. In software development these
are sometimes referred to as a ‘race conditions’ where multiple pieces of code are designed to run
asynchronous from each other and, depending on order in which the functions each are allowed to run,
there may be situations when unexpected behaviors if not fully coded to account for all conditions.
Some of the fixed code is to specifically cure the issues and some of the fixed code is to improve design
based on theoretical problems that are observed in code but not necessarily able to encounter on the
running code.

WPC Scheduled Functions and Function IDs

Several of the bug fixes described below make reference to things like “scheduled functions” and
“function ID” values. An entire document can be devoted to the concepts but to get an understanding
of these things, a brief overview is mentioned here.

Scheduling a Function
Any running function can schedule the startup of another function. Such scheduled startup will include:

e The WPC Address of where the function starts
e The 16-bit (2-byte) ID value of the function

The game code will then call the scheduled function at the next chance it gets. This is when the
currently running code performs a “Sleep()” function call or when the currently running function run to
‘completion’ meaning it no longer needs to be part of the set of running functions.

The set of running functions is tracked in RAM as a linked list (actually multiple linked lists). A linked list
is simply a list of objects located in memory whereby a fixed starting point is used to find the first list
entry, then the address of the next list entry is contained in the list entry itself. This repeats until the
‘next’ pointer contains indicator that it is at the end of the list (usually all zeros).

A running function has its location in the linked list represented by a block of memory (i.e. a linked-list
record) which contains various attributes about the running function such as its ID value and current
execution point. In the case of a function having performed a “Sleep()” this execution point is important
so the function can resume when the sleep period is over.

Tracing through WPC code in an emulator it can become evident how the scheduler works as the linked
list traversal takes place and a function’s execution begins.

Scheduled Function ID

As mentioned, the scheduled function is associated with a particular ID. The ID is a 16-bit (2-byte value)
that other code can use to determine if a particular function exists in the linked-list (i.e. scheduled to run
at next available opportunity). For example, the multiball maintenance function runs with ID 0086 and
bug-fix functions can call a function to simply query whether function ID 0086 is running as a way to
determine if multiball is currently active.

Some functions can alter the ID of the currently running function. For example, switch-matrix function
for lock switches are first scheduled with function ID 0004 and then as the handler runs, it re-assigns it
ID to give indicator of the switch and its state so that other functions can use a bitwise operation to
determine if a group of functions are running that match the pattern of the new ID.

Multiball Logic Overview
As part of understanding the multiball logic, some overview of the design is in order. When multiball is
triggered during game play there are two main parts:

e Multiball Startup Code
e Multiball Maintenance/Loop Code

There is a lot of extra detail that is not depicted below (such as scheduling music and display animation).
Shown below is a very high level overview and details may not be 100% accurate to the code flow,
however the concepts being depicted serve the purpose of understanding the nature of the multiball
bug fixes that are described in this section of this document.

Start: Start: Multiball
Multiball Startup Maintenance/Loop

! ,f yes
Schedule startup of: /
Multiball Maintenance/Loop Are any of these conditions met to keep multiball running?
1. Balls-in-play at ram $BF greater than 1?, or ——— N
v ———>2. Ball Trough Evacuation function currently running?, or r
Schedule startup of: 3. First multiball 7-second ball-save period in progress?, or
Ball Trough Evacuation K4. Is a “Load the Gun” period currently in progress?
v no
v
Done
Done

Start: Ball Trough
Switch Handler

Start: Ball Trough
Evacuation v

Update accounting for

<
<
4

number of balls in play
at ram SBF.

Eject a ball

from ball 4 Start: Lock

trough and (Done) Switch Handlers
shooter lane
(Done) y

Update accounting for

number of balls in play
at ram SBF.

Ball Trough

Evacuated?

A 4

(Done)

Multiball Startup Balls-In-Play Timing Problem

One of the issues was caused by a timing problem related to multiball prematurely ending when the
number of balls on the playfield hasn’t yet been increased to a number greater than one. The sequence
of events when such trouble happens is as follows:

e Multiball startup code is entered, which:
o Schedules the multiball maintenance loop, and
o Schedules the ball-trough evacuation
e Multiball maintenance loop is entered, which checks conditions for keeping multiball in-progress:
o Balls-In-Play count at ram SBF needs to be greater than 1, but in this case it is still 1
o Checks other conditions for multiball in-progress, none of which are met
= Ball-trough evacuation routine is not currently running, and
= First Multiball 7-second ball-save timer period is not active, and
= A “Load the gun” period is not active
o Due to the above logic, multiball maintenance loop exits, multiball ends.
e The Balls-in-play count at SBF is still 1 due to:
o Ball-trough evacuation function hasn’t yet started, or
o Ball-trough evacuation function finished its job but the switch-handler hasn’t yet
engaged to increment SBF to a value greater than 1.
= As depicted in the logic flow, the ball trough evacuation necessarily leads to ball-
trough switch state changes which are then detected by the interrupt routine
switch-matrix scanning which then leads to the scheduled function handler for
the ball-trough switches, which is where the SBF value gets updated.

For this code change, the intent was to help retain the original logic related to SBF accounting and
multiball start and multiball retention, namely:

e The multiball maintenance loop is designed to check that SBF was non-zero and
e The initial increment of SBF to a value greater than 1 has been sure to have been taken place

There are two changes to the code to ensure that the multiball loop doesn’t inadvertently enter at a
moment where $BF is still at value 1 (and none of the other multiball conditions are currently met):

e The multiball startup code waits until the SBF is greater than 1 prior to completing, and
e The multiball maintenance loop includes in its conditions for multiball in-progress a new rule:
o If the multiball startup function is still running, MB is not declared as done.

Each of the above two code changes are described in the following two sections.

Multiball Startup Balls-In-Play Timing Fix: Startup waits for balls-in-play greater than 1
The L-8 Multiball startup function, partially annotated is shown below for reference. Area of interest for
this code change is near the end of the function and will be described in more detail, below.

; Multiball Start!

; ID 00B8 == Multiball start
6C4E: BD F7 59 JSR SF759 ; Checks state variables $86, $87, $88, $1793.
; All 0x00 means okay to proceed.
6C51: 7E 6C 54 JMP $6C54 ; <nop>
6C54: 10 26 00 82 LBNE $6CDA ;
6C58: BD 8B 77 JSR S8B77 ; ScheduleFunctionStart ()
6C5B: 00 86 ; Schedule 0x0086, multiball loop, runs until MB done
6C5D: 6D 0C 31 ; $6D0C,31 multiballLoop ()
6C60: 86 02 LDA #$02 ; SolenoidTableEntry02, 0A=Top Lock, 20
6C62: BD 88 F5 JSR $S88F5 ; EnergizeSolenoidTableEntryIfNeeded ()
6C65: 6E 6B 3B ;
6C68: 86 03 LDA #3503 ; SolenoidTableEntry03, 10=Left Lock, 20
6C6A: BD 88 F5 JSR $88F5 ; EnergizeSolenoidTableEntryIfNeeded ()
6C6D: 6E 6B 3B ;
6C70: BD 48 8D JSR $488D ; LeftVaultStateSet ()
6C73: BD 48 9E JSR $489E ; Lock2StateSet ()
6C76: 86 04 LDA #504 ; 0x04 == SolenoidTableEntry04, 04=Trough, 40
6C78: Co6 01 LDB #501 ;
6C7A: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAJdr ()
6C7D: 6E 5A 3B ;
6C80: BD F7 59 JSR SF759 ; Checks state variables $86, $87, $88, $1793.
; All 0x00 means okay to proceed.
6C83: 7E 6C 86 JMP $6C86 ; <nop> ;
6C86: 26 52 BNE S6CDA ;
6C88: 8E 06 03 LDX #50603 ; #$0603 is Hunter ship hits remaining for multiball
6C8B: BD FB 29 JSR SFB29 ; IncrementXByPlayerIndexNumber ()
6C8E: 7E 6C 91 JMP $6C91 ; <nop>
6C91: 6F 84 CLR , X ; Starting MB so ensure # of hunter ship hits=0
6C93: BD 88 D5 JSR $88D5 ; Call5253,39WithXParameterBytes ()
6C96: 00 1B ;
6C98: 8E 05 C9 LDX #$05C9 ; $05C9, Base Addr of #-of-multiballs per player/game
6C9B: BD FB 29 JSR SFB29 ; IncrementXByPlayerIndexNumber ()
6C9E: 7E 6C Al JMP $6CAL ; <nop> JSR to new function here JSR to $FB8C
6CAl: 6C 84 INC , X ; Increment multiballs achieved counter for cur player
6CA3: BD 71 A3 JSR $T1A3 ; Increment(05BDbyPlayerIndexNumber ()
6CAG6: BD 71 A3 JSR $71A3 ; Increment05BDbyPlayerIndexNumber ()
6CA9: BD 71 A3 JSR $7T1A3 ; Increment05BDbyPlayerIndexNumber ()
6CAC: 8D 2F BSR $6CDD ; <-- function can incur a sleep which yields to others
6CAE: C6 01 LDB #$01 ;
6CBO: BD 6D E9 JSR $6DE9 ;
6CB3: 0D CO TST $COo ;
6CB5: 27 09 BEQ $6CCO ;
6CB7: 86 06 LDA #$06 ; 0x06 == multiball theme music
6CB9: BD CO BC JSR $SCOBC ; PlayMusicRegisterA()
6CBC: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte ()
6CBF: 27 ;
6CC0O0: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback ()
6CC3: 00 82 ; 0082 must be running for the MB to keep running
6CC5: 6F 0D 31 ; BallTroughEvacuate ()
6CC8: BD 83 46 JSR $8346 ; Sleep()

6CCB: 60 ; 0x60 = 1.5 seconds

6CCC: BD 83 46 JSR $8346 ; =\ Sleep()

6CCF: 02 ; |

6CD0O: BD 8B C3 JSR $8BC3 ; | ScheduleFunctionCallback ()
6CD3: 00 82 ; | ID 0082

6CD5: o6F 0D 31 ; | BallTroughEvacuate ()
6CD8: 27 F2 BEQ $6CCC ; =/

6CDA: 7E 99 A2 JMP $99A2 ;

Notable elements of the multiball startup function, above, have been highlighted.

e At S6CAC a function (S6CDD) is called where logic can eventually reach a “Sleep()” function. This
means other scheduled work is allowed to proceed. In the event that such sleep takes place,
the multiball maintenance loop may be allowed to run which would be a case where the
multiball maintenance could discover that $BF is still 1, and the ball-trough evacuation is not
running. This could be a case where MB fails to start when it should. Detailed analysis of what
S6CDD does is outside scope of this discussion and left as an exercise to the reader.

e Starting at $6CCO, the BallTroughEvacuate() function is scheduled, followed by a 1.5 second
sleep and a small loop that ensures BallTroughEvacuate() is running. Detailed analysis of why
this is done in this way as opposed to simply have a single call into BallTroughEvacuate() has not
been performed. In the event the first BallTroughEvacuate() didn’t result in the
BallTroughEvacuate() function running, the 1.5 second sleep opens another window where the
multiball maintenance could discover SBF is still 1 and causing multiball to prematurely end.

To improve the overall logic in this area, the multiball startup code is improved in L8.3 so that the
startup function doesn’t complete until the SBF is greater than 1. The changed logic starts near the end
of the multiball startup function with the following.

6CB7: 86 06 LDA #$06 ; 0x06 == multiball theme music

6CB9: BD CO BC JSR $SCOBC ; PlayMusicRegisterA()

6CBC: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte ()

6CBF: 27 ;

6CCO0: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback ()

6CC3: 00 82 ; 0082 must be running for the MB to keep running
6CC5: 6F 0D 31 ; BallTroughEvacuate ()

6CC8: BD 83 46 JSR $8346 ; Sleep()

6CCB: 60 ; 0x60 = 1.5 seconds

ﬁf‘f‘E‘: fal +

As shown, above, the loop that previously checked called function to schedule BallTroughEvacuate() has
been replaced with a single call to a new function at $7935,3B. To fill in the remaining bytes in ROM, six
NOP instructions (no-operation, dummy instruction) are in place to allow code to flow smoothly to the

end.

Next is the content of this new function at $7935,3B (ROM offset Ox6F935).

7937:
793A:
793B:
793E:
7940:
7943:

7945:

7947 :
7949:
794B:

794D:
7950:
7952:

7954 :
7957 :
7959:

795B:
795C:
795E:
7961 :
7962:

7964 :

BD
00
25

4A
27
BD
06
20

35

83
8B

82
0D

55

01

17

86

07

86

B2
09

06
83

E3

86

46

C3

31

90

90

46

JSR

JSR

BCC

JSR

BCS

DECA
BEQ
JSR
BRA

PULS

$8346

$8BC3

$7937

#3555
$BF
#3501
$7964
$8690
$795B

$8690

$7964

$7965
$8346

$7947

A,B, PC

Perform original loop for BallTroughEvacuate ()
This is code copied from MB-init at $6CCC, 31

-\ Sleep/()
|
| ScheduleFunctionCallback ()
| ID 0082
| BallTroughEvacuate ()
-/

; Now perform bugfix, checking for $BF > 01 or
; wait for timeout before giving up.

; Wait up to the sleep period multiplied by this counter

Get number of balls on the playfied from $BF
Branches if $BF is higher than 1

SearchLinkedListForId() // c-bit clear = ID found
0082, BallTroughEvacuate ()
Function is running, goto keep waiting

SearchLinkedListForId() // c-bit clear = ID found
00B2, shooter-lane-kick-and-check-switch
Function is not running, goto end, all done

keep_waiting:
Decrement the timeout counter

If decremented to zero, then done.
Sleep ()

~N— - - - — - — - - — — — — — — — ~

Keep checking

; Either the ball trough and shooter lane are empty

or gave up waiting

The new function, above first performs the original loop that was removed from S6CCC,31 and replaced
with call to this fixup function. After that, a wait-loop is performed where the code will repeatedly
check for ‘done’ condition or after a period before giving up waiting.

The loop, starting at $7947, will cycle up to 0x55 times, with a sleep of value 06 each time. Total sleeps
will be 0x55 (decimal 85) multiplied by 6 which is 510. Given that 0x40 (decimal 64) is 1 second, this
equates to a timeout of about 8 seconds before the code gives up waiting for the conditions for be met.
It is not expected that this timeout will ever be hit but this prevents code from looping forever in the
event of unexpected playfield conditions.

The loop is checking for the following conditions:

e If SBFis discovered to be greater than 1 then loop exits, otherwise

e If the BallTroughEvacuate() function is still running, keep looping, otherwise

o If the “shooter-lane-kick-and-check-switch” code is running, keep looping, otherwise
e The loop exits

This logic mentions this “shooter-lane-kick-and-check-switch” which is a secondary function that is
scheduled by the BallTroughEvacuate() function and not mentioned in earlier descriptions. For absolute
completeness in the above loop, it made sense that the code loops until the BallTroughEvacuate() is
done <and> this subsequent function is also done. In most situations, the SBF value being greater than
1 is the cause of the loop exit.

Once the above loop exits, code returns back to the Multiball Startup function which then exits, thus
ensuring that the Multiball Startup function only finishes after the SBF has incremented past 1 (or
BallTroughEvacuate() is completely done with all of its work, or timeout condition was hit if code gave
up waiting for conditions to be met).

Multiball Startup Balls-In-Play Timing Fix: Maintenance function checks if startup is running
As mentioned, the Multiball Startup function can potentially hit a Sleep() when, at S6CAC, function
S6CDD is called. If that were to happen, then the Multiball Maintenance function could start up (due to
have been scheduled earlier in the multiball startup code) and immediately declare end of multiball due
to all conditions not being met to retain multiball.

To show the code fix for this issue, the L-8 multiball maintenance code, partially annotated, is shown
below. This function was scheduled, as depicted above, during the multiball startup routine, and it
starts at S6D0C,31 (ROM offset 0x44DOC).

; ID 0086

; Called at multiball start
; This is the main loop of multiball

6D0C: BD 87 15 JSR $8715
6DOF: 10 40 ;
6D11: BD 87 15 JSR $8715 ;

6D14:
6D16:
6D19:
6D1A:
6D1D:
6D1E:
6D21:
6D22:
6D25:
6D27:
6D2A:
6D2B:
6D2E:
6D30:
6D32:
6D35:
6D36:
6D39:
6D3B:
6D3E:
6D3F:
6D42:
6D43:
6D45:
6D48:
6D49:
6D4C:
6D4D:
6D50:
6D51:
6D54 :
6D55:
6D57:
6D5A:
6D5B:
6D5E:
6D5F:
6D62:

6D63:
6D66:
6D67:
6D69:
6D6B:
6D6D:
6D70:
6D72:
6D74:
6D77:
6D79:
6D7B:
6D7E:
6D80:
6D82:
6D85:

0E
BD
48
BD
42
BD
43
BD
00
BD
45
BD
2F
25
BD
45
BD
2F
BD
46
BD
1A
25
BD
46
BD
1A
BD
47
BD
0c
25
BD
47
BD
0c
BD
40

BD
06
96
81
22
BD
00
24
BD
00
24
BD
00
24
BD
48

40
84

84

84

86
EC
84

87
40
04
84

87
40
84

84

04
84

84

84

84

04
84

84

83

83

BF
01
F6
86
82
EF
86
83
E8
86
A9
El
84

8F

8F

8F

9E

8F

3C

80

22

8F

49

80

2B

8F

49

80

2B

46

46

90

90

90

AD

JSR

JSR

JSR

JSR

JSR

JSR

BCS
JSR

JSR

JSR

JSR

BCsS
JSR

JSR

JSR

JSR

BCS
JSR

JSR

JSR

JSR

LDA
CMPA
BHI
JSR

BCC
JSR

BCC
JSR

BCC
JSR

$848F

$848F

$848F

$869E

$848F

$873C

$6D36
$8480

$8722

$848F

$8449

$6D49
$8480

$842B

$848F

$8449

$6D5B
$8480

$842B

$8346

$8346

$BF
#3501
$6D63
$8690

$6D63
$8690

$6D63
$8690

$6D63
$84AD

ClearMemoryFlag ()

ClearMemoryFlag ()

ClearMemoryFlag ()

CancelScheduledCallbackFunction ()

ClearMemoryFlag ()

SetMemoryFlag ()

ClearMemoryFlag ()

SetMemoryFlag ()

ClearMemoryFlag ()

SetMemoryFlag ()

ClearSingleLampParameterByte ()

Sleep ()
0x40 = 1 second

- More than 1 ball on playfield ($BF wvalue), or
- 0082 is running, BallTroughEvacuate(), or
- 0083 is running, 7-second ball-saver, or
- 00A9 is running, Load-the-gun period, or

- MemoryFlag 48 is set ("LOAD THE GUN" w/l-ball left)

-\ Sleep()

| $BF is number of balls on playfield

| As long as there are more than 1 ball, keep looping.

SearchLinkedListForId() // c-bit clear = ID found
ID 0082 == BallTroughEvacuate ()

SearchLinkedListForId() // c-bit clear = ID found
SearchLinkedListForId() // c-bit clear = ID found
ID 00A9 == "LOAD THE GUN" period is running

GetMemoryFlag () // C-bit clear when flag set
0x48 flag is "LOAD THE GUN" period

ID 0083 == 7 second first multiball ball-save timer

6D86: 24 DB BCC $6D63 ;o =/

; Out-of-Loop -- Multiball is done, now cleanup
6D88: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set
6D8B: 42 ;
6D8C: 24 1B BCC $6DA9 ;

; Keep cleanup loop going as long as:

; 00AA is running <or>

; 00AB is running <or>

; 0084 is running

; Loop below cleanup at end of multiball?
6D8E: BD 86 90 JSR $8690 ; -\ SearchLinkedListForId() // c-bit clear = ID found
6D91: 00 AA ; | ID OOAA Ball-In-Popper
6D93: 24 OE BCC $6DA3 ;
6D95: BD 86 90 JSR $8690 ;| SearchLinkedListForId() // c-bit clear = ID found
6D98: 00 AB ;| ID 00AB Ball-in-gun function is running
6D9A: 24 07 BCC $6DA3 ;
6D9C: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear ID found
6D9F: 00 84 ;| ID 0084 Ball-gun-to-Target-Period function
6DAl: 25 06 BCS $6DA9 ;
6DA3: BD 83 46 JSR $8346 ;| Sleep()
6DAG6: 04 ; |
6DA7: 20 ES5 BRA S6D8E ;i =/
6DA9: BD 68 08 JSR $6808 ; ScheduleDropTargetUp ()
6DAC: BD 87 22 JSR $8722 ;
6DAF: 10 40 ;
6DBl: BD 87 22 JSR $8722 ;
6DB4: 0D 40 ;
6DB6: BD 87 22 JSR $8722 ;
6DB9: OE 40 ;
6DBB: BD 84 80 JSR $8480 ; SetMemoryFlag ()
6DBE: D2 ;
6DBF: BD 84 AD JSR $84AD ; GetMemoryFlag ()
6DC2: 45 ;
6DC3: 25 03 BCS $6DC8 ;
6DC5: BD 68 82 JSR $6882 ;
6DC8: BD 84 AD JSR $84AD ; GetMemoryFlag ()
6DCB: 46 ;
6DCC: 25 04 BCS $6DD2 ;
6DCE: BD 84 1C JSR $841cC ;
6DD1: 1A ;
6DD2: BD 84 AD JSR $84AD ; GetMemoryFlag ()
6DD5: 47 ;
6DD6: 25 04 BCS $6DDC ;
6DD8: BD 84 1C JSR $841C ;
6DDB: 0C ;
6DDC: 10 8E 00 8B LDY #$008B ;
6DEO: BD 9B 83 JSR $9B83 ;
6DE3: BD 56 9C JSR $569C ;
6DEG: 7E 99 A2 JMP $99A2 ;

The important/applicable section starts at the highlighted comment corresponding to code beginning at
S$6D63. As shown, the multiball loop repeatedly checks for 4 items in order to keep multiball in progress.

Once the loop is exited then multiball is considered done and multiball cleanup code ensues. The four
conditions that code checks are as follows:

e SBF, Balls in play value is greater than 1, or

e 50082 function, BallTroughEvacuate() function is running, or

e 50083 function, 7-second ball-saver timeout at first multiball is active, or
e S00A9 function, “Load the ball” mode is active, or

o 0x48 flag is set meaning “Load the ball” is active

As previously described and depicted, the above logic can prematurely end multiball if the multiball
startup code calls a “Sleep()” function prior to its first call of BallTroughEvacuate(). To address this, the
loop is augmented to include extra criteria to keep multiball running. The code is altered as shown

below:
6D63: BD 83 46 JSR $8346 ; =\ Sleep()
6D66: 06 A
6D67: 96 BF LDA SBF ;| $BF is number of balls on playfield
6D69: 81 01 CMPA #5301 H | As long as there are more than 1 ball, keep looping.
6D6B: 22 F6 BHI $6D63 ;
6D6D: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found
6D70: 00 82 ; | ID 0082 == BallTroughEvacuate ()
6D72: 24 EF BCC $6D63 ;
6D74: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found
6D77: 00 83 ;| ID 0083 == 7 second first multiball ball-save timer
6D79: 24 ES8 BCC $6D63 ;

i
oniB: BD 86 90 TS~ 58690 ;1 SearcatdnkediistForTd() bit—elear—=Ibfound
et 24 p1 i=Yalal $6D6 ;
alb Sh—fd—a 5= D3PS 3 —GetMemoryilagt C-bit clear wnen flag set

; Out-of-Loop -- Multiball is done, now cleanup

6D88: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set
6D8B: 42 ;
6D8C: 24 1B BCC $6DA9 ;

As highlighted above, the multiball loop code that previously checked 2 conditions related to “Load the
gun” were replaced with a single call to a new function located at $7922,3B. The returned C-bit is used
to determine whether to keep multiball-loop running or to exit. The new code is smaller than the old
code so some dummy instructions are added to get code to $6D88 when the multiball-loop is exited.

The new function at $7922,3B (ROM offset 0x6F922) is depicted below:

; Function called from $6D7B,31 during multiball loop to
; add additional check for multiball-init still running
; as criteria to keep multiball running.

7922: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
7925: 00 A9 ; ID 00A9 == "LOAD THE GUN" period at end of multiball
7927: 24 0B BCC $7934 ;

7929: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
792C: 00 B8 ; MultiballStart function at $6C4E, 31

792E: 24 04 BCC $7934 ;

7930: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

7933: 48 ; 0x48 flag is (?)

7934: 39 RTS ;

The new function, above, contains the same elements as what the original code had plus a single new
element added for keeping the multiball running. The new element is the check for function ID 00B8
which is the Multiball Startup function. This simple check ensures the multiball loop will not
prematurely end multiball if the multiball startup function is still running. This ensures that any “Sleep()
performed during the multiball startup (prior to its scheduling of BallTroughEvacuate()) will not result in

”

early running of the Multiball Maintenance function to falsely declare end of multiball since it will now
discover that multiball startup is still in progress and, therefore, will keep multiball active.

Multiball Startup Balls-In-Play Timing Fix: Corrected Multiball Logic
The fixes depicted, thus far, represent the following yellow highlighted changes to the original multiball

logic flow that was previously depicted.

Start:
Multiball Startup

b

Schedule startup of:
Multiball Maintenance/Loop

\ 4

Start: Multiball
Maintenance/Loop

A

<
l
y

| yes

Ball Trough

Schedule startup of:

Evacuation

B
»

A

y

Is ball trough evacuation
completely done, or is Balls-

no | in-Playram $BF>1, o

r have

been checking for 8 seconds?

yes

("

)

Start: B

all Trough

Evacuation

Evac

Ball Trough

1. Balls-in-play at ram $BF greater than 1?, or ——
~> 2. Ball Trough Evacuation function currently running?, or

//-\re any of these conditions met to keep multiball running? \

3. First multiball 7-second ball-save period in progress?, or
4. Is a “Load the Gun” period currently in progress?, or

l:c. Multiball Startup function currently running?

/

\4

no

Co D

Start: Bal

[Trough

Switch Handler

A

y

Update acc

number of balls in play
at ram SBF.

ounting for

&
<
Yy

uated?

Eject a ball
from ball
trough and
shooter lane

e D

Start: Lock
Done Switch Handlers

A 4

Update accounting for
number of balls in play
at ram SBF.

A 4

(Done)

Multiball Switch Handler Logic Updates

The switch handler code was found to need some updated logic in order to prevent the various multiball
troubles from taking place. This section will describe the code changes that were made in order to
resolve issues with multiball when ball-lock or outhole switches are hit simultaneously or too hit early
during multiball startup.

Switch Handling, A brief overview

The layers of code involved in handling a switch can be quite extensive and warrant an entire document
in itself. A brief summary of the switch handling will be given here with further research being deferred
to other documents and research.

e The Motorola 68B09, the Interrupt Service Routine (ISR) address is at SFFF8

e This is ROM offset 0x7FFF8. In T2 L-8 this contains D9 CO for SD9CO (ROM Offset $7D9CO0)

e The ISR starts at SD9CO, performing various tasks, including switch-matrix scanning.

e Switches are read starting at SDCF1 (coin-door switches)

e Switch-matrix read starting at SDD12, starting at column 1 through column 7.

e The game “main loop” code starts at $975F, performing various low-level system handling.

e At S977C it calls function S9D4E which ends up leading to switch-matrix memory reading

e The $S9D4E function, at S9D88, calls $9417 which ends up leading to switch-matrix memory read

e The $9417 function, at $94C0, calls $9614 which ends up leading to switch-matrix memory read

e The $9614 function, at $9641, calls $983D which is a function that schedules the switch-matrix
handler function for a hit switch. Function ID is in register Y, Function address in X, bank B.

The sequence, above, could further be researched to understand more details but suffice it to say, when
a switch is closed, the above logic (if the tracing, above, is correct for all cases), will result in a function
being called that is responsible for handling the switch.

The address of the function is derived from the Playfield Switch Table. This table contains an 11-byte
entry for each switch with various metadata including the address of the function that gets called when
the switch is hit. In L-8, the address of the table is stored at S81C5 (ROM offset 0x781C5) and it contains
the value 49 31 3D for $4931,3D (ROM offset 0x74931). The switch table is partially annotated and
shown in full, below, for completeness:

; PlayfieldSwitchTable[]

This is loaded for switch indexes 0x01-0x41

Each 1ll-byte entry for each switch below has the following format:

; 01 02 03 04 05 06 07 08 09 OA 0B

01 02
; 03 04 05 ; SXXYY,ZZ Address in ROM

; 06

; 09
; 0A

4931:
4933:

4934:
4936:
4939:
493C:

493F:
4941:
4944
4947

494A:
494C:
494F:
4952

4955:
4957
495A:
495D:

4960:
4962:
4965:
4968:

496B:
496D:
4970:
4973:

07

0B

00
0B

04
99
3C
00

00
99
3C
00

00
99
3C
00

00
99
3C
00

00
99
3C
00

00
5E
3C
78

41

04
A2
00
00

09
A2
00
00

09
A2
00
00

09
A2
00
00

09
A2
00
00

02
A6
00
00

FF
20
00

FF
20
04

FF
20
04

FF
20
04

FF
20
04

39
20
04

This is a flag byte with the following bit-flag definitions for this switch

11111111

(AEREREE

FEETETIN== 0x01
[TTTTHIN=== 0x02
[T I\===-= 0x04
0x08
0x10

bit.
bit.
bit.
bit.
bit.
bit.
bit.
bit.

When set,

switch is NOT included 90-ball switch error report

(above comment based on findings from other WPC study)

SO0AOB is ID used for the callback function when it get scheduled

; Table has entries for up to switch index value 0x41
; Each entry is 0x0B in length

; SwitchTableEntry00,
; $99A2,FF

; SwitchTableEntryOl,
; S99A2,FF

; SwitchTableEntry02,
; $99A2,FF

; SwitchTableEntry03,
; $99A2,FF

; SwitchTableEntry04,
; $99A2,FF

; SwitchTableEntry05,
; $5EA6,39

o

’

Invalid Switch

Switch

Invalid

Invalid

Switch

Switch

Invalid

Switch

Invalid

coin-door:

Index/Reference

Index/Reference

Index/Reference

Index/Reference

Index/Reference

service credit

4976: 00 02 ; SwitchTableEntry06, 6, coin-door: volume down

4978: 47 99 3D ; $4799,3D

497B: 3C 00 20 ;

497E: 78 00 04 ;

4981: 00 02 ; SwitchTableEntry07, 7, coin-door: volume up
4983: 47 7D 3D ; $477D, 3D

4986: 3C 00 20 ;

4989: 78 00 04 ;

498C: 00 02 ; SwitchTableEntry08, 8, coin-door: test/menu
498E: 8E 7D FF ; S$8ETD,FF

4991: 3C 00 20 ;

4992: 78 00 04 ;

4997: 00 02 ; SwitchTableEntry09, 11, Right Flipper
4999: 5C CA 31 ; $5CcCa, 31

499C: 3C 00 00 ;

499F: 40 00 04 ;

49A2: 00 02 ; SwitchTableEntry0A, 12, Left Flipper
49Aa4: 5C 17 31 ; $5C17,31

49A7: 3C 00 00 ;

49AA: 40 00 04 ;

49AD: 00 02 ; SwitchTableEntry0OB, 13, Start Button
49AF: 45 40 38 ;

49B2: 3C 00 00 ;

49B5: 78 00 04 ;

49B8: 00 02 ; SwitchTableEntry0C, 14, Plumb Bob Tilt
49BA: 58 A7 39 ;

49BD: 3C 00 20 ;

49C0: E8 00 04 ;

49C3: 10 OC ; SwitchTableEntryOD, 15, Trough Left
49C5: 70 CC 3B ; SwitchMatrixHdlr TroughLeftCenterRight ()
49C8: 3C 00 00 ;

49CB: F8 00 04 ;

49CE: 10 0C ; SwitchTableEntryOE, 16, Trough Center
49D0: 70 CC 3B ;

49D3: 3C 00 00 ;

49D6: F8 00 04 ;

49D9: 10 OC ; SwitchTableEntryOF, 17, Trough Right
49DB: 70 CC 3B ;

49DE: 3C 00 00 ;

49E1: F8 00 04 ;

~. |||‘ ~.

49EF: 00 02 ; SwitchTableEntryll, 21, Slam Tilt
49F1: 5F 96 39 ;

3C
78

00
60
3C
F8

00
99
3C
40

00
99
3C
00

00
49
3C
co

00
63
3C
40

00
65
3C
40

00
49
3C
40

00
65
3C
B8

00
65
3C
F8

00
5D
3C
40

00
99
3C
40

00
5F

02
OF
00
00

02
A2
00
00

02
A2
00
00

04
35
00
00

04
09
00
00

04
10
00
00

04
D4
00
00

02
A8
00
00

02
E2
00
00

02
0A
00
00

02
A2
00
00

20
96

39
20
04

FF
20
04

FF
30
04

31
80
04

31
80
04

31
80
04

31
80
04

31
00
04

31
00
04

31
00
04

FF
20
04

SwitchTableEntryl2,

SwitchTableEntryl3,

SwitchTableEntryl4,

SwitchTableEntryl5,

SwitchTableEntryle,

SwitchTableEntryl7,

SwitchTableEntryl8,

SwitchTableEntrylA,

SwitchTableEntrylB,

SwitchTableEntrylC,

SwitchTableEntrylD,

oo~ |||| .

Coin Door Closed

Ticket Dispenser

Always Closed

Left Outlane

Left Return Lane

Right Return Lane

Right Outlane

Gun Mark

Gun Home

Grip Trigger

Not Used

4A7E: 00
4A80: 4F
4A83: 3C
4A86: 40
4A89: 00
4A8B: 4AF
4A8E: 3C
4891: 40
4A94: 00
4096: 4F
4A99: 3C
4A9C: 40
4A9F: 00
4AAl: 62
4AA4: 3C
4AAT7: 40
4AAA: 00
4AAC: 62
4AAF: 3C
4AB2: 40
4AB5: 00
4AB7: 62
4ABA: 3C
4ABD: 40
4AC0: 00
4AC2: 62
4AC5: 3C
4AC8: 40
4ACB: 00
4ACD: 62
4AD0O: 3C
4AD3: 40
4AD6: 00
4AD8: BA
4ADB: 3C
4ADE: 40
4AE1: 00
4AE3: BA
4AE6: 3C
4AE9: 40
4AEC: 00
4AEE: 5A
4AF1: 3C
4AF4: 40

08
B5
16
00

08
B5
17
00

08
B5
18
00

02
74
00
00

02
78
00
00

02
7C
00
00

02
ES
00
00

02
ED
00
00

08
45
36
00

08
45
37
00

08
45
38
00

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

SwitchTableEntrylE,

SwitchTableEntrylF,

SwitchTableEntry20,

SwitchTableEntry21,

SwitchTableEntry22,

SwitchTableEntry23,

SwitchTableEntry24,

SwitchTableEntry25,

SwitchTableEntry26,

SwitchTableEntry27,

SwitchTableEntry28,

Mid-Left Standup Target

Mid-Center Standup Target

Mid-Right Standup Target

Left Jet

Right Jet

Bottom Jet

Left Sling

Right Sling

Top Right Stand-up Target

Mid Right Stand-up Target

Bot Right Stand-up Target

~. ||‘| ~e o~

00
99
3C
40

00
4A
3C
40

00
4A
3C
40

00
5A
3C
40

00
5A
3C
40

00
5A
3C
40

00
65
3C
40

00
5D
3C
40

00
65
3C
40

00
5F
3C
40

00
4A
3C
40

00

08
A2
00
00

04
12
00
00

04
12
00
00

04
F9
3E
00

04
F9
3F
00

04
F9
40
00

04
5A
00
00

04
44
00
00

04
7D
00
00

04
F5
00
00

04
1D
00
00

04

FF
20
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

31
80
04

7

7

7

SwitchTableEntry2A,

SwitchTableEntry2B,

SwitchTableEntry2C,

SwitchTableEntry2E,

SwitchTableEntry2F,

SwitchTableEntry30,

SwitchTableEntry31,

SwitchTableEntry32,

SwitchTableEntry33,

SwitchTableEntry34,

SwitchTableEntry35,

SwitchTableEntry36,

52,

53,

54,

.o~ |||‘ ~.

Not Used

Low Escape Route

High Escape Route

Top Lane Left

Top Lane Center

Top Lane Right

Left Ramp Entry

Left Ramp Made

Right Ramp Entry

Right Ramp Made

Low Chase Loop

High Chase Loop

4B88: 4A 1D 31 ;
4B8B: 3C 00 80 ;
4B8E: 40 00 04 ;

4B91: 00 02 ; SwitchTableEntry37, 67, Not Used
4B93: 99 A2 FF ;
4B96: 3C 00 20 ;

4B99: 40 00 04 ;

4B9C: 00 02 ; SwitchTableEntry38, 68, Not Used
4B9E: 99 A2 FF ;
4BAl: 3C 00 20 ;

4BA4: 40 00 04 ;

4BA7: 00 08 ; SwitchTableEntry39, 71, Target 1 High
4BA9: 4B 93 31 ; SwitchMatrixHdlr TargetlHigh ()

4BAC: 3C 11 80 ;

4BAF: 40 00 04 ;

4BB2: 00 08 ; SwitchTableEntry3A, 72, Target 2
4BB4: 4B 95 31 ; SwitchMatrixHdlr Target2()

4BB7: 3C 12 80 ;

4BBA: 40 00 04 ;

4BBD: 00 08 ; SwitchTableEntry3B, 73, Target 3
4BBF: 4B 97 31 ; SwitchMatrixHdlr Target3()

4BC2: 3C 13 80 ;

4BC5: 40 00 04 ;

4BC8: 00 08 ; SwitchTableEntry3C, 74, Target 4
4BCA: 4B 99 31 ; SwitchMatrixHdlr Targeti ()

4BCD: 3C 14 80 ;

4BDO: 40 00 04 ;

4BD3: 00 08 ; SwitchTableEntry3D, 75, Target 5 Low
4BD5: 4B 9B 31 ; SwitchMatrixHdlr Target5Low ()

4BD8: 3C 15 80 ;

4BDB: 40 00 04 ;

~. |||| ~.

4BE9: 00 02 ; SwitchTableEntry3F, 77, Drop Target
4BEB: 67 0C 31 ;

4BEE: 3C 00 80 ;

4BF1: 40 00 04 ;

4BF4: 10 00 ; SwitchTableEntry40, 78, Shooter
4BF6: 45 5A 31 ; SwitchMatrixHdlr Shooter ()

4B49: 3C 00 00 ;

4BFC: F8 00 04 ;

For the multiball fixes, the highlighted switch handlers are updated. As can be seen, several of the
switches share the same callback handler function address. Switch handlers are called with an indicator
of the switch index that caused the code to be called and an indicator if the switch was closed or opened.
The switch handlers can also perform a follow-up function call to check switch states.

The green highlighted switch handlers share common switch handler at $7244,3B (ROM offset Ox6F244)
Gun Loaded

Left Lock
Top Lock

Ball Popper

The blue highlighted switch handler at $44B1,31 (ROM offset 0x444B1) is only used by:

Outhole

Switch Handling, Ball Lock Switch Handler

This section covers bug fixes for the switches _, in the switch-matrix table, above.
The common switch handler at $7244,3B (ROM offset 0x6F244) is used for all 4 switches where the ball
might come to a rest on the playfield. As listed above, this refers to the lock shots, ball-popper and the

“gun loaded” switch.

Shown below is this common switch handler with partial annotation. Some of the annotation is

speculation or commentary on what the code might be doing.

7244:
7246:

7249:

724B:

T24E:
7251:
7253:
7255:
7257
7259:
725B:
725D:
725F:
7262
7263:
7266:
7268:

34
BD

24

BD

BD
E6
c4
E7
E6
27
86
E6
BD
06
BD
24
4A

06
FE

45

oF

70
23
FE
23
22
2F
0A
61
83

FE
19

0D

0F

9D

46

0D

PSHS
JSR

BCC

JSR

JSR
LDB
ANDB
STB
LDB
BEQ
LDA
LDB
JSR

BCC
DECA

B,A
SFEOD

$7290

SE6FOF

$709D
$0003,Y
#SFE
$0003,Y
$0002,Y
$728A
#S0A
50001, S
$8346

$7281

; Switch-Matrix Handler for:

; SwitchTableEntryl9, 31, Gun Loaded
; SwitchTableEntry29, 51, Left Lock

; SwitchTableEntry2D, 55, Top Lock

; SwitchTableEntry3E, 76, Ball Popper

; B has index of switch
; A has 0x04 for when switch is closed (ball on switch)
; A has 0x05 for when switch is opened (ball off switch)

; Returns with C-clear and Z-set when switch is closed
; Returns with C-set and Z-clear when switch is opened

; UpdateCurrentRunningScheduledFnWithSwOpenClosedID ()
; If sw is open, calls $99A2 & returns from sw handling

; Goes to SystemModeCheck (0x04) which launches 00AA
; callback in bank $31, prior to multiball

; Sleep ()

7269:
726B:
726D:
7270
7272
7274
7277
7278 :
T27A:
727D:
T27E:
7281:
7283:
7286:
7287 :

T28A:
728D:

728E:

7290:

7293:
7296:
7297
729A:
729C:

729E:
729F:
T2RA2:

72RA5:
T2A7 :
72RA9:
72AC:
72AD:
72AF:

72B1:
72B3:
72B6:
72B8:
72BB:
72BC:
72BE:

72C0:
72C1:

72C3:
72C5:
72C8:
72CB:
72CC:

26
A6
BD
6D
217
BD
4D
oF
BD
05
TE
A6
BD
06
TE

BD
04

20

BD

BD
07
BD
6D
26

S5F
BD
TE

6D
27
BD
4C
20
E6

86
BD
25
BD
06
6D
27

4A
26

A6
BD
BD
08
20

F4
E4
6E
22
06
82

22
FD

72
E4
FD

72

FD

44

6F

FD

70
21
07

6E
72

22
06
82

25
61

06
FE
16
83

21

DE

FO

E4

6E

FD

06

ES

B6

FC

D4

FC

D4

FC

OF

FC

9D

CB
D4

B6

0D

46

DD
FC

BNE
LDA
JSR
TST
BEQ
JSR

CLR
JSR

JMP
LDA
JSR

JMP

JSR

BRA

JSR

JSR

JSR
TST
BNE

CLRB
JSR
JMP

TST
BEQ
JSR
INCA
BRA
LDB

LDA
JSR
BCS
JSR

TST
BEQ

DECA
BNE

LDA
JSR
JSR

BRA

$725F

, S
S6EE9
$0002,Y
$727A
$82B6

$0002,Y
SFDFC

$72D4
,S
SFDFC

$72D4

SFDFC

$72D4

S6FOF

SFDFC

$709D
$0001,Y
$ST2A5

$S6ECB
$72D4

$0002,Y
ST2AF
$82B6

$72D4
$0001,S

#506

SFEOD
$72CE
$8346

$0001,Y
$ST729E
$72B3

, S
$6EDD

SEFDFC

$72D4

; ErrorHandler ()

; SystemModeCheck ()

; Jump to the end, no more work

; SystemModeCheck ()

; Jump to the end, no more work

; SystemModeCheck ()

; 0x04 causes call to $6F4D,31 to evaluate A.

; If A==0x0A then 00AA scheduled function callback

; 1s started which caues sleep() at multiball start
; Jump to the end, no more work

; UpdateCurrentRunningScheduledFnWithSwOpenClosedID ()
; If switch is closed returns here and code proceeds

; SystemModeCheck() // Calls $70B4,3B with 0x07 in B

; Jump to the end. In game play, no award yet

; ErrorHandler ()

; -\ Called when processing switches, B has switch index

P

Sleep ()

|
|
I
|
|
|
-/

; SystemModeCheck ()

72CE: A6 E4 LDA ,S ;

72D0: BD FD FC JSR SFDFC ; SystemModeCheck ()
72D3: 09 ;
72D4: TE 6F AB JMP S6FAB ; End Of Switch Processing

The highlighted code at $7290 is where a new function is inserted to aid in the timing problems and bug
fixes. At $7290 is where the switch handler has determined that the switch is closed, meaning the ball is
resting on the switch, and game state handling is about to take place. Since this code is used by four
different switches, by fixing this one function, several ways in which problems manifest are going to be
fixed. The updated code at $7290 is as follows.

7290: BD 79 F9 JSR ST9F9 ; BallRestSwitch BugFixRoutine ()

7293: BD FD FC JSR SFDFC ; SystemModeCheck () // Calls $70B4,3B with 0x07 in B
7296: 07 ;

7297: BD 70 9D JSR $709D ;

729A: 6D 21 TST $0001,Y ;

729C: 26 07 BNE $72A5 ;

As shown, the jump to S6FOF routine was replaced to a jump to S79F9 routine. Expectation is that the
S$79F9 routine will end up returning so that normal code flow at $7293 can proceed. Below is the new
function at $79F9,3B (ROM offset Ox6F9F9).

; Forgot-multiball fix where lock shots will call
; this code to wait until MB init is completely done and
; multiball-loop is running.

79F9: BD 7A 06 JSR $T7A06 ; Sleep if MB is imminent or MB-init is running

79FC: BD 7A 30 JSR $7A30 ; Sleep if "LOAD THE GUN" is imminent-ball just drained
79FF: BD 7A 61 JSR $7A61 ; Sleeps if other lock sw is being handled during mball
7A02: BD 6F OF JSR S6FOF ; Call original code replaced with JSR to this fn.
7A05: 39 RTS ; Now resume switch hdlr

As indicated in the new function, above, three new functions are called, then the original S6FOF function
which was replaced with the JSR to $79F9 is then called and code returns, resuming normal switch
handler code flow. The three functions are:

e S7A06,3B, sleep if it appears multiball is imminent, waits until MB maintenance loop is running
e S7A30,3B, sleep if “Load the Gun” is imminent, if a ball has just drained but not fully handled yet

e $7A61,3B, sleep if another lock switch is being handled but not fully handled yet during multiball

Effectively, the three functions will cause the code to wait until the other short-lived functions are fully
handled. This will effectively cause the current switch handler to yield until the other code is finished
running, whether it is multiball startup code, outhole handler code or other lock switch handler code.
This allows sequential handling of these switches and prevents the trouble that was ensuing when the
handlers would be ran simultaneously (whenever one function runs a Sleep() function, the other function
is allowed to run until it sleeps or returns).

Switch Handler Fixup Routine: Sleep when multiball is imminent
Shown below is the first fixup function at $7A06,3B (ROM offset 0x6FAQ6).

7A06: 34 06 PSHS B,A ;
7A08: 86 55 LDA #$55 ; At sleep(6), 0x55 is about 8 seconds of wait
; Check inserted below for $BF being greater than 1 and,
; i1f so, stop waiting and return. The purpose of
; this bug fix is to yield to trough-sw handling so that
; S$BF can be properly calculated to keep MB running.
; If SBF is already greater than 1 then good, done.
7A0A: D6 BF LDB SBF ; Get number of balls on the playfield from $BF
7A0C: C1 01 CMPB #$01 ;
7AQE: 22 1E BHI $STA2E ; Branches to the end if $BF is higher than 1
7A10: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
7A13: 00 84 ; 0084, ball-to-gun-target-period function
7A15: 24 0E BCC $TA25 ; ball-to-gun-target-period is running, keep waiting
7A17: BD 86 90 JSR $8690 ; SearchlLinkedListForId() // c-bit clear = ID found
7A1A: 00 E1 ; 00El, huntership-hit callback
7AL1C: 24 07 BCC $TA25 ; Huntership-hit callback is running, keep waiting
7A1E: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
7A21: 00 B8 ; 00B8, multiball-init, if running, keep waiting
7A23: 25 09 BCS STA2E ; not running, we're done
; keep waiting:
TA25: 4A DECA ; Decrement counter
TA26: 27 06 BEQ STA2E ; If decremented to zero, then done.
7A28: BD 83 46 JSR $8346 ; Sleep()
7A2B: 06 ;
7A2C: 20 DC BRA $S7AOA ; Keep checking
7A2E: 35 86 PULS A,B,PC ; MB not imminent, or MB-loop is running, or timed out

The purpose of this function, above, is to wait when any of the short-lived functions leading up to
multiball maintenance loop are running. Careful survey of the code was done in order to determine the
cascade of functions that occur when a multiball is about to be started:

e Function ID 00B4 function runs when gun-trigger is pulled and hunter-ship is about to be hit.
e Function ID 00E1 function runs when huntership has been hit, determines if MB should start.

e Function ID 00B8 function is the multiball startup function, described earlier.

The idea is that if any of functions are running which could possibly be leading up to multiball
maintenance loop are running, this lock switch handler will sleep until the multiball actually starts
(multiball maintenance loop is running) or the multiball is no longer imminent (such as if hunter ship was
missed or more shots are remaining). This logic will also stop if balls-in-play SBF value is found to be
greater than 1 since the reason for this logic is to fix problems where SBF was being stuck at 1 when a
ball is locked immediately at multiball start as the ball-trough is being evacuated. If SBF is greater than 1
then it can be reasonably assumed the ‘forgotten multiball’ problem is not going to take place.

Below is the logic flowchart for this function, shown for reference.

Start: S7A06,3B
Fixup Routine

[
»
A

y

yes
Been checking for 8 seconds?
no
Is Balls-in-Play SBF value greater yes

than 1?

no
yes . . .
Is ball-to-hunter-ship period active?

no

Yes Is hunter-ship ‘hit’ function

scheduled/running?

no

yes

Is multiball setup function
scheduled/running?

no

(" om D

A

Switch Handler Fixup Routine: Sleep when “Load the gun” is imminent
Shown below is the second fixup function at $7A30,3B (ROM offset 0x6FA30).

7A30:
TA32:

TA34:
TA36:
7A38:

TA3A:
7A3D:
7TA3F:

34
86

D6
Cl
26

BD
00
25

BD
00
24

BD
00
24

BD
78
25

06
35

BF
02
25

86
86
1E

86
A9
17

86
EO
07

86

OF
09

06
83

D5

90

90

90

90

46

PSHS B,A
LDA #$35
LDB $BF
CMPB #$02

BNE $TASF

JSR $8690

BCS $TASF

JSR $8690
BCC $TASF
JSR $8690
BCC $TA56
JSR $8690
BCS $TASF
DECA

BEQ S7ASF
JSR $8346

BRA STA34

PULS A,B,PC

Fix for lock-shot happening at same time as ball drain

; which can cause lost "LOAD THE GUN" period.

; At sleep(6), 0x35 is about 5 seconds of wait

Get number of balls on the playfield from $BF
If balls in play is not 2 then the problem of
lost "LOAD THE GUN" period is not imminent. Done.

SearchLinkedListForId() // c-bit clear = ID found
0086, multiball-loop is running

; Multiball maintenance loop is not running, we’re done

If either 00EO or 780F are running it means the ball
trough was recently loaded with fresh ball. Since
SBF is 02 then "LOAD THE BALL" period should not

; be currently running but check for it anyway out

of completeness. If running then no need to

; worry about having a lost "LOAD THE BALL" period.

SearchLinkedListForId() // c-bit clear = ID found
00A9, "LOAD THE GUN" monitoring function
"LOAD THE GUN" is running, we're done

SearchLinkedListForId() // c-bit clear = ID found
00E0, outhole-set 3-second timer
Outhole was hit in past 3 seconds, keep waiting

SearchLinkedListForId() // c-bit clear = ID found
780F, ball-trough handler 1/2 second timer period
Ball-trough not hit in past 1/2 seconds, we’re done

Decrement counter
If decremented to zero, then done.
Sleep ()

Keep checking

"LOAD THE GUN" period is not imminent, or timed out

The purpose of this function, above, is to have the switch handler (which calls this function) yield to the

system and allow any imminent “Load the Gun” period to become established prior to allowing the

current switch handler to proceed.

A careful examination of the code was done to understand the nature of the functions involved when

the outhole switch is hit and subsequent ball-trough loading and how it relates to the issue of lost “Load

the Gun” period. Having all of the following conditions means “Load the Gun” is imminent:

The Multiball maintenance loop function ID 0086 is running, and

The Balls-In-Play counter at ram SBF is 2, and

The “Load the Gun” tracking function ID 00A9 is not (yet) running, and

e The outhole switch handler scheduled function ID 00EO, 3 second timer is running, and
e The ball-trough switches handler scheduled function ID 780F for ¥ second timer is running

By detecting these conditions are all present, the lock shot switch handler will assume a “Load the Gun”
period is imminent. The code will wait on these conditions all being present for up to 5 seconds before
giving up. This effectively fixes the problem of the lost “Load the Ball” problem.

Below is the logic flowchart for this function, shown for reference.

Start: $7A30,3B
Fixup Routine

»
>
A

y
yes
Been checking for 5 seconds?

no

no

Balls-in-Play SBF value equal to 2?
yes

Multiball Maintenance Loop no

running?

“LOAD THE GUN” period active? yes

Outhole switch hit within past 3
seconds?

Ball-Trough switch hit within past
1/2 second?

Switch Handler Fixup Routine: Sleep while other switch is being serviced during multiball
Shown below is the second fixup function at $7A61,3B (ROM offset Ox6FA61).

; Fix bug where simultaneous lock shots of left/top lock
; during multiball after 1 ball has already drained will
; result in "Jackpot Multiplied 0x=0" and both balls

; back onto playfield instead of a timed "LOAD THE GUN"
; period (and with a single ball kicked back in play).

7A61: 34 06 PSHS B,A ;

7A63: 86 35 LDA #$35 ; At sleep(6), 0x35 is about 5 seconds of wait

7A65: D6 BF LDB SBF ; Get number of balls on the playfield from $BF

7A67: C1 02 CMPB #$02 ; Problem only happen during Multiball with 2 balls left

TA69: 26 19 BNE $T7A84 ; If count is anything other than 2, we're done

7A6B: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7TAGE: 00 86 ; 0086, multiball-loop is running

TAT70: 25 12 BCS $7A84 ; Multiball maintenance loop is not running, we’re done

7A72: BD 8A AA JSR $S8AAA ; SearchlLinkedListAndMaskParameterBytes () C-clr = found

7A75: 00 40 ; 0040 Lock-sw IDs get converted to an ID with 004x

7A77: 01 FO ; 01F0 Searches for ID 004x, C-clear = entry found

TAT79: 25 09 BCS $7A84 ; If no other lock switches are currently being serviced
; then we're done

TATB: 4A DECA ; Decrement counter

TATC: 27 06 BEQ STA84 ; If decremented to zero, then done.

7TATE: BD 83 46 JSR $8346 ; Sleep()

7A81: 06 ;

7A82: 20 El BRA $TA65 ; Keep checking

7A84: 35 86 PULS A,B,PC ; Either no other lock switch hdlr active, or timed out

The purpose of this function, above, is to have the currently handled lock switch yield to the system until
another lock switch handler, in progress, completes its work. This problem is only found to occur when
there are 2 balls remaining during multiball and, as such, the function will end if the balls-in-play value at
ram SBF is anything other than 2.

A careful study of lock switch handler function was performed where it was determined the issue of
“Jackpot Multiplied 0x=0" can be cured if the first lock switch that is hit is fully serviced before the
second lock switch handling is allowed to commence.

The key to this logic is in how the function ID for lock switch handlers get adjusted to a 16-bit value 004x
where ‘X’ is 4 or 5 to indicate if switch handler detected switch is closed or open, respectively. The
previously depicted common lock switch handler, for four lock switches at $7244,3B performs this
function ID fixup at the following function call:

7290: BD 6F OF JSR S6FOF ; UpdateCurrentRunningScheduledFnWithSwOpenClosedID ()
; If switch is closed returns here and code proceeds

And, as mentioned, in L8.3, the instruction at $7290 was replaced with a call to the bugfix fixup function

And, as previously depicted, the bug fix function then calls this ID updater function prior to returning at
this instruction:

7A02: BD 6F OF JSR S6FOF ; Call original code replaced with JSR to this fn.

This ID fixup function is partially annotated below, however the details of this running function ID
updater is left as an exercise for the reader:

; UpdateCurrentRunningScheduledFnWithSwOpenClosedID ()

; Called near start of switch processing

; Function alters the scheduler ID value for current fn
; For example, ball-popper ID starts out at 0004

; (from SwitchMatrix table entry for the switch)

; and this function changes it to 3044.

6F0F: 34 20 PSHS Y ;

6F11: 8D 0D BSR $6F20 ; ScheduledFunctionOpenClosedSwitchNewIdIntoY ()

6F13: BD 9B 34 JSR S9B34 ; SearchForLinkedListEntryY() // C-clear when found

6Fl6: 25 03 BCS S6F1B ; (left-lock hit at game-over C-set when sw is closed.)
; (left-lock opened during game-over C-clear)

6F18: 7E 99 A2 JMP $99A2 ; ID Lookup success, the updated ID 3044 or 3055 is
; already running, no work to do

6F1B: BD 9B 83 JSR $9B83 ; UpdateCurrentRunningScheduleFunctionIDY ()

6F1E: 35 AO PULS Y, PC ;

; ScheduledFunctionOpenClosedSwitchNewIdIntoY ()

; Populates Y with linked-1list ID number,

; based on 04/05 switch closed/open value

; Switch Closed, Y gets 0x3044:

; lookup ID is masked with Ox01FF --> 0x0044
; Switch Opened, Y gets 0x3045:

; lookup ID is masked with Ox01FF --> 0x0045

6F20: 34 06 PSHS B,A ;

6F22: 4D TSTA ;

6F23: 26 04 BNE S6F29 ;

; Get here if A is 0x00, invalid, a should be 04 or 05

6F25: BD 82 B6 JSR $82B6 ; ErrorHandler ()

6F28: 4B ;

6F29: 1F 89 TFR A,B ;

6F2B: 4F CLRA H

6F2C: C3 00 40 ADDD #$0040 ; ID Closed sw 0004 --> 0044, Open sw 0005 --> 0045
6F2F: 10 83 00 4F CMPD #$004F ;

6F33: 23 04 BLS $S6F39 ;

6F35: BD 82 98 JSR $8298 ;

6F38: 48 ;

6F39: 8A 30 ORA #5530 ; ID Closed sw 0044 --> 3044, Open sw 0045 --> 3045
6F3B: 1F 02 TEFR D, Y ; Y gets new ID

6F3D: 35 86 PULS A,B,PC ;

The new ID of the switch handler can be referenced by other functions, such as the bugfix function
where it looks for any running function with ID value using boolean arithmetic of 0x0040 <AND> 0x01FO.
A careful examination of the L-8 code was done to ensure that this pattern matches the desired search
for any other lock-switch handler function that might be running.

Below is the logic flowchart for this function, shown for reference.

Start: $7A61,3B
Fixup Routine

»
>
A

Been checking for 5 seconds?

Balls-in-Play SBF value equal to 2?

Multiball Maintenance Loop
running?

ves Any scheduled functions running

with ID matching Boolean pattern
of 0040 AND 01FO0

Switch Handling, Outhole Switch Handler

This section covers bug fix for the switch highlighted in blue, in the switch-matrix table, above. For the
outhole switch, a single, unique, handler is set in the switch matrix table at $44B1,31 (ROM offset
0x444B1). The outhole switch handler code, mostly annotated, is shown below, along with its follow-up
function to handle ball-saver.

; SwitchMatrixHdlr Outhole()
; B has 0x10 SwitchTable[] index for Outhole switch

44B1: BD F7 59 JSR SF759 ; CheckGameMode () // z-bit set if game in progress
44B4: T7E 44 B7 JMP S44B7 ; <nop>

44B7: 26 41 BNE S44FA ; If in attract-mode go to kick the outhole solenoid
44B9: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
44BC: 00 86 ; 0086, multiball-loop is running

44BE: 24 3A BCC S44FA ; If multiball mode is set, kick outhole solenoid

; until outhole switch opens.

44Cc0: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
44C3: 00 83 ; 0083 == 7 second first multiball ball-save timer
44C5: 24 OF BCC $44D6 ; If 7-second ball-save is on, skip down to ball-save

44C7: 86 10 LDA #S10 ; End-of-ball music

44C9: BD CO BC JSR SCOBC ; PlayMusicRegisterA()

44CC: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()

44CF: 00 AE ; 00AE = end-of-ball bonus collection
44D1: 45 35 31 ; EndOfBallBonusCollection ()

44D4: 20 24 BRA S44FA ;

44D6: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

44D9: 00 EO ; 00EO0 == 3-second sleep

44DB: 24 1D BCC S44FA ; If 3-second sleep already running then ball was
; re-drained during ball-save timer, no 2nd ball-save

44DD: 8D 2B BSR $450A ; BallSaverSequenceEngage ()

44DF: BD 83 19 JSR $8319 ; Getting switch state related function

44E2: OF ; Possibly: SwitchTableEntry0F, 17, Trough Right

44E3: 25 15 BCS $44FA ;

44E5: BD 85 53 JSR $8553 ;

44E8: 2C ;

44E9: BD 88 D5 JSR $88D5 ;

44EC: 00 0OC ;

44EE: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()

44F1: 04 ; SolenoidTableEntry04, 04=Trough, 40

44F2: BD 8B 3D JSR $8B3D ; AddLinkedListEntry ()

44F5: 00 04 ;

44F7: 70 CC 3B ; TroughLeftCenterRightSwitchHdlr ()

44FA: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()

44FD: 00 EO ; 00EO0 == 3-second sleep

44FF: 45 2E 31 ; Schedules a 3-second sleep

4502: 86 05 LDA #$05 ; SolenoidTableEntry05, 03=Outhole, 40

4504: BD 89 2F JSR $892F ; CallBankedFunction Param WPCAddr NoReturn ()

4507: oD 25 3B ; PulseSolenoidUntilSwitchOpens () A=solenoid, B=switch

; BallSaverSequenceEngage ()

450A: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
450D: 00 86 ; 0086, multiball-loop is running

450F: 24 15 BCC $4526 ;

4511: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
4514: 00 EF ; O0O0EF == 2-second sleep timer

4516: 24 OE BCC $4526 ; If 2-second sleep already running

4518: BD 85 46 JSR $8546 ; DoSoundTableParameterByte ()

451B: 99 ;99 = "Don't Move"

451C: 25 08 BCS $4526 ;

451E: BD 8B 77 JSR S8B77 ; ScheduleFunctionStart ()

4521: 00 EF ;

4523: 45 27 31 ; Schedules a 2-second sleep

4526: 39 RTS ;

The outhole switch handler, above, entails a single modification as part of the entire suite of code
changes as part of resolving the multiball and “lock the ball” issues. In this case, the initial part of the
outhole handler is changed as depicted below.

; SwitchMatrixHdlr Outhole ()
; B has 0x10 SwitchTable[] index for Outhole switch

r

™

44B1: BD F7 59 JSR $SF759 ; CheckGameMode () // z-bit set if game in progress
44 $4-48
4.4 4

Y/ T 44 B TMP.
e a5 T
N

The original code consisted of:

e Dummy JMP instruction to get to next instruction, and
e BNE instruction to branch to $44FA if the result of previously called $F759 cleared the Z-bit

The new code consists of:

e BNE instruction to branch to $44FA if the result of previously called SF759 cleared the Z-bit
e ISR instruction to a new bug-fix function.

Since the bug-fix needs to be called after the BNE, it was easy to move the BNE instruction to prior to
the dummy JMP instruction (and modify the number of bytes the BNE needs to skip) and then change
the dummy JMP instruction to a genuine JSR instruction to the bug-fix function. The implied behavior
now, is that the bug-fix function at $7F9B will return when it completes so that normal code-flow can
proceed in the outhole switch handler function.

Note: Throughout the L-8 code in many places a call to a function in non-banked ROM region is often
followed by a “dummy” instruction to jump to the next instruction. It appears this is a way the original L-
8 code can use to easily allow for a function to be moved out of non-banked ROM into banked ROM, if
needed. The “dummy” jump instruction takes up 3 bytes of ROM space which would be needed if the
function call into a banked function is needed instead. The dummy JMP instruction is effectively a NOP
instruction (no-operation) and can be repurposed, safely, in this way.

The new bug-fix function at $7F9B,31 (ROM offset 0x44F9B) is as follows:

; Jump here from $44B4/$44B6 to call function in bank $3B where 'forgotten-multiball' fix
; function is in place to wait until all short-lived functions leading up to multiball
; main loop are done running, or Balls-in-play $BF is greater than 1, or up to a timeout.

’

7F9B: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAddr ()
TF9E: 7A 06 3B ; Forgotten-multiball bugfix
TFAl: 39 RTS ;

The bug-fix function for outhole switch handler is in place to help with the problem of “forgotten
multiball” when ball is drained immediately as the hunter ship is hit. This function will call the bug-fix
function at $7A06,3B (ROM offset 0x6FA06) which will check if multiball is imminent (but balls-in-play

value at ram $BF is 1) waits until multiball is no longer imminent or SBF value is greater than 1.

This logic will prevent problems with the multiball prematurely ending when the Multiball maintenance
loop would discover the $SBF value is 1 and declare end of multiball unexpectedly. By having the outhole
switch yield to the system in this way, and along with the other lock-switch handler bug-fix logic, the
multiball loop will be sure to not end prematurely.

The full description of the bug-fix function, $7A06,3B, is shown earlier where this same function is also
called as part of the common lock-switch handler bug-fix function.

Multiball Corrected Logic
The resulting flowchart depicting the various fixes is shown below. This includes:

e Yellow highlighted fixes for multiball startup and maintenance loop
o Green highlighted fixes for the lock-switches handler code
e Blue highlighted fixes for the outhole-switch handler code

Start:
Multiball Startup

PN

Start: Multiball

Maintenance/Loop

<
«

A 4

| yes

Schedule startup of:
Multiball Maintenance/Loop

Schedule startup of:
Ball Trough Evacuation

»

Is ball trough evacuation

1. Balls-in-play at ram $BF greater than 1?, or ——
v ——> 2. Ball Trough Evacuation function currently running?, or

/Are any of these conditions met to keep multiball running? \

3. First multiball 7-second ball-save period in progress?, or
4. Is a “Load the Gun” period currently in progress?, or

' I:C Multiball Startup function currently running?
v

/

completely done, or is Balls-
in-Play ram SBF > 1, or have
been checking for 8 seconds?

yes

Coe

Start: Ball Trough
Evacuation

<
<
4

no
A\ 4

C

Done)

Start: Ball Trough
Switch Handler

A\ 4

Update accounting for number of
balls in play at ram $BF.

Ball Trough - —
Evacuated? ject a ba
from ball
trough and
shooter lane
(Done)
same function

Start: Outhole
Switch Handler

Normal outhole handling code

\ 4

(Done)

Start: Lock
Switch Handlers

Update accounting for number of
balls in play at ram SBF.

A 4

(Done)

The L8.3 Lamp Driver Update

As part of added enhancement to L8.3, support was added to allow the selection of the desired lamp
driver code, allowing two possible values:

The original L-8 lamp driver code is the original code produced for L-8 which was originally intended for
incandescent bulbs (as LED pinball illumination was non-existent when L-8 was made).

The LED driver code utilizes code based on the publically available no-ghost patch as documented in a
publically downloadable file “WPC_Ghost_Busting.pdf”, with an additional improvement added in L8.3
to fix a ghosting problem that could happen during Gl power-saving mode, as described in detail, below.

A big THANK YOU to those involved in investigating and developing the LED driver, “no-ghost” patch. The pinball
community has greatly benefited from your work and, now, the L8.3 software benefits from your efforts. Your time
spent documenting the issue and showing the oscilloscope measurements were immensely helpful. The
documented patch, and the patch tool results served as the primary basis of the LED driver code used in L8.3.

LED Patch Summary
Refer to online resources, such as “WPC_Ghost_Busting.pdf”, for technical details of the WPC lamp
driver patch. In a nutshell, the patched lamp driver has these characteristics:

e Set the Column drivers to 0 and then the row drivers to 0
o This must be done by clearing B register and then storing B into Column & Row registers
e Have about 30us worth of instructions take place
e Put the derived lamp row value into the Row register
e Put the derived column bit/register value into the Column register

The improved logic, above cures the issues identified as causing the current spikes responsible for the
ghosting.

LED Patch Improvement, power-saver improvement

While analyzing the patched lamp matrix and reviewing information published in the
“WPC_Ghost_Busting.pdf”, it became apparent, during L8.3 development, that the patched lamp matrix
code had missed another location in its code where it turns off the Column and Row registers during the
Gl Power Saver mode.

It turns out, that the WPC Lamp Matrix is affected by the Gl Power Saver mode, thus making the menu
text somewhat incorrect in its naming since the power-saver function applies to the 8x8 controlled lamp
matrix in addition to the general illumination.

The power-saver mode will engage in the following circumstances:

e Standard Adjustment A1.25 “Allow Dim lllum.” is set to “Yes”, and
e Standard Adjustment A1.29 “Gl Power Saver” is set to value other than “Off”, and
e Number of minutes configured in A1.29 has elapsed.

As described earlier in this document, the Interrupt Service Routine (ISR) is called periodically. One of
the tasks the ISR performs, in addition to reading the switch matrix, is to update the ‘next’ column of the
lamp matrix. Using the ISR, the lamp matrix is updated on a regular, repeating basis, updating only a
single column on a given pass through the ISR routine.

When the power-saver mode is active, the ISR lamp-matrix updater will utilize the following logic when
it is about to update the ‘next’ column of the lamp matrix.

< ISR about to update ‘next’ lamp-matrix column >

Is ‘next’ column, the 1* column?

Is Gl “power-saver” mode currently active?

Decrement power-save-level counter in ram SA1

Is power-save-level counter SA1 less-than 0 ?

Turn off Column and Row drivers

A 4

Reset power-save-level counter at ram SA1 with value from ram S6E

»
>
A

y

Perform ordinary ‘next’ lamp column update

<
<
y

(o)

As shown in the flowchart, above, when the machine is in power-saver mode, after the lamp matrix has
updated the 8™ column and about to start over at the 1% column, the power-saver mode is checked and,
if active, the lamp matrix is turned off for that update. Both the column and row registers are cleared
which effectively turns off the lamp matrix. This repeats for subsequent passes through the logic until
the value from ram $A1 has counted down from 0 to -1. Once the $A1 value is decremented to -1 then
the SA1 value gets reset and the column 1 lamps are enabled and remainder of the lamp matrix is
updated at subsequent ISR passes. After all 8 columns have been updated, this power-saver mode
repeats by disabling the lamp matrix for the number passes set in ram $A1 again, repeating until power-
saver mode is no longer active.

Note: The power-saver timer has been observed to utilize a granularity of 1-minute. For example, if the
power-saver time is set to 5 minutes, the power-saver will engage between 4:01 and 5:59 after entering
attract mode. This is likely the reason the minimum timer value is allowed to be 2 minutes.

As indicated, the lamp-matrix will set columns and rows off for a number of passes as derived from the
power-save level adjustment value. This value is set in RAM at S6E and used as the reset value into the
countdown value at SA1. The corresponding values for this countdown value are as follows:

Standard Adjustment A1.30 “Power Save Level” | Lamp Matrix power-saver reset value $6E
4 3
5 2
6 2
7 2

The idea is to save on power usage of the lamp-matrix by turning off all lamps for a tiny, hopefully
unperceivable, amount of time. Ironically, the way in which the columns and rows are turned off would
incur a current spike and resulting lamp flicker each time the columns and rows are turned off for the
first time. A careful examination of the scenario would be needed to determine if this actually utilizes
more energy than if the power-saver function didn’t run at all.

The way in which the lamp matrix turns off the columns and rows is highlighted in the following code:

DABA: 7F 3F E4 CLR S3FE4 ; $S3FE4=WPC_LAMP ROW, turns off all row bits
DABD: 7F 3F E5 CLR S3FES ; $3FE5=WPC_LAMP COLUMN, turns off all column bits

As described in the “WPC_Ghost_Busting.pdf” the use of a “CLR” instruction directly on the ROW
register causes a spike of current due to a problem in the WPC ASIC which briefly turns on all of the bits
prior to turning them off. Again, thank you to those who have paved the way and discovered this
information and published it for the pinball community!

For L8.3 LED driver, this has been corrected by using the following instructions.

XxXxXx: 4F CLRA ; A gets 0x00
xxxx: B7 3F E4 STA S3FE4 ; $3FE4=WPC_LAMP ROW, turns off all row bits
xxxx: B7 3F E5 STA S3FES ; S3FE5=WPC_LAMP COLUMN, turns off all column bits

As shown, the same fix as used in the no-ghost patch is used. First a register, A, is cleared and then the

register is stored into the Row and Column registers. This resolves the WPC ASIC issue that would

otherwise ensue when the instruction is to CLR the Row/Column registers directly.

Lamp Driver Code Modifications

For reference, shown below is the L-8 original lamp matrix driver code, partially annotated.

DAA9: 9E
DAAB: 30
DAAD: 96
DAAF: 48
DABO: 26
DAB2: 96
DAB4: 27
DAB6: OA
DAB8: 2B
DABA: 7F
DABD: 7F
DACO: 20
DAC2: 96
DAC4: 97
DAC6: 8E
DAC9: 86
DACB: 9F
DACD: 97
DACF: EG6
DAD3: 53
DAD4: E4
DAD8: D7
DADA: EG6
DADE: E4
DAE2: DB
DAE4: D7
DAEG: EG6
DAEA: E4
DAEE: D7
DAF0: EG6
DAF4: 53
DAF5: D4
DAF7: DB
DAF9: D7
DAFB: EG6
DAFF: E4
DB03: D7
DB05: EG6
DB09: 53
DBOA: D4
DBOC: DB
DBOE: 7F
DB11l: B7
DB14: F7

9F
01
9E

19
6D
10
Al
08
3F
3F
55
6E
Al

02
01

9F
9E

89

89
9C
89
89
9C
9C
89
89
9D
89

9C
9D
9C
89
89
9D
89

E4
E5

EO

00

00

00

00

00

00

00

00
00

00

10
18

20
28

30
38

LDX
LEAX
LDA
ASLA
BNE
LDA
BEQ
DEC
BMI
CLR
CLR
BRA
LDA
STA

LDX
LDA

S9F
$0001,X
SOE

$DACB
$6D
SDAC6
SAl
S$DAC2
$3FE4
$3FES
$DB17
S6E
SA1

#S02E0
#501

SOF
S9E

$0010,X

$0008, X
$9C
$0010, X
$0018,X
$9C
$9C
$0020,X
$0028,X
$9D
$0020,X

$9C
$9D
$9C
$0030,X
$0038,X
$9D
$0030, X

$9cC
$9D
$3FE4
$3FES
$3FE4

’

Start of Lamp Matrix code

Get current lamp RAM address from $9F:$A0 into X
Increment to next lamp RAM address

Get current column/row bit

Rotate left the column or row bit in $9E

If haven't done 8,

go to $DACB to continue the sweep

Load $6D value to see if in power-saver mode
If $6D is 0x00, not in power-saver mode, reset sweep

If $6D is not 0x00,

in power-saver mode, decrement S$SAl

Power-saver counter < 0, reset counter and reset sweep

$3FE4=WPC_LAMP ROW,

turns off all row bits

$3FE5=WPC_LAMP COLUMN, turns off all column bits
Jump to post lamp-matrix, all done for this pass
Get the power-saver off-cycle count from $6E

and put it into the $Al for next time

Now proceed with a

regular matrix column update

Get start of lamp data RAM address 0x02EO0 into X

Store current or initial lamp ram address into $9F:$A0
Store next or initial column bit into $9E

$3FE4=WPC_LAMP_ROW,

this turns off all row bits

$3FES5=WPC_LAMP_ COLUMN, turns on next column bit

$3FE4=WPC_LAMP ROW,

turns on rows that should be on

For L8.3, to cause the lamp driver code to choose between this original or a new LED driver code, the

original code is modified with a jump to a new function. The change is made in the following way.

: LD G
BAAB 0—01 LEA 0001 —Irerement—tonext—tampRAMaddr
DAA9: 7E FE DD JMP SFEDD ; Jump to new code to choose original or LED driver
DAAC: 12 NOP ; Unused no-op, new code jumps past this to return
DAAD: 96 9E LDA $9E Get current column/row bit
DAAF: 48 ASLA Rotate left the column or row bit in $9E
DABO: 26 19 BNE SDACB If haven't done 8, go to $DACB to continue sweep
DAB2: 96 6D LDA $6D Load $6D value to see if in power-saver mode

As shown in the new highlighted code, the first two instructions of the original lamp driver are replaced
with a JMP instruction to a new function located at SFEDD (ROM offset 0x7FEDD). Since two 2-byte
instructions needed to be replaced with a single new 3-byte instruction, the leftover 4™ byte is changed
to a NOP instruction. This NOP never gets executed because the new SFEDD will jump back to this
original lamp driver (when appropriate do to so) at address SDAAD, skipping the NOP.

The new function at SFEDD (ROM offset Ox7FEDD) is as follows. Below contains partially annotated code
and number of cycles used by some of the instructions, for reference.

FEDD: 9E 9F LDX $OF Get current lamp RAM address from $9F:$A0 into X
FEDF: 30 01 LEAX $0001,X Increment to next lamp RAM address
Directly read Adjustment Value from RAM for
Lamp Driver from $1BED and proceed with original
or LED lamp driver code.
FEEl: F6 1B EC LDB $1BEC Scy Read adjustment byte 0=no patch
FEE4: 26 03 BNE SFFE9 3cy
FEE6: 7E DA AD JMP SDAAD dcy Go back to original ISR code
FEE9: 96 9E LDA $9E Get current column/row bit
FEEB: 48 ASLA Rotate left the column or row bit in $9E
FEEC: 26 1A BNE SFF08 If haven't done 8, go to $FF06 to continue the sweep
FEEE: 96 6D LDA $6D Load $6D value to see if in power-saver mode
FEFO: 27 11 BEQ SFFO03 If $6D is 0x00, not in power-saver mode, reset sweep
FEF2: 0A Al DEC SAl If $6D is not 0x00, in power-saver mode, decrement $Al
FEF4: 2B 09 BMT SFEFF Power-saver counter < 0, reset counter and reset sweep
FEF6: 4F CLRA
FEF7: B7 3F E4 STA S3FE4 $3FE4:WPC_LAMP_ROW, turns off all row bits
FEFA: B7 3F Eb5 STA $3FES $3FE5:WPC_LAMP_COLUMN, turns off all column bits
FEFD: 20 53 BRA SFF52 Jump to post lamp-matrix, all done for this pass
FEFF: 96 6E LDA S6E Get the power-saver off-cycle count from $6E
FFO01l: 97 Al STA SAl and put it into the $Al for next time
FF03: 8E 02 EO LDX #S$02E0 Get start of lamp data RAM address 0x02E0 into X
FF06: 86 01 LDA #501
FF08: 9F 9F STX $OF Store current or initial lamp ram address into $9F:S$A0
FFOA: 97 S9E STA S9E Store next or initial column bit into $9E
FFOC: E6 88 10 LDB $10,X
FFOF: 53 COMB

FF10:
FF13:
FF15:
FF18:
FF1B:
FF1D:
FF1F:
FF22:
FF25:
FF27:
FF28:
FF2B:
FF2E:
FF32:
FF33:
FF35:
FF37:
FF39:
FF3D:
FF41l:
FF43:
FF47:
FF48:
FF4A:
FF4cC:
FF4F:

E4
D7
E6
E4
DB
D7
E6
E4
D7
5F
F7
EF7
E6
53
D4
DB
D7
E6
E4
D7
E6
53
D4
DB
F7
B7

88
9C
88
88
9C
9C
88
88
9D

3F
3F
89

9C
9D
9C
89
89
9D
89

9C
9D
3F
3F

08
10

18

20
28

E5
E4
00

00
00

00

ANDB
STB
LDB
ANDB
ADDB
STB
LDB
ANDB
STB
CLRB
STB
STB
20 LDB
COMB
ANDB
ADDB
STB
30 LDB
38 ANDB
STB
30 LDB
COMB
ANDB
ADDB
STB
STA

508, X
$9c
$10,X
$18,X
$9c
$9c
$20,X
$28,X
$9D

$3FE5
S$3FE4
$0020, X

$9c
$9D
$9c
$0030,X
$0038,X
$9D
$0030,X

$9C
$9D
$3FE4
$3FES

4+4

2cy ;
dcy ;
4cy ;
4cy ;

4+4
4+4

dcy ;

4+4

2cy ;
dcy ;
dcy ;

$3FE5=WPC_LAMP COLUMN, turns off all column bits
$3FE4=WPC_LAMP_ROW, turns off all row bits

60 cycles total, ~30uS, every 2 cycles is ~1uS
$3FE4=WPC_LAMP_ROW, turns on rows that should be on
$3FES5=WPC_LAMP_ COLUMN, turns on next column bit

Jump back to post-lamp-matrix code

; Go back to original ISR code post lamp-matrix code

Notable elements of the LED lamp driver, above:

First 2 instructions are the same 2 instructions that were replaced with the JMP to this code

“Lamp Driver” value read directly from ram and not using the formal WPC lookup function.

o Thisis done to have code run as fast as possible.

O

Single-byte “Lamp Matrix” is at known, fixed location in Ram at S1BEC

If adjustment is set to 0 (Original) code jumps back to SDAAD to resume original lamp driver

If adjustment is non-zero, new LED driver code ensues

LED driver is a copy of the original driver code with no-ghost patch applied

o Also the Gl power-saver bug fix, as previously described, is applied.

After LED driver updates a column (or a power-saver ‘off’ cycle) code does a JMP to SDB17

The SDB17 is address after the original lamp driver code, resuming normal ISR code.

Relocated Copyright Message
The updated LED lamp driver code, above, was placed into the region of ROM formally occupied by the

copyright message. The copyright message was present in the ROM for the observer but not utilized by

the code. The original, unmodified, copyright message was moved in its entirety to a location

immediately prior to the non-banked region of ROM in a unused region starting at $7DF0,3D (ROM

offset 0x77DF0) and appears as follows:

000770E0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF rnrrrvvvvsrmsy
000770F0 20 43 6F 70 79 72 69 67 68 74 20 28 63 29 20 31 Copyright (c) 1
00077E00 39 39 32 2C 20 31 39 39 31 2C 20 31 39 39 30 20 99z, 1991, 1990

00077ELD 57 69 6C 6C 69 61 6D 73 20 45 6C 65 63 74 72 6F Williams Electro
00077EZ0 6E 69 63 73 20 47 61 6D 65 73 20 49 6E 63 2E 20 nics Games Inc.

00077E30 20 41 6C 6C 20 52 69 67 68 74 73 20 52 65 73 65 4ll Rights Rese
00077E40 72 76 65 64 20 20 53 79 73 74 65 6D 20 53 6F 66 rved System Sof
00077E50 74 77 61 72 65 20 62 79 20 4C 61 72 72 79 20 44 tware by Larry D
00077E60 65 4D 61 72 2C 20 42 69 6C 6C 20 50 66 75 74 7h eMar, Bill Pfutz
00077E70 65 6E 72 65 75 74 65 72 2C 20 54 65 64 20 45 73 enreuter, Ted Es
00077ES0 74 65 73 20 26 20 4D 61 72 6B 20 50 65 6E 61 63 tes ¢ Mark Penac
00077E90 65 6F 20 20 45 6C 65 63 74 72 6F 6E 69 63 73 20 ho Electronics

00077EAD 62 79 20 43 68 75 63 6B 20 42 6C 65 69 63 68 20 by Chuck Eleich

00077EED 61 6E 64 20 4D 61 72 6B 20 43 6F 6C 64 65 62 65 and Mark Coldebe
00077ECO 6C 6C 61 20 FF FF FF FF FF FF FF FF FF FF FF FF 1la ¥y
00077EDO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF vy

The copyright message was moved due to lack of available free space in the non-banked region of the

ROM. No disrespect was intended with this message move. The L8.3 was crafted with all respect given
to those who contributed to the original T-2 game and software design.

Lamp Driver Results

With the new lamp driver in place, it has been confirmed that no LED ghosting takes place when feature
adjustment A2.25 “Lamp Driver” is set to “LED”. Also, when the power-saver mode engages, it has also
been confirmed that lamp-matrix LEDs don’t experience ghosting at such time as well.

Note that using LEDs in general illumination strings will still experience flickering due to the way in which
Triacs are used along with sine-wave “zero-cross” signal to cause a chopped sine-wave at the Gl sockets.
A conversion of AC to DC would be needed to achieve smoother Gl dimming with LEDs.

Because of this, it is suggested that the game is set up to with standard adjustment A1.25 “Allow Dim
Ilum” is set to “No” if LEDs are being used in Gl without external voltage-smoothing circuitry.

The L8.3 Multiball-Start Drop-Target Action Enhancement

This section describes a new adjustment added to L8.3 called “Multiball-Start Drop-Target Action”.
Before details of this new adjustment, the following will describe the existing “Drop Target Down
Multiball” to help make it clear the distinct difference between these two adjustments.

Drop Target Down Multiball Adjustment
Most T2 owners have came across this interesting adjustment in the Feature Adjustments menu:

The published T2 manual was produced prior to L-4 where this adjustment made its first appearance.
Because of this, it may not be immediately apparent how this adjustment affects game play.

A thorough examination of the T2 code was made to determine how this setting is used. What was
found was that this adjustment’s value is read during game play during multiball when the ball-popper is
hit. When a ball hits the ball-popper (skull shot) during multiball, this adjustment’s value is then read:

o If “Off”, the drop-target is immediately kicked up
e If “On”,the drop-target is not kicked up (i.e. remains down)

Evidently, the “Off” behavior is to help prevent a second ball from crashing into the locked ball and
possibly getting stuck somewhere up inside the skull assembly. For game operators who don’t like this
behavior, the “On” setting allows the drop-target to remain in the down position while the ball is locked
in the ball-popper.

Multiball-Start Drop-Target Action Adjustment
In L8.3 a new adjustment was added:

This setting allows the game operator to control the drop-target up/down state at multiball start. The
reason such a setting was added was to improve the balance of the game-play so that the multiball
experience can be made more consistent regardless if the multiball was started via:

e Ball Popper and Hunter Ship hit, or
e Database award, or
o Left Loop award

By setting this adjustment to anything other than “None”, the drop-target state will be up or down at
start of multiball for all methods of multiball start, based on the adjustment value and, for some
adjustment values, the number of multiballs that the player has achieved so far.

This feature entails having the game software kick the drop target up, or knocking it down at multiball
start. The drop-target switch and knock-down solenoid must be functioning properly for this feature to
work correctly.

Possible values for this new adjustment are as follows:

e None, no particular drop-target action is taken at multiball start (same as L-8)

e Down, at every multiball start, drop-target is knocked down

e Up, at every multiball start, drop-target is reset (kicked up)

e 1 MB Down, At first multiball the drop-target is knocked down. Reset at subsequent multiballs.
e 2 MB Down, First 2 multiballs the drop-target is knocked down. Reset at subsequent multiballs.
e 3 MB Down, First 3 multiballs the drop-target is knocked down. Reset at subsequent multiballs.

The various adjustment values provide added flexibility in game play, allowing the operator to dial in the
preferred behavior and difficulty of multiball experience, regarding drop-target state at multiball start.

Multiball-Start Drop-Target Action Adjustment Code

The entry point for the drop-target action at multiball start takes place inside the multiball startup
function. The multiball startup function is shown in full in the previous section “Multiball Startup Balls-
In-Play Timing Fix: Startup waits for non-zero balls-in-play”. Below is the relevant portion of the
multiball startup function related to this feature:

6C98: 8E 05 C9 LDX #$05C9 ; $05C9, Base Addr of #-of-multiballs per player/game

6C9B: BD FB 29 JSR SFB29 ; IncrementXByPlayerIndexNumber ()
6C9E: 7E 6C Al JMP $6CAL ; <nop> JSR to new function here JSR to $FB8C
6CAl: 6C 84 INC , X ; Increment multiballs achieved counter for cur player

This part of multiball startup function loads up the base address in RAM where the game saves the
number of multiballs that each of the 4 players has had so far during the game. This value does not
reset between balls. The function at SFB29 increments the pointer based on the current player number.
The result when SFB29 returns is that X points to RAM byte containing the number of multiballs the
current player has achieved:

Player Number RAM Address for: Multiballs achieved current game
1 $05C9
2 SO5CA
3 S05CB
4 $05CC

For this feature in L8.3, this portion of the multiball startup code is updated as follows:

6C98: 8E 05 C9 LDX #$05C9 ; $05C9, Base Addr of #-of-multiballs per player/game

6C9B: BD FB 29 JSR SFB29 ; IncrementXByPlayerIndexNumber ()
6C9E: BD 7F BA JSR STFBA ; Jump to Multiball Start Drop-Target Action routine
6CAl: 6C 84 INC , X ; Increment multiballs achieved counter for cur player

As highlighted, at S6C9E there was previously a dummy JMP instruction which simply jumped to the
next instruction at S6CA1. This dummy instruction was replaced with a jump to a new function, S7FBA,
that will handle the new feature by setting the drop target state according to the “Multiball Start Drop-
Target Action” adjustment. Note, above, at S6CA1, the number of multiballs achieved for the current
player gets incremented after the new fixup function is called. This means the multiball counter that the
function gets is the number of multiballs achieved not including the current multiball that is starting up.

The new function at $7FBA (ROM offset 0x47FBA) is located in a region later in the same bank $31 that
was previously unused and is as follows:

TFBA: 34 04 PSHS B ;
7FBC: BD 86 5B JSR $865B ; LookupGameAdjustmentParamlandCheckIfEqualsParam?2 ()
7FBF: 14 00 ; 0x14, FeatureAdjustment020, Drop Trgt. Broken
; C-bit set when not-equal
T7FCl: 25 23 BCS $TFEG6 ; Not-equal to 0x00 then dt broken is “yes”, we're done
7FC3: BD 83 0C JSR $830C ; Get8BitSettingIntoBParameterByte ()
7FC6: 1A ; 0x1A, FeatureAdjustment026, MB Start DT Action
7FC7: 5D TSTB ;
7FC8: 27 1C BEQ STFE6 ; If B is 0x00 then no action, return
7FCA: Cl 01 CMPB #501 ; Check if B is 0x01 “Down”
TFCC: 26 OA BNE $TFD8 ; If B is not 0x01, skip down to $7FD8
7FCE: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback ()
7FD1: 00 B7 ; 0x00B7 Unique id for the target-down callback
7FD3: 78 94 3B ; WPC Address for drop-target-down callback
7FD6: 20 OE BRA $TFEG6 ; Jump to done
7FD8: CO 02 SUBB #$02 ; Here when B is 0x02 or more, decrement it by 2.
7FDA: E1 84 CMPB ,X ; Compare B with X, number of MBs so far for cur player
7EDC: 2E FO BGT STFCE ; If B-register was greater than the MB, do target-down
7FDE: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback ()
7FE1l: 00 B9 ; 0x00B9 Unique id for the target-up callback
7FE3: 78 B7 3B ; WPC Address for drop-target-up callback
TFE6: 35 84 PULS B, PC ;

The drop-target ‘action’ function, above, is called with ‘X’ register containing the number of multiballs
the player as achieved so far, not including the current MB that is starting. For first multiball, for
example, X has 0. This function checks the configured “Drop Target Broken” and will not do anything if
configured to “yes”. After this, the new “MB Start DT Action” adjustment value is read. If configured to
0 (None), then no particular action takes place. If 1 (Down) then DT is scheduled to go down. Otherwise,
the code will treat the configured value as number of prior multiballs that must have taken place as the
threshold to push drop-target UP or kick it down. Effectively, the “Up” setting is treated same as if it
were named “0 MB Down”.

The flowchart for the Drop-Target Action function is as follows:

MB Start DT Action
handler start

Drop-Target Broken?

Action: None?

yes

Action: Down?

(Action Adjustment — 2)
greater than number of
multiballs so far?

yes

A

A 4

Schedule Drop-Target Down Schedule Drop-Target Up

| » la
Ll Bl

A 4

(Done)

The logic used in the flowchart, above includes a mathematical formula used on the configured “MB
Start DT Action” adjustment value. The numeric value for each adjustment value is as follows:

MB Start DT Action Adjustment Value Numeric Value
None
Down
Up
1 MB Down
2 MB Down
3 MB Down

bk wWN - O

When the adjustment value is “Up” (2) or greater, the logic compares the adjustment value, minus 2,

with the number of multiballs, to determine whether to reset the drop-target up or knock it down. For

illustrative purposes, the table below shows some example values and resulting drop-target action.

Number of Multiballs
achieved so far

=]

U1 U1 G U1 G Ul B WWWWWWINIINDNDNNN R R R @R=@= @ Qo o o

Configured Drop
Target Action

None (0)
Down (1)

Up (2)

1 MB Down (3)
2 MB Down (4)
3 MB Down (5)
None (0)
Down (1)

Up (2)

1 MB Down (3)
2 MB Down (4)
3 MB Down (5)
None (0)
Down (1)

Up (2)

1 MB Down (3)
2 MB Down (4)
3 MB Down (5)
None (0)
Down (1)

Up (2)

1 MB Down (3)
2 MB Down (4)
3 MB Down (5)
None (0)
Down (1)

Up (2)

1 MB Down (3)
2 MB Down (4)
3 MB Down (5)
None (0)
Down (1)

Up (2)

1 MB Down (3)
2 MB Down (4)
3 MB Down (5)

Formula
(Adjustment - 2) > Multiballs?
n/a
n/a
(Adjustment Value2-2)=0>07? No
(Adjustment Value3-2)=1>07? Yes
(Adjustment Value4-2)=2>0"7? Yes
(Adjustment Value5-2)=3>07? Yes
n/a
n/a
(Adjustment Value2-2)=0>17? No
(Adjustment Value3-2)=1>17? No
(Adjustment Value4-2)=2>17?Yes
(Adjustment Value5-2)=3>17?Yes
n/a
n/a
(Adjustment Value2-2)=0>27? No
(Adjustment Value3-2)=1>27? No
(Adjustment Value4-2)=2>27? No
(Adjustment Value5-2)=3>2"7? Yes
n/a
n/a
(Adjustment Value2-2)=0>3? No
(Adjustment Value3-2)=1>37? No
(Adjustment Value4-2)=2>37? No
(Adjustment Value5-2)=3>3? No
n/a
n/a
(Adjustment Value2-2)=0>47? No
(Adjustment Value3-2)=1>47? No
(Adjustment Value4-2)=2>47? No
(Adjustment Value5-2)=3>47? No
n/a
n/a
(Adjustment Value2-2)=0>57? No
(Adjustment Value3-2)=1>57? No
(Adjustment Value4-2)=2>57? No
(Adjustment Value5-2)=3>57? No

Drop Target
Action

None
Down
Up
Down
Down
Down
None
Down
Up
Up
Down
Down
None
Down
Up
Up
Up
Down
None
Down
Up
Up
Up
Up
None
Down
Up
Up
Up
Up
None
Down
Up
Up
Up
Up

The table, above, shows the various combinations of multiball count, configured “MB Start DT Action”
values, and resulting drop-target up/down state that will get set at multiball start. The resulting state is
expected and consistent with the described behavior for this adjustment. As mentioned, the multiball
count refers to multiballs the player has achieved thus far (not including current multiball startup) while
the adjustment value for “1 MB Down”, “2 MB Down” and “3 MB Down” number conceptually includes
the current multiball startup. So if player had already achieved 2 multiballs and adjustment is set to “2
MB Down” then this logic applies as such player is experiencing their 3™ muliball, therefore, the drop-
target gets reset (kicked up).

Multiball-Start Drop-Target Action Adjustment Code, Up/Down Functions
As depicted in the new code for Multiball-Start Drop-Target Action, the new code can, depending on
conditions, do one of the following:

e Schedule a “Down” function at $7894,3B (ROM offset 0x6F894), or
e Schedule a “Up” function at $78B7,3B (ROM offset 0x6F8b7)

These two new functions are located in bank $3B where more available unused ROM space is available.
The functions are as follows:

; MbStartDropTargetDown ()

7894: BD 84 8F JSR $848F ; ClearMemoryFlag ()
7897: E3 ; 0xE3 cleared at dt-down-switch, set at dt-up
7898: Co6 03 LDB #503 ;
789A: 34 04 PSHS B ;
789C: BD 83 19 JSR $8319 ; ==\ CheckSwitchState() C-clear = switch closed
789F: 3F ; | Drop-Target switch
78A0: 24 10 BCC $78B2 ; | C-bit clear, target is down, done
78A2: BD 83 46 JSR $8346 ; | Sleep()
78A5: 10 ; |
78A6: BD 83 85 JSR $8385 ; | EnqueueSolenoidPulse ParameterByte ()
78A9: 13 ; | SolenoidTableEntryl3, 0C=Knock Down, 20
78AA: BD 83 46 JSR $8346 ; | Sleep()
78AD: 10 ; |
78RE: 6A E4 DEC S ; |
78B0: 26 EA BNE $789C 5 —=/
78B2 35 04 PULS B ;
78B4: TE 99 A2 JMP $99A2 ;
; MbStartDropTargetUp ()
78B7: BD 84 80 JSR $8480 ; SetMemoryFlag ()
78BA: E3 ; OxE3 cleared at dt-down-switch, set at dt-up
78BB: C6 03 LDB #3503 ;
78BD: 34 04 PSHS B ;
78BF: BD 83 19 JSR $8319 ; -=\ CheckSwitchState() C-clear = switch closed
78C2: 3F ; | Drop-Target switch
78C3: 25 10 BCS $78D5 ; | C-bit set, target is up, done
78C5: BD 83 46 JSR $8346 ; | Sleep /()
78C8: 10 ; |
78C9: BD 83 85 JSR $8385 ; | EnqueueSolenoidPulse ParameterByte ()

78CC: 06 ; | SolenoidTableEntry06, 1C=Drop Target, 40

78CD: BD 83 46 JSR $8346 ; | Sleep()
78D0: 10 |

78D1: 6A E4 DEC ;S ;

78D3: 26 EA BNE $78BF ;o o—=/

78D5: 35 04 PULS B

78D7: TE 99 A2 JMP $99A2

These new functions have similar logic and are intended solely for use by the new Multiball-Start Drop-
Target Action feature. The following flowchart depicts the logic used by both functions.

<

\ 4
Set RAM SE3 value to match
the new up/down DT state

»
)
Y

DT Switch in desired
up/down state?

Sleep % second, 250mS

Pulse appropriate solenoid to
reset DT or knock it down

A 4

Sleep % second, 250mS

Made 3 Attempts?

yes

l
A 4

(oo)

Logic used in these Up/Down functions is modeled after existing drop-target up function used by L-8

game code. The normal game code uses a retry count of 6. Other elements are identical including the %
second sleep times and switch-check.

Multiball-Start Drop-Target Action Adjustment Code, Drop-Target Switch Handler

The software controlled up/down of the drop target will necessarily cause the drop-target switch to be
hit or opened as the target is knocked down or kicked up, respectively. When the drop target switch
becomes closed due to the drop-target down state, the switch handler code will necessarily get invoked
as per normal switch-matrix handling and function callback behavior. The switch handler code will
behave as if the player had knocked the drop-target down and accumulate points if code is not in place
to prevent this.

Referring to the switch matrix table shown earlier in this document, the table entry for the drop-target
switch is as follows:

4BE9: 00 02 ; SwitchTableEntry3F, 77, Drop Target
4BEB: 67 0C 31 ;
4BEE: 3C 00 80 ;
4BF1: 40 00 04 ;

The switch-matrix entry for drop-target switch schedules function $670C,31. This is the drop-target
switch handler function, partially annotated, is shown in full, below.

; DropTargetSwitchHandler ()

670C: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
670F: 00 B3 ; 0x00B3 DropTargetUp ()
6711: 10 24 00 E7 LBCC $67FC ;

6715: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
6718: 00 E7 ; Search for 00E7 BallSearchDropTargetSleepAndReset ()
671A: 10 24 00 DE LBCC $67FC ;

671E: BD 84 8F JSR $848F ; ClearMemoryFlag()

6721: E3 ; OxE3 cleared at dt-down-switch, set at dt-up
6722: BD 85 46 JSR $8546 ; DoSoundTableParameterByte ()

6725: 50 ; 0x50 Sound Index "Vu-vilp"

6726: BD FA AE JSR SFAAE ;

6729: TE 67 2C JMP $672C ; <nop>

672C: C6 03 LDB #503 ;

672E: BD 6D E9 JSR $6DE9 ;

6731: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
6734: 00 86 ; Search for 0086, C-bit clear = multiball running
6736: 24 03 BCC $673B ;

6738: BD 68 82 JSR $6882 ;

673B: BD 87 3C JSR $873C ;

673E: OF 40 ;

6740: 25 13 BCS $6755 ;

6742: BD 84 AD JSR $84AD ; GetMemoryFlag ()

6745: D1 ;

6746: 25 05 BCS $674D ;

6748: BD 88 D5 JSR $88D5 ;

674B: 00 20 ;

674D: BD 87 22 JSR $8722 ;

6750: OF 40 ;

6752: BD 57 43 JSR $5743 ;

6755: BD 83 19 JSR $8319 ; Gets switch state

6758: 3E ; O0x3E switch (ball-popper switch)

6759: 25 03 BCS $675E ; If switch is open C-bit set, skip target-up, no need
675B: BD 68 08 JSR $6808 ; ScheduleDropTargetUp() if ball in popper, reset target
675E: BD 8A AA JSR $S8AAA ;

6761: 00 A4 ;

6763: 01 FF ;

6765: 25 15 BCS $677C ;

6767: BD 61 C3 JSR $61C3 ;

676A: BD 8A AA JSR S8AAA ; SearchLinkedListAndMaskParameterBytes () C-clr=found
676D: 00 86 ; Search for 0x0086, C-clear = multiball running
676F: 01 FF ;

6771: 24 0D BCC $6780 ;

6773: BD 68 08 JSR $6808 ; ScheduleDropTargetUp ()

6776: BD 68 AQ JSR $68A0 ;

6779: TE 99 A2 JMP $99A2 ;

677C: BD 85 1F JSR $851F ;

677F: 46 ;

6780: BD 8A AA JSR $S8AAA ; SearchlLinkedListAndMaskParameterBytes () C-clr=found
6783: 00 86 ; Search for 0x0086, C-clear = multiball running
6785: 01 FF ;

6787: 24 58 BCC $S67E1 ;

6789: BD 87 15 JSR $8715 ;

678C: OE 40 ;

678E: 8E 05 Al LDX #$05A1 ;

6791: BD FB 29 JSR SFB29 ; IncrementXByPlayerIndexNumber ()

6794: TE 67 97 JMP $6797 ; <nop>

6797: A6 84 LDA , X ;

6799: BD 83 0C JSR $830C ; Get8BitSettingIntoBParameterByte ()

679C: 05 ; 0x05, FeatureAdjustment005, Drop Targt Count
679D: 34 04 PSHS B ; Save adjustment value onto stack

679F: Al EO CMPA ,S+ ; Compare A with adjustment value (and pop stack)
67A1: 25 16 BCS $67B9 ;

67A3: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
67A6: 00 86 ; Search for 0x0086, C-clear = multiball running
67A8: 24 08 BCC $67B2 ;

67AA: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()

67AD: 00 A6 ; 0x00A6 = DropTargetDownSwitchTimerLoop ()

67AF: 68 4A 31 ; $684A,31

67B2: BD A7 25 JSR SAT725 ;

67B5: 85 01 BITA #$01 ;

67B7: 27 12 BEQ $67CB ;

67B9: 86 6A LDA #S6A ;

67BB: BD 85 46 JSR $8546 ; DoSoundTableParameterByte ()

67BE: 6A ; 0x6A = “Lock sequence initiated”

67BF: 25 1A BCS $67DB ;

67Cl: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()

67C4: 00 ED ;

67C6: 68 02 31 ; $6802,31

67C9: 20 10 BRA $67DB ;

67CB: BD 85 46 JMP $8546 ; DoSoundTableParameterByte ()

67CE: 7C ; 0x7C = “Load the cannon”

67CF: 25 OA BCS $67DB ;

67D1: 86 43 LDA #543 ;

67D3: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()

67D6: 00 ED ;

67D8: 68 02 31 ; $6802,31

67DB: BD 68 A0 JSR $68A0 ;

67DE: 7E 99 A2 JMP $99A2 ;

67E1: BD 84 AD JSR $84AD ; GetMemoryFlag ()

67E4: 42

67E5: 24 15 BCC $S67FC ;

67E7: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
67EA: 00 A9 ; Search for 0xO00A9

67EC: 25 OE BCS $S6TFC

67EE: BD 83 19 JSR $8319 ; Gets switch state

67F1: 3E ; Ox3E switch

67F2: 24 08 BCC S67FC ;

67F4: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()

67F7: 00 A9 ; ID 00A9 == "LOAD THE GUN" period when 1 ball remaining
67F9: 48 AF 31 ; $48AF, 31

67FC: BD 68 A0 JSR $68A0

67FF: 7E 99 A2 JMP $99A2

As shown, the drop-target switch handler starts off with the following three operations:

e Checks if function ID 00 B3 is running, if so then skip to the end of the function. The 00 B3
function means the normal game function for drop-target “Up” is running and, therefore, the
drop target going ‘up’ imminent and, therefore, the drop-target switch being closed is ignored.

e Checks if function ID 00 E7 is running, if so then skip to the end of the function. The 00 E7
function is used during ball search to represent a period of time in which the drop-target is
being exercised as an effort to dislodge a stuck ball. If this is happening then the drop-target
switch being closed is ignored.

e Clears the SE3 flag. This is a flag used by game code to track the known state of the drop target.
Drop-target down means SE3 is cleared while drop-target up has SE3 being set. Other game
code can query this flag to derive the position of the drop-target.

e Remaining drop-target processing proceeds.

In order to support the software-controlled “Multiball Start Drop Target Action” having the code
automatically reset the drop-target up or automatically knocking it down, this drop-target switch
handler needs to have added check similar to the first two operations mentioned above. The added
check needs to check if one of the new “Up” or “Down” drop-target functions are running and, if so,
ignore the drop-target switch. If such check was not in place, the “MB Start DT Action” knocking the
drop-target down would incur point accumulation as if the player had knocked the DT down at multiball
start.

In order to insert new code that checks if new “Up” or “Down” function is running, the 3™ operation
(Clearing the SE3 flag) is replaced with a jump to a new routine which will perform such checks. The
new routine will also include the clearing of the SE3 flag, as necessary.

Shown below is the first part of the drop-target handler function with the L8.3 change highlighted.

DropTargetSwitchHandler ()

670C: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
670F: 00 B3 ; 0x00B3 DropTargetUp ()
6711: 10 24 00 E7 LBCC $67FC ;

6715: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

6718: 00 E7 ; Search for 00E7 BallSearchDropTargetSleepAndReset ()
671A: 10 24 00 DE LBCC $67FC ;
f71m. DN QA Q@ TR Q49w ek rMamaroh] Sec ()
1E+—Bb—84—8F E $848E —CtearMemoryFlagt)
6721 +—F —OxE leared—atdE-down—switeh; t—at—dE-up
671E: 7E 7F A2 JMP STFA2 ; Go to drop-target handler fixup function
6721: 12 NOP ;
6722: BD 85 46 JSR $8546 ; DoSoundTableParameterByte ()
6725: 50 ; 0x50 Sound Index "Vu-vilp"

As shown, the JSR function and its extra parameter byte were replaced with a JMP to $7FA2 and a NOP
instruction. In this case a JMP instruction is used which means the fixup function will need to JMP back
to desired address instead of the typical JSR which requires RTS to come back to resume code execution.
This new function at S7FA2 is in the current bank, $31. This address corresponds to ROM offset
O0x47FA2, and is shown below.

TFA2: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
7FA5: 00 B7 ; 0x00B7 Drop target down function id

TFAT: 24 OE BCC $TFB7 ; Drop target “Down” is running, ignore the dt switch
7FA9: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found
7FAC: 00 B9 ; 0x00B9 Drop target up function id

TFAE: 24 07 BCC STFB7 ; Drop target “Up” is running, ignore the dt switch
7FBO: BD 84 8F JSR $848F ; ClearMemoryFlag ()

7FB3: E3 ; OxE3 cleared at dt-down-switch, set at dt-up

7FB4: TE 67 22 JMP $6722 ; Go do regular drop-target switch code

7FB7: TE 99 A2 JMP $99A2 ; Done with this switch handler, up/down is running

The function at S7FA2, above, performs some basic operations:

e Checks if function ID 00 B7 is running, if so then skip to the end of the function to jump to S99A2
which is the end of switch handler jump point. The 00 B7 function means the “MB Start DT
Action” has scheduled the “Down” function to knock the drop-target down, and that function
hasn’t yet completed.

e Checks if function ID 00 B9 is running, if so then skip to the end of the function to jump to S99A2
which is the end of switch handler jump point. The 00 B9 function means the “MB Start DT
Action” has scheduled the “Up” function to reset the drop-target up, and that function hasn’t
yet completed.

e If neither 00 B7 or 00 B9 are running, then the E3 flag is cleared (indicating drop-target is down)
and code then jumps to $6722 which is the instruction immediately after the JMP instruction
that jumped to this S$7FA2 code. By doing this jump, code effectively resumes its normal drop-
target handler logic.

e Asindicated, if either 00 B7 or 00 B9 are running, then code performs a JMP instruction to jump
to $99A2 which is a common jump point for scheduled functions to jump to when they are
complete.

The logic, above, effectively allows the game to ignore the drop-target switch while the “MB Start DT
Action” feature is resetting the drop-target up or knocking it down.

Multiball-Start Drop-Target Action Adjustment Code Analysis
As shown in the new functions, above, the code will schedule a drop-target up or drop-target down
function call depending on the logic shown. These refer to two new functions with these characteristics:

Drop-Target Down Drop-Target Up
WPC Address $7894,3B S78B7,3B
ROM Offset 0x6F894 Ox6F8B7
Function ID 00 B7 00 B9

Special consideration was needed to choose the 16-bit value for the Function ID associated with these
new scheduled functions. Without knowledge of how function ID numbers were originally chosen for
existing functions in L-8, values were chosen that were initially found to not be in use by any existing
function and are numerically close to existing functions of similar nature. For example, below shows
some existing Function ID values from L-8 software:

Function WPC | Function Function Purpose
Address ID
$45D7,31 00 B2 Kick a ball out of shooter lane and checks shooter-lane switch
$6816,31 00B3 Reset drop-target up and checks drop-target switch
$4A77,31 00 B5 TBD, Called when left-loop lock shot is hit
$4A28,31 00 B6 TBD, Called when right-loop is hit
$6C80,31 00 B8 TBD, Called as part of multiball startup

The table, above, shows the various function IDs from bank $31 using Function ID starting with 00 Bx.
Initial survey of the code seemed that no function appears to be defined with 00 B7 or 00 B9 as the ID
value (a deeper investigation, below, reveals this isn’t actually the case). To further demonstrate that
these 2 IDs could safely be used for the MB Start DT Action feature, as part of this documentation a
survey across the entire L-8 ROM image was done to see if any code could be found using these 2 ID
values. The table below shows some function signatures that are used to determine whether other
functions are using these 2 ID values.

Function Name L-8 Function Description
Usage Signature

ScheduleFunctionStart() BD 8B 77 xx xx yy yyyy | Schedules function ID xx xx to start at WPC

SearchLinkedListForld()
CancelScheduledCallbackFunction()
UpdateCurrentRunningSchedule
FunctionIDParameterBytes()

TBD()
CancelScheduledCallbackIDParameterBytes()
CancelAllCallbacksldMaskParameterBytes()

SearchLinkedListAndMaskParameterBytes()

AddLinkedListEntry()
ScheduleFunctionStart()
TBD()
ScheduleFunctionCallback()
TBD()

BD 86 90 xx xx
BD 86 9E xx xx
BD 86 AC xx xx

BD 86 BA xx xx
BD 86 DO xx xx

BD 8A 9A xx xXx yy yy

BD 8A AA xx XX yy yy

BD 8B 3D xx xx yy yy yy
BD 8B 77 xx XX yy yy yy
BD 8B 9D xx xx yy yy yy
BD 8B C3 xx XX yy yy yy
BD 8B F7 xx xx yy yy yy

Addryy yyyy
Searches for scheduled function ID xx xx

Cancels scheduled function ID xx xx
Sets currently running function ID to xx xx

TBD, where xx xx is function ID

Cancels scheduled ID xx xx

Cancels scheduled functions matching ID
pattern of xx xx bitwise-and yy yy

Searches for schedule functions matching ID
pattern of xx xx bitwise-and yy yy

Adds function yy yy yy to linked list as ID xx xx
Schedules function yy yy yy ID xx xx

TBD, where xx xx is ID and yy yy yy is addr.
Schedules function yy yy yy ID xx xx
Schedules function yy yy yy ID xx xx

The functions listed above are not necessarily exhaustive nor have they been assigned 100% accurate

names or given 100% accurate descriptions. This information is based on a cursory review of the L-8

code and observing how it behaves. The distinction between similarly named functions is not part of

this documentation. The function names were as given during an initial survey of WPC code and are

worthy of renaming as more information is learned about the code flow.

During L8.3 development an examination of the two new ID values for new drop-target Up and Down

functions was done and the values were chosen as apparently available ID values and deemed safe for

L8.3. After L8.3 release with this documentation providing thorough information and full transparency,

while demonstrating how these ID values was chosen, some minor overlap in ID values was detected

and will be described in more detail, below.

Function Name

SearchLinkedListForld()
CancelScheduledCallbackFunction()
UpdateCurrentRunningSchedule
FunctionIDParameterBytes()

TBD()

CancelScheduledCallbackIDParameterBytes()

CancelAllCallbacksldMaskParameterBytes()

DT

Down
Up
Down
Up
Down
Up
Down
Up
Down
Up
Down
Up

Search
Pattern

BD 86 90 00 B7
BD 86 90 00 B9
BD 86 9E 00 B7
BD 86 9E 00 B9
BD 86 AC 00 B7
BD 86 AC 00 B9
BD 86 BA 00 B7
BD 86 BA 00 B9
BD 86 DO 00 B7
BD 86 DO 00 B9
BD 8A 9A 00 B7
BD 8A 9A 00 B9

Search Results

ROM L-8 ROM L8.3

One hit, bank $31

SearchLinkedListAndMaskParameterBytes() | Down | BD 8A AA 00 B7 [Zerolhits i iZerohits
Up BDBAAA00BY |ZerohitsEN iZero hits
AddLinkedListEntry() Down | BD8B3D00B7 [Zeromhits i iZerohits
Up BD883000B9 |ZerohitSINN iZero hits i
ScheduleFunctionStart() Down | BD8B7700B7 [Zeroiits s RZerohits
Up BD8B770089 |GINSHBRRRSSENN NSHESNSSRRSSEN
TBD() Down | BD 88900067 |ZeroRiSENN iZero hits i
Up | BD8B9D00BY [ZeroRitsE Zerohits MU
ScheduleFunctionCallback() Down | BD8B(C300B7 [iZerohits " One hit, bank $31
Up BD 8B C300B9 [Zerohits S One hit, bank $31
TBD() Down | BD8BF70087 |ZeroRiSEN Zeroihits i
Up | BD8BF700B9 |ZerolhitSIN izerohits iy

For the table, above, the following color code applies:

No problems, search pattern not found

Found function ID in rom L-8, conflicting with new function ID in L8.3

Yellow box Found function ID in rom L8.3, conflicting with existing ID from L-8

Found function ID in rom L8.3 not conflicting with L-8
The highlighted elements are as follows using highlighted color text consistent with their finding, above:

e InROM L8.3, in bank $31

o The “Up” function schedule callback for “MB Start DT Action”, as documented above
o The “Up” function ID lookup in the drop-target switch handler, as documented above
e |n Both ROMs L-8 and L8.3, in bank $3B

A deeper investigation into the 00 B9 overlap between L8.3 and existing L-8 code is provided below. The
overlap of the new “Up” function is not likely to be problematic or noticeable during game play. Refer
to the analysis, below, for details.

Drop-Target Up Function ID 00 B9 Overlap

As indicated, above, the chosen ID value for the new Drop-Target Up function at multiball startup is
cited in 2 other places in bank $3B in the original L-8 ROM (and in L8.3). This 00 B9 function ID is used
by a helper function used during the ball search routine. During ball search, there is a moment where a
function is scheduled with ID 00 B9 where such function is responsible for simply performing a 3.5
second sleep and then cancelling 2 other ball-search functions before ending itself. The “00 B9” ID is
only cited during the function scheduling and there is no ball search (or any other) code that checks if
the 00 B9 ball-search helper function is running. Additionally there is no ball search (or any other) code
that attempts to cancel the 00 B9 function.

Since ball search only happens when there is trouble (no playfield switch hit for a certain period of time)
and since the “MB Start DT Action” code engages at multiball startup, and since multiball startup
happens soon after a switch has been hit, it is reasonable to suggest that the ball-search 00 B9 function
is not likely to conflict with the “MB Start DT Action” function 00 B9 that resets the target to the up
position.

To help understand how the ball-save code works, and where its use of function ID 00 B9 is used, the
ball-search code is shown below, partially annotated, along with some of its supporting functions. A fair
amount of the ball-search logic can be gleaned by an examination of the code, however a full
description of the ball-search process is outside the scope of this document and a deeper-dive into ball-
search is left as an exercise to the reader. Ball search code related to function ID 00 B9 is highlighted.
This ball-search code starts at $5F42,3B (ROM offset Ox6DF42).

S5F42: BD F7 59 JSR $SF759 ; ChecksGameMode (), if game in progress, z-bit set
5F45: 7E 5F 48 JMP S5F48 ; <nop>
5F48: 26 1C BNE $5F66 ;
5F4A: 81 01 CMPA #501 ;
5F4C: 22 0A BHI $S5F58 ;
S5F4E: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()
5F51: 00 EE ; ID OOEE == BallSearchFrom5FBE () BallSearchPhasel ()
5F53: 5F BE 3B ;
5F56: 20 16 BRA S5F6E ;
5F58: 81 02 CMPA #502 ;
5F5A: 22 0A BHI S5F66 ;
5F5C: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()
5F5F: 00 EE ; ID OOEE == BallSearchFrom5FA3 () BallSearchPhase?2 ()
5F61: 5F A3 3B ;
5F64: 20 08 BRA S5F6E ;
5F66: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()
5F69: 00 EE ; ID OOEE == BallSearchFrom5F6F () BallSearchPhase3()
5F6B: 5F 6F 3B ; and all subsequent phases
S5F6E: 39 RTS ;
; ID OOEE == BallSearchFrom5F6F ()

; BallSearchPhase3 () and all subsequent phases

; Knock drop-target down 4 times and 2.5 seconds later
; reset it to original position.

S5F6F: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()

5F72: 00 E7 ; ID 00E7 BallSearchDropTargetSleepAndReset ()
5F74: 60 D1 3B ;

5r77: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()
5F7A: 13 ; SolenoidTableEntryl3, 0C=Knock Down, 20
S5F7B: BD 83 46 JSR $8346 ; Sleep()

S5F7E: 02 ;

S5F7F: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()
5F82: 13 ; SolenoidTableEntryl3, 0C=Knock Down, 20
5F83: BD 83 46 JSR $8346 ; Sleep()

5F86: 01 ;

5F87: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()

83

83

83

83

83

01
30
86

29
86

22
84

83

20 34

46

85

46

85

46

90

90

8F

85

77

3B

$8346

$8385

$8385

$8346

$8385

$8346

$609A

$8385

$8346

$8385

$8346

$8385

$8346

#501
S5FF2
$8690

S5FF2
$8690

S5FF2
$848F

$8385

$8B77

$8B77

SolenoidTableEntryl3, 0C=Knock Down, 20
Sleep ()

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntryl3, 0C=Knock Down, 20
EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntry0l, O0A=Top Lock, 10
Sleep ()

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntry03, 10=Left Lock, 20
Sleep ()

ID OOEE == BallSearchFrom5FA3 ()
BallSearchPhase2 () starts here

BallSearchDropTargetUpAndOOE7Reset ()

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntryl3, 0C=Knock Down, 20
Sleep ()

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntryl3, 0C=Knock Down, 20
Sleep ()

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntryl3, 0C=Knock Down, 20
Sleep ()

ID OOEE == BallSearchFrom5FBE ()
BallSearchPhasel () starts here

SearchLinkedListForId() // c-bit clear = ID found
ID 00AA == BallInPopper ()
If ball is in popper, skip over the following

SearchLinkedListForId() // c-bit clear = ID found
ID 00BC == Sleep3andHalfSeconds ()
ClearMemoryFlag()

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntryOA, O0B=Gun Motor, FF

ScheduleFunctionStart ()
ID 00E8 == Sleep3SecondsThenPulseGunKicker ()

ScheduleFunctionStart ()

86

2D
86

26
86

1F
86

18
83

8B

CA

83

86

OE
83

08
83

83

60

08

83

83

83

83

83

83

83

83

83

83

83

83

90

90

90

90

85

77

3B

46

90

19

85

46

59
41

85

46

85

46

85

46

85

46

85

46

85

46

$8690

$6026
$8690

$6026
$8690

$6026
$8690

$6026
$8385

$8B77

$8690

$603B
$8319

$603B
$8385

$8346

SF759

$6041

$604B

$8385

$8346

$8385

$8346

$8385

$8346

$8385

$8346

$8385

$8346

$8385

$8346

$8385

’

’

SearchlLinkedListForId() // c-bit clear =

SearchLinkedListForId() // c-bit clear =
SearchLinkedListForId() // c-bit clear =
SearchLinkedListForId() // c-bit clear =
ID 00BC == Sleep3andHalfSeconds ()

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntry07, 01=Ball Popper, 40
ScheduleFunctionStart ()

ID 00BC == Sleep3andHalfSeconds ()

Sleep ()
SearchlLinkedListForId() // c-bit clear =
GetSwitchClosedParameterByte() // C-clear

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntry04, 04=Trough, 40
Sleep ()

ID

found

found

found

found

found

sw closed

ChecksGameMode (), if game in progress, z-bit set

<nop>
EnqueueSolenoidPulse ParameterByte ()

SolenoidTableEntryll, 08=Kickback, 40

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntryOE, OF=Bottom Jet, 40

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntry0C, 0D=Left Jet, 40

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntry0D, OE=Right Jet, 40

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntryOF, 05=Right Sling, 40

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntryl0, 06=Left Sling, 40

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntry05, 03=Outhole, 40

6077: BD 83 46

607A: 05

607B: BD 83 85
607E: 09

607F: BD 83 46
6083: 05

6083: BD 8B 77
6086: 00 E7

6088: 60 D1 3B
608B: BD 83 85

608E: 13
608F: BD 83 46
6092: 02
6093: BD 83 85
6096: 13

6097: 7E 99 A2

JSR

JSR

JSR

JSR

JSR

JSR

JSR

JMP

$8346

$8385

$8346

$8B77

$8385

$8346

$8385

$99A2

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntry09, 09=Plunger, 40

ScheduleFunctionStart ()
ID 00E7 BallSearchDropTargetSleepAndReset ()

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntryl3, 0C=Knock Down, 20
Sleep ()

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntryl3, 0C=Knock Down, 20

609A: BD 86 5B

609D: 14 00
609F: 27 0OC
60Al: BD 8B 77
60A4: 00 E7

60A6: 60 D1 3B
60A9: BD 83 85
60AC: 06
60AD: 39

JSR

BEQ
JSR

JSR

RTS

$865B

$60AD
$8B77

$8385

BallSearchDropTargetUpAndO0OE7Reset ()

LookupGameAdjustmentParameterlandCheckIfEqualsParam2 ()
C-bit set when not-equal
0x14, FeatureAdjustment020, Drop Trgt. Broken

ScheduleFunctionStart ()
ID 00E7 BallSearchDropTargetSleepAndReset ()

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntry06, 1C=Drop Target, 40

60AE: BD 83 46
60B1l: CO

60B2: BD 83 85
60B5: 08
60B6: 7E 99 A2

JSR

JSR

JMP

$8346

$8385

S99A2

ID 00E8 == Sleep3SecondsThenPulseGunKicker ()
Sleep ()
0xCO == 3 seconds

EnqueueSolenoidPulse ParameterByte ()
SolenoidTableEntry08, 02=Gun Kicker, 40

JSR

$8346

’

’

ID 00BC == Sleep3andHalfSeconds ()
Sleep ()
0xEQ0 == 3.5 seconds

60CE: 7E 99 A2 JSR $99A2 ;

; BallSearchDropTargetSleepAndReset ()

; If 0xXE3 is set (meaning target should be up) then kick it up (if not set to broken=yes)
; If 0xE3 is clr (meaning target should be dn) then kick it dn
; Function to set target to desired state after a ball-search

rr

60D1: BD 83 46 JSR $8346 ; Sleep()

60D4: A0 ; O0xA0 = 2.5 second sleep

60D5: BD 84 AD JSR $84AD ; GetMemoryFlag()

60D8: E3 ; If 0xE3 memory flag is set then do NOT do the
; drop-down. E3-set(c-clear)== dt-down
; 0xXE3 cleared at dt-down-switch, set at dt-up

60D9: 24 OF BCC $S60EA ;

60DB: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()

60DE: 13 ; SolenoidTableEntryl3, 0C=Knock Down, 20

60DF: BD 83 46 JSR $8346 ; Sleep()

60E2: 02 ;

60E3: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()

60E6: 13 ; SolenoidTableEntryl3, 0C=Knock Down, 20

60E7: 7E 99 A2 JMP $99A2 ;

60EA: BD 86 5B JSR $865B ; LookupGameAdjustmentParameterlandCheckIfEqualsParam?2 ()
; C-bit set when not-equal

60ED: 14 01 ; 0x14, FeatureAdjustment020, Drop Trgt. Broken

60EF: 27 04 BEQ $60F5 ;

60F1: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()

60F4: 06 ; SolenoidTableEntry06, 1C=Drop Target, 40

60F5: 7E 99 A2 JMP $99A2 ;

As shown, the ball-search 00 B9 function performs these operations:

e Sleep for E3 which is slightly over 3.5 seconds (0x40 = 1 second, OxEQ = 3.5 seconds).
e Cancel Function ID 00 BD
e Cancel Function ID 00 BC

The 00 BC function, as shown above at S60CA, simply sleeps for exactly 3.5 seconds. This allows other
code to determine if 3.5 seconds has elapsed by simply checking of function 00 BC is running. The
function 00 BD is located in a different bank at $6675,31 (ROM offset 0x46675) and hasn’t been traced
and is not depicted here.

The following sections analyze both scenarios:

e Scenario 1, when the ball-search 00 B9 is scheduled while drop-target “Up” 00 B9 is running
e Scenario 2, when the drop-target “Up” 00 B9 is scheduled while ball-search 00 B9 is running

The scenarios are analyzed with these facts in mind:

e The ball-search 00 B9 is scheduled with $8B77 scheduler which cancels any existing function
running with the same ID prior to scheduling the function.

e The “MB Start DT Action” schedules the new “Up” function with scheduler $8BC3 which will not
schedule the function if one is already running with the same ID.

Drop-Target Up Function ID 00 B9 Conflict Scenario 1

This scenario analyzes the case where the “MB Start DT Action” new “Up” function 00 B9 is running and
then the ball search engages and tries to schedule its 00 B9 function. As mentioned, this case seems
highly unlikely to occur in game play since this scenario would involve a ball-search taking place as
multiball starts up.

In this scenario, the multiball is starting, and “MB Start DT Action” determines the drop-target should be
reset to the up-position. At this same time, the ball search is taking place which then needs to schedule
its own 00 B9 function as part of its duties. As mentioned, the ball-search 00 B9 scheduler $8B77 will
cancel the existing 00 B9 function and then schedule the new 00 B9 function.

This means the drop-target will not be reset up, and the ball-search will proceed according to the ball-
search code and not experience any unexpected ball-search behavior. The player will experience a case
where multiball is starting, ball-trough being evacuated, while other playfield solenoids are kicking
during ball-search, and throughout all of this, the drop-target will not have been kicked up from the “MB
Start DT Action”.

The ball-search includes drop-target reset/knock-down activity as well. The ball-search is intended to
end with the drop-target reset to whatever position it was prior to the ball-search, whether it was up or
down prior to the ball-search. So if the drop-target was down when this scenario started, it will end up
down even though the ball-search may have kicked it up at some point. Since the ball-search, however,
ends when it detects a playfield switch, it seems likely that the ball-trough evacutation would have
resulted in end of ball-search. Precise details on how the ball-search ends has not been traced.

It seems reasonable to suggest that this situation is not likely to occur during game play and, if it
somehow does occur, the player is not likely to notice since there was a ball-search taking place which
would be more unexpected than the drop target not getting reset at multiball start.

Drop-Target Up Function ID 00 B9 Conflict Scenario 2

This scenario analyzes the case where the ball-search function 00 B9 is running and then the multiball is
started and “MB Start DT Action” determines that the drop-target should be in the up position and
attempts to schedule its 00 B9 function.

In this scenario, the game is performing its ball-search routine and has started its 00 B9 function which
runs for 3.5 seconds. During this 3.5 seconds, the game starts a multiball and the ‘MB Start DT Action”
attempts to schedule its “Up” function using scheduler $8BC3 which will not schedule the function if a
00 B9 function is already running. This effectively produces the same result as described in Scenario 1,
above. The result is that the ball-search routine will continue to operate without having its 00 B9
function interrupted or cancelled. For the player, the result is that the drop-target is not reset to the up

position when it otherwise should have been due to the “MB Start DT Action” feature, however a ball
search was taking place at multiball start so the drop-target position may be the least of the concern.

Drop-Target Up Function ID 00 B9 Conflict Drop-Target Switch Handler

Additional behavior due to the 00 B9 conflict is related to the L8.3 code addition to the drop-target
switch handler. Depicted earlier was how the drop-target switch handler has been updated to ensure
that the switch closure is ignored if the “MB Start DT Action” has scheduled the new Up or Down
function to reset the target up, or knock it down, respectively.

This also means that if a ball-search is taking place, and the player is able to hit a ball into the drop
target causing it to go into the down position, the player will not be awarded anything for hitting the
drop-target. The ball-search code and the drop-target switch handler are already designed to ignore the
switch closure if the drop-target had been knocked down as part of the ball-search routine itself. This
means the player may reasonable assume the lack of drop-target award was due to hitting the drop-
target while a ball search was taking place, however this may not be the actual reason the award was
not given.

In the overall scheme of things, this and the other behaviors that could occur due to the 00 B9 ID conflict
are not likely to be considered a major problem however in some extremely rare circumstances, my be
observable by the player.

Note: Subsequent ROM update, in the future, will re-analyze this and change
the “Up” function ID value to remove any chance of conflict.

The L8.3 Timed 3-Bank Lamp Fixes

During the L8.3 development, an observant tester brought up the odd behavior of original L-8 which
could be addressed as part of L8.3 involving the 3-bank lamp behavior. This odd behavior is effectively a
software bug in L-8 but is being addressed in L8.3 by having a new adjustment to select between original
or corrected behavior. This was done this way in the event that some prefer the original behavior and
incorporate it into their gameplay.

The problem is in regards to the center 3-bank lamps (each lamp associated with one of the three 3-
bank standup targets). The issue is with regards to the timeout behavior of the 3-bank lamps not
behaving in an expected or consistent way.

The 3-bank lamps behavior depends on the number of times the 3-bank targets have been completed by
the player for the current game. The number of times the 3-bank targets have been completed is

compared against the Feature Adjustment value for A2.06 “Three Bank Count” which has default value
of 2.

e When the 3-bank targets have NOT yet been completed number of times set in A2.06:
o Each hit to a 3-bank target causes its lamp to remain solidly lit.
o When all 3 of the 3-bank targets have been hit, award is given and all 3 lamps extinguish.
e When the 3-bank targets HAVE been completed number of times set in A2.06:
Each hit to a 3-bank target causes its lamp to remain solidly lit.
When only 1 target has been hit, the remaining 2 lamps are blinking
When only 2 targets have been hit, the remaining 1 lamp is blinking

O O O O

When 1 or 2 lamps are blinking, all 3 lamps are subjected to timeout:

= Timeout period is set by Feature Adjustmet A2.10 “Three Bank Timer”

= Default timeout period is 15 seconds

* When 2™ of the 3 targets is hit, timeout period restarts

* When timeout period expires, _ lamps are extinguished

= After timeout, all 3 targets need to behit again in order to complete the bank
o When all three targets are hit, award is given and all 3 lamps are extinguished.

The problem behavior happens after the player drains their ball while the 3-bank targets are in a
timeout period. When the player is served their next ball, the L-8 behavior is as follows:

e Any unhit targets that were previously blinking, are extinguished
e Any hit targets that were previously solid (while the remaining 1 or 2 lamps were previously
blinking) now remain solidly lit and are not subjected to timeout as the player starts their ball.
o Inthe case where two lamps are solidly lit at start of ball:
= Re-hitting the solidly lit targets will not cause timeout to start
* Hitting the 3" will complete the 3-bank standup, giving award and extinguishing
all three lamps.
o Inthe case where one lampis solidly lit at start of ball:
= Re-hitting the solidly lit target will not cause timeout to start
= Hitting a 2" target will cause its lamp to be solidly lit and the remaining unhit
target to start to blink, and subject all three targets to timeout.
e When timeout expires, all three lamps are extinguished.

This behavior of L-8 is unexpected and inconsistent. Prior to the ball-draining, all three targets were
subjected to a timeout period however at the next ball, hit targets are no longer subjected to timeout
except in the case where only a single lit target was carried over to next ball and then player hits a 2™
target in the 3-bank. At that point, their previously solidly lit lamp now becomes subjected to timeout.

A more reasonable approach would be that all of the 3-bank lamps which were subjected to timeout
when previous ball drained should be extinguished at the start of the next ball. This is the basis of this
new adjustment in L8.3.

This new adjustment allows section between the original L-8 logic as described above, or

The selection “Off at EOB” refers to the new logic which will entail having the timed 3-bank lamps being
turned off at end-of-ball.

This new logic, as its adjustment text implies, ensures that all three of the 3-bank lamps which were
subject to timeout are extinguished. More specifically, instead of only the unhit lamps being
extinguished, ALL lamps are extinguished. Note, although the adjustment is named “Off at EOB” the
actual moment that the hit lamps (which were subject to timeout) are extinguished is as the start of the
next ball. Using EOB was a lot easier to convey the new logic in the limited amount of space for
adjustment text. An observant player will also notice that the blinking lamps extinguish when the ball
drains and the solid lamps (which were subject to timeout) are extinguished during the start of the next
ball.

The way in which the original L-8 code extinguishes the blinking lamps at end-of-ball is fairly
straightforward. End of ball code cancels the function responsible for maintaining the timeout state of
the unhit 3-bank targets. Normally, during game-play the timer function will extinguish all three lamps
when the timer expires but cancelling the function at end-of-ball prevents this from taking pace.

For the hit targets which were subject to timeout, it appears the solid lamps need to be extinguished
from the ball startup code which is responsible for establishing the various state data for the new ball,
including lamp states. This startup code is important especially when you consider a multiplayer game
where each player has a different set of acquired achievements.

The start-of-ball function is depicted in full below, however it is only partially annotated. This function is
located at $625B,3B (ROM offset Ox6E25B).

; StartOfBallCurrentPlayer ResetPlayfieldState()

625B: 34 16 PSHS X,B,A ;

625D: BD 84 AD JSR $84AD ; GetMemoryFlag ()
6260: DO ;

6261: 24 04 BCC $6267 ;

6263: BD 85 53 JSR $8553 ;

6266: 34

6267: BD 84 8F JSR $848F ; ClearMemoryFlag()

626A:
626B:

626E:
6270:

6272
6275:
6277:
627A:
627B:
627D:
6280:
6283:
6286:
6288:
628A:
628D:
6290:
6292:
6294 :
6296:
6298:
629A:
629D:
62A0:
62A3:
62A5:
62A8:
62AA:
62AC:
62AF:
62B1:
62B4:
62B5:
62B8:

62BB:

62BE:
62C0:
62C2:
62C5:
62CT7:
62CA:
62CB:
62CE:
62CF:
62D2:
62D3:
62D6:
62D9:
62DC:
62DE:
62E1:
62E2:
62E4 :
62E7:
62EA:

D1
BD

04
24

BD
25
BD
4D
26
8E
BD
TE
6D
26
BD
BD
6D
26
A6
81
24
BD
4C
6D
26
EC
Cl
22
BD
00
BD
D1
BD
57

BD

03
24
BD
0F
BD
08
BD
42
BD
D2
BD
68
BD
19
BD
41
24
BD
TE
oF

86

00
49

Bl
44
B3

3E
05
FB
62
84
31
Bl
BB
c4
27
41
03
21
88
7B
88
16
88
1E
OF
88
1F
84

88
23

86

01
05
87
40
83

84

84

88
08
87
40
84

1B
E7
62
84

5B

D1

CA

AD

29
86

AB
3E

F5
38
22

22

D5

80

F5
31

5B

22

E8

8F

80

F5

31

BE

AD

DE
EA

JSR

BCC

JSR
BCS
JSR
TSTA
BNE
LDX
JSR
JMP
TST
BNE
JSR
JSR
TST
BNE
LDA
CMPA
BCC
JSR

TST
BNE
LDD
CMPB
BHI
JSR
JSR

JSR

JSR

BCC

JSR

JSR

JSR

JSR

JSR

JSR

JSR

BCC

JSR

JMP
CLR

$865B

$62BB

$B1D1
$62BB
SB3CA

$62BB
#$05AD
SFB29
$6286
, X
$62BB
$B1AB
SBB3E
,U
$62BB
$0001,U
#s03
$62BB
$S88F5

$22,X
$62BB
$22,X
#S1E

$62BB
$88D5
$8480

$88F5

$865B

$62C7

$8722

$83E8

$848F

$8480

$88F5

$87BE

$84AD

S62FF

SF7DE

S62EA
, X

LookupGameAdjustmentParameterlandCheckIfEqualsParam?2 ()
C-bit set when not-equal

0x04, FeatureAdjustment004, Consolation Ball

If Consolidation ball is not off then branch to $62BB

No consolidation ball, advance to next player

Retain current player ball

Retain current player

IncrementXByPlayerIndexNumber ()
<nop>

Branch down to retain current player
GetCurrentPlayerIndexIntoA ()
GetPlayerScorelIndexAintoU ()

SetMemoryFlag ()

LookupGameAdjustmentParameterlandCheckIfEqualsParam?2 ()
C-bit set when not-equal

0x03, FeatureAdjustment003, Extraball Memory
extraball-memory is not on, then jump past the lampOff

LampOff () // likely turns off extraball lamp
ClearMemoryFlag()

SetMemoryFlag ()

GetMemoryFlag() // C-bit clear when flag is set

Extra-Ball flag?
Jumps over the following when extra ball being served
GetXTablePointer 05DB ForCurrentPlayer ()

62EC: 6F 01
62EE: 6F 02
62F0: 6F 03
62F2: 6F 04
62F4: 8E 05
62F7: BD FB
62FA: TE 62
62FD: 6F 84
62FF: BD 84
6302: 41

6303: 8E 05
6306: BD FB
6309: 7E 63
630C: A6 84
630E: 8E 05
6311: BD FB
6314: 7E 63
6317: Al 84

6319: 26 08
631B: BD 84
631E: 30
631F: BD 84
6322: 3A

6323: BD 87
6326: 0B 10

6328: BD 87
632A: 0B 00
632D: BD 86
6330: 07 00
6332: 24 07
6334: BD 86
6337: 07 01
6339: 25 OE
633B: 86 FF
633D: 97 Bl
633F: BD 84
6342: 09
6343: BD 84
6346: 44
6347: 20 1B
6349: BD 86
634C: 07 04
634E: 25 0C
following
6350: OF Bl
6352: BD 84
6355: 44
6356: BD 84
6359: 09
635A: 20 08
635C: BD 84
635F: 44
6360: 24 D9
6362: 20 EC
6364: BD 66
6367: BD 88
636A: 47 8B
636D: BD 85

6370: 08

91

29

FD

8F

95

29

0c

99

29

17

1C

1C

BE

BE

5B

5B

1c

80

5B

8F

2B

AD

36
F5
31
B2

CLR
CLR
CLR
CLR
LDX
JSR
JMP
CLR
JSR

LDX
JSR
JMP
LDA
LDX
JSR
JMP
CMPA
BNE
JSR

JSR

JSR

JSR

JSR

BCC
JSR

BCS
LDA
STA
JSR

JSR

BRA

JSR

BCS

CLR
JSR

JSR

BRA
JSR

BCC
BRA
JSR
JSR

JSR

$0001,X
$0002,X
$0003,X
$0004,X
#50591
SFB29
$S62FD

, X
$848F

#50595
SFB29
$630C
, X
#50599
SFB29
$6317
, X
$6323
$841C

$841C

$87BE

$87BE

$865B

$633B
$865B

$6349
#SFF
$B1
$841C

$8480

$6364

$865B

$635C

$B1
$848F

$842B

$6364
$84AD

$633B
$6350
$6636
$88F5

$85B2

IncrementXByPlayerIndexNumber ()
<nop>

ClearMemoryFlag()
Clear extra-ball flag(?)

IncrementXByPlayerIndexNumber ()
<nop>

IncrementXByPlayerIndexNumber ()
<nop>

ValidateThenSingleLampSetParameterBytePlaneO ()
30 == Left Ramp Lamp
ValidateThenSingleLampSetParameterBytePlaneO ()
3A == Right Ramp Lamp

LookupGameAdjustmentParameterlandCheckIfEqualsParam2 ()
C-bit set when not-equal

0x07, FeatureAdjustment007, Kickback Setting

Kickback is not extra-easy, skip over the following
LookupGameAdjustmentParameterlandCheckIfEqualsParam? ()
C-bit set when not-equal

0x07, FeatureAdjustment007, Kickback Setting

Kickback setting is easy, skip over the following

ValidateThenSingleLampSetParameterBytePlaneO ()
09 == Kickback lamp
SetMemoryFlag ()

LookupGameAdjustmentParameterlandCheckIfEqualsParam?2 ()
C-bit set when not-equal

0x07, FeatureAdjustment007, Kickback Setting

Kickback setting is 'extra hard' skip over the

ClearMemoryFlag ()

ClrSingleLampParamByteBankOTestBankChkValidations ()
09 == Kickback lamp

GetMemoryFlag() // c-bit clear when flag set

6371: BD 84 80 JSR $8480 ; SetMemoryFlag()

6374: DO ;

6375: BD 84 AD JSR $84AD ; GetMemoryFlag() // c-bit clear when flag set
6378: 45 ;

6379: 25 05 BCS $6380 ;

637B: BD 87 15 JSR $8715 ; LampOnParameterBytelPlaneParameterByte2 ()
637E: 2F 40 ; 2F == Database 1 Lamp

6380: BD 84 AD JSR $84AD ; GetMemoryFlag() // c-bit clear when flag set
6383: 46 ;

6384: 25 04 BCS $638A ;

6386: BD 84 1C JSR $841C ; ValidateThenSingleLampSetParameterBytePlaneO ()
6389: 1A ; 1A == Database 2 Lamp

638A: BD 84 AD JSR $84AD ; GetMemoryFlag() // c-bit clear when flag set
638D: 47 ;

638E: 25 04 BCS $6394 ;

6390: BD 84 1C JSR $841C ; ValidateThenSingleLampSetParameterBytePlaneO ()
6393: 0C ; 0C == Right Return Lane Lamp

6394: 8E 5F 43 LDX #S5F43 ;

6397: BD 88 F5 JSR $88F5 ;

639A: 5F 16 3D ;

639D: 25 06 BCS $63A5 ;

639F: BD 88 F5 JSR $88F5 ;

63A2: 50 AE 31 ;

63A5: 35 96 PULS A,B,X,PC ;

The full playfield-state reset function is shown above for refrence. Within the function, an appropriate
location was chosen where code can jump to a new function to perform the task of extinguishing the 3-
bank lamps if they were subject to timeout during previous ball in play for the current player.

The modified portion of the function is shown below with new code highlighted.

62FF: BD 84 8F JSR $848F ; ClearMemoryFlag ()

6302: 41 ; Clear extra-ball flag(?)

6303: 8E 05 95 LDX #50595 ;

6306: BD FB 29 JSR SFB29 ; IncrementXByPlayerIndexNumber ()
a’)r\o: E &2 N FMP $a’)r\n > nop

6309: BD 79 00 JSR §7900 ; Three-Bank Timed Lamp Handler
630C: A6 84 LDA , X ;

630E: 8E 05 99 LDX #50599 ;

6311: BD FB 29 JSR SFB29 ; IncrementXByPlayerIndexNumber ()
6314: 7E 63 17 JMP $6317 ; <nop>

As shown, at $6309 was, effectively, a NOP instruction which simply jumped to the very next instruction.
This JMP instruction was replaced with a JSR to $7900 which will jump to the new 3-bank fixup function
located in unused region of ROM bank $3B at 7900 (ROM offset 0x6F900). The new function is as
follows:

7900: 34 16 PSHS X,B,A ;

7902: BD 86 5B JSR $865B ; LookupGameAdjustmentParameterlandCheckIfEqualsParam2 ()
; C-bit set when not-equal

7905: 1B 01 ; 0x1B, FeatureAdjustment027, TIMED 3BANK LAMP

7907: 25 17 BCS $7920 ; C-bit set when not set to 0x01 'OFF AT EOB'

; so assume it is default/off, and return, no work

; Here when c-bit is set which means timed 3-bank
; lamps need turned off if at eob

7909: 8E 05 A5 LDX #$05A5 ; $S05A5 = Number of 3-bank completions per player
790C: BD FB 29 JSR SFB29 ; IncrementXByPlayerIndexNumber ()
790F: A6 84 LDA , X ; A has number of 3-bank completions for current player
7911: BD 83 0C JSR $830C ; Get8BitSettingIntoBParameterByte ()
7914: 06 ; 0x06, FeatureAdjustment006, Three Bank Count
7915: 34 04 PSHS B ;
7917: AL EO CMPA , S+ ; Checking if number of 3-bank completions exceeds
; configured "Three Bank Count" wvalue
7919: 25 05 BCS $7920 ; C-bit set means not at a point where targets

; should be timed, done, no work

; Determined player has reached point in
; which standups should be timed.
; Call function to force off the 3 standup lamps

791B: BD 87 BE JSR $87BE ; This call results in extinguish of the solid lamps
791E: 06 00 ; Gets into $AE53 with X=0x0600, Y=0x9E92, A=0xFF B=0x04
7920: 35 96 PULS A,B,X,PC ;

The new function, above, to handle extinguishing the timed 3-bank lamps performs the following:

e Checks configured “Timed 3-bank lamp” adjustment, if “Original, then return
e Checks configured “Three Bank Count” adjustment and compares against the number of 3-bank
completions that the current player has achieved so far in their game.
o If player has’t yet completed enough 3-bank target completions to cause timed-lamps,
then return
o If player has completed enough 3-bank target completions to cause timed-lamps then a
function is called to turn off all of the 3-bank lamps. This is the same function used by
the normal timeout function when game times out all 3 lamps during game play.

The logic, as described above, results in the extinguishing of the 3-bank lamps at ball start if the player
has reached the point in which the 3-bank targets are subjected to timeout, thus achieving the desired
behavior.

For reference, the new logic is depicted below in a flowchart.

< Ball playfield state setup logic >

Is “Timed 3-bank Lamp” set
to “Off at EOB”?

Player 3-bank
completions >= “Three Bank
Count” value?

Extinguish all 3 of the 3-bank lamps

<&
<
y

(o)

The L8.3 Ball-Search Bug Fixes

During L8.3 development a ball-search problem was reported and nicely depicted with video
demonstration of the problem. The problem was also found to be present in the original L-8 code. The
issue is that, during ball-search when the drop-target is knocked down as part of ball-search, it causes
the game to award the player with points and sound-call as if the player had intentionally hit the drop-
target with the ball.

To reproduce the issue, simply remove the ball from game-play and wait for the ball-search to
commence. When the ball-search knocks down the drop target, you will observe point accumulation
and a sound-call.

While investigating this issue, a secondary issue was also discovered. The secondary issue is that the
ball-search will reset the target to the up-position when the Feature Adjustment A2.20 “Drop Target
Broken” is set to “On”. In all other cases of game code, when the A2.20 adjustment is set to “On”, the
game will specifically not pulse the drop-target reset coil however the ball-search code from L-8 is
allowing the drop-target to kick up in this condition. In fact, the problem code in ball-search will
specifically try to reset the drop target up only when the A2.20 adjustment is set to “On”.

A majority of the ball-search code was depicted in the previous section describing the “Multiball Start
Drop-Target Action” feature. The applicable portions of ball-search code are shown below:

First, during phase2 of the ball-search which starts at $5FA3,3B (ROM offset Ox6DFA3), there is the
following portion of code that calls S609A and then performs 3 pulses of the drop-target knock-down
solenoid. Note there are other sections of the ball-search that also pulse the drop-target knock down
solenoid however they are not problematic and do not have the same scenario as depicted in the
trouble code below.

; ID OOEE == BallSearchFrom5FA3()
; BallSearchPhase2 () starts here

S5FA3: BD 60 9A JSR $609A ; BallSearchDropTargetUpAnd0OE7Reset ()
S5FA6: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()
5FA9: 13 ; SolenoidTableEntryl3, 0C=Knock Down, 20
S5FAA: BD 83 46 JSR $8346 ; Sleep()

S5FAD: 02 ;

S5FAE: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()
5FB1: 13 ; SolenoidTableEntryl3, 0C=Knock Down, 20
5FB2: BD 83 46 JSR $8346 ; Sleep()

S5FB5: 02 ;

S5FB6: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()
5FB9: 13 ; SolenoidTableEntryl3, 0C=Knock Down, 20
S5FBA: BD 83 46 JSR $8346 ; Sleep()

5FBD: 05 ;

The above ball-search code appears to call function at S609A and then proceeds to knock the drop-
target down 3 times. Referring back to previously depicted drop-target switch handler function, it was
previously shown that the drop-target switch function checks for scheduled function ID 00 E7 as a case
in which the drop-target switch will be ignored (and, as such, not accumulate points). This leads to the
conclusion that the call to $609A must unconditionally schedule function 00 E7 so that the subsequent
drop-target knock down solenoid pulses will, if successfully knocks down the drop-target, result in the
drop-target switch closure being ignored.

The content of the $609A,3B function is depicted below (ROM offset OX6EQ9A).

; BallSearchDropTargetUpAndOOE7Reset ()

609A: BD 86 5B JSR $865B ; LookupGameAdjustmentParameterlandCheckIfEqualsParam2 ()
; C-bit set when not-equal

609D: 14 00 ; 0x14, FeatureAdjustment020, Drop Trgt. Broken

609F: 27 0OC BEQ $60AD ;

60A1l: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()

60A4: 00 E7 ; ID 00E7 BallSearchDropTargetSleepAndReset ()

60A6: 60 D1 3B ;

60A9: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()

60AC: 06 ; SolenoidTableEntry06, 1C=Drop Target, 40

60AD: 39 RTS ;

The L-8 S609A function, above employs the logic as shown in the following flowchart:

/< L-8 S609A Function >

Ball-search: Phase 2 start, or 5
]) Is “Drop Target
continuation from phase 3
v

Run the S609A Function
> Schedule Function ID 00 E7

'

Pluse Drop-Target solenoid to reset

Broken” set?

Pluse Knock-Down solenoid to knock drop-

target to the down position
¢ drop-target to the up position

Sleep very short period

&
<
y

A

\ (Return)

Pulsed knock-down 3

times?

< Function ID 00 E7 Start >

v

Sleep 2.5 seconds

Continue with remainder of ball-

search sequence

no Was target UP prior

to ball search?

A 4

Pluse Knock-Down solenoid to knock drop-
target to the down position

v

Sleep very short period

Is “Drop Target

Broken” set?

A 4

Pluse Knock-Down solenoid to knock drop- i
N Pluse Drop-Target solenoid to reset
target to the down position

drop-target to the up position

»la
Ll Bl
A 4

o O

As evident in the flowchart, above, the logic for function at $609A is flawed in two ways:

e The $609A function should schedule the 00 E7 function unconditionally but it does not. The
S609A function needs to unconditionally schedule the 00 E7 function because the ball-search
phase 2 code will always attempt to knock down the drop-target after S609A is done, and the
knocking down of the drop-target causes the drop-target switch handler to check for 00 E7
scheduled function as basis of ignoring the drop-target switch. Therefore, the 00 E7 function
must always be scheduled whenever the ball-search code pulses the knock-down solenoid.

e The $609A function pulses the drop-target to reset the drop target up, but only when the
adjustments are such that the drop-target is deemed as broken. This is obviously the opposite
of what is correct logic. Considering that all other uses of the “Drop Target Broken” adjustment
prevent the drop-target solenoid from being engaged when the setting is set to indicate the
drop-target is broken.

The updated code for L8.3 for the $609A function is as follows:

BallSearchDropTargetUpAnd0OOE7Reset ()

609A: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart ()

609D: 00 E7 ; ID 00E7 BallSearchDropTargetSleepAndReset ()

609F: 60 D1 3B ;

60A2: BD 86 5B JSR $865B ; LookupGameAdjustmentParameterlandCheckIfEqualsParam?2 ()
; C-bit set when not-equal

60A5: 14 01 ; 0x14, FeatureAdjustment020, Drop Trgt. Broken

60A7: 27 04 BEQ $60AD ;

60A9: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse ParameterByte ()

60AC: 06 ; SolenoidTableEntry06, 1C=Drop Target, 40

60AD: 39 RTS

The corrected function addresses both problems by:

e Unconditionally scheduling function ID 00 E7
e Pulses the drop-target solenoid only if adjustments do not indicate drop-target is broken.

With these changes in place, the ball search knock-down of the drop-target will no longer cause points
to accumulate and no longer cause a sound-call to take place. When the “Drop Target Broken” is set to
“Yes” the ball-search code will no longer make any attempt to reset the drop-target to the up position.

The new function changes the logic of the flowchart to the following. Changed logic is highlighted.

/< L-8 $609A Function >

A 4

Ball-search: Phase 2 start, or sEiEeliE UG ien 1D 80 =S
continuation of from phase 3

Is “Drop Target
Broken” set?

\ 4
Run the S609A Function

»
»
A

y

Pluse Knock-Down solenoid to knock drop-
Pluse Drop-Target solenoid to reset

target to the down position
drop-target to the up position

Sleep very short period ‘f
\ (Return)

Pulsed knock-down 3
times?

< Function ID 00 E7 Start >

Continue with remainder of ball-
Sleep 2.5 seconds
search sequence

Was target UP prior
to ball search?

no

A\ 4
Pluse Knock-Down solenoid to knock drop-
target to the down position

!

Sleep very short period

Is “Drop Target
Broken” set?

A 4

Pluse Knock-Down solenoid to knock drop-)
o Pluse Drop-Target solenoid to reset
target to the down position .
drop-target to the up position

»lda
Ll Bl
A

o O

Appendix

This section contains additional information not covered in the previous sections.

Solenoid Table

Several of the code samples make reference to the pulsing of a solenoid. The function that pulses
solenoid take an index number that corresponds to a row within the solenoid table. The solenoid table
is at $4C8F,3D (ROM offset 0x74C8F) and is shown below.

; SolenoidTable[]

4C8F: 00 14 ;

4C91: 02 ;

4C92: 00 00 ; SolenoidTableEntry00, NULL

4C94: 0A 10 ; SolenoidTableEntry0Ol, OA=Top Lock, 10
4C96: 0A 20 ; SolenoidTableEntry02, O0A=Top Lock, 20
4C98: 10 20 ; SolenoidTableEntry03, 10=Left Lock, 20
4C9A: 04 40 ; SolenoidTableEntry04, 04=Trough, 40
4C9C: 03 40 ; SolenoidTableEntry05, 03=0Outhole, 40
4C9E: 1C 40 ; SolenoidTableEntry06, 1C=Drop Target, 40
4CAO0: 01 40 ; SolenoidTableEntry07, 01=Ball Popper, 40
4CA2: 02 40 ; SolenoidTableEntry08, 02=Gun Kicker, 40
4CA4: 09 40 ; SolenoidTableEntry09, 09=Plunger, 40
4CA6: 0B FF ; SolenoidTableEntry0A, 0B=Gun Motor, FF
4CA8: OB 00 ; SolenoidTableEntry0OB, 0B=Gun Motor, 00
4CAA: 0D 40 ; SolenoidTableEntry0C, 0D=Left Jet, 40
4CAC: OE 40 ; SolenoidTableEntry0D, OE=Right Jet, 40
4CAE: OF 40 ; SolenoidTableEntry0OE, OF=Bottom Jet, 40
4CBO: 05 40 ; SolenoidTableEntryOF, 05=Right Sling, 40
4CB2: 06 40 ; SolenoidTableEntryl0, 06=Left Sling, 40
4CB4: 08 40 ; SolenoidTableEntryll, 08=Kickback, 40
4CB6: 07 40 ; SolenoidTableEntryl2, 07=Knocker, 40
4CB8: 0C 20 ; SolenoidTableEntryl3, 0C=Knock Down, 20

Each entry in the solenoid table contains 2 bytes. The first byte corresponds to the solenoid transistor
that is associated with the solenoid. The second byte corresponds to a time period associated with the
solenoid pulse, effectively defining the power associated with the solenoid pulse. This second byte value
usage has been inferred based on code examination and could be subject to correction or refinement.

Checksum Bytes

The T2 ROM utilizes common WPC Checksum method and, as such, various tools and documentation is
available online to describe the checksum calculation. The 16-bit sum of the bytes in the ROM must
equate to the value of the 2 checksum bytes located in unpaged region at SFFEE (ROM offset Ox7FFEE).

The region of ROM bytes containing checksum is shown below.

FFEC: DF 41 ; When set to 00 FF, debug mode engages

FFEE: 73 08 ; Checksum

FFFO: 8E CD ; Interrupt Vector: Reserved (undefined vector)
FFF2: 8E D1 ; Interrupt Vector: SWI3 Software Interrupt

FFF4: 8E D5 ; Interrupt Vector: SWI2 Software Interrupt

FFF6:
FFF8:
FFFA:
FFFC:
FFFE:

8E CO ; Interrupt Vector: FIRQ Fast Interrupt request
D9 CO ; Interrupt Vector: IRQ Interrupt Request

8E BD ; Interrupt Vector: SWI Software Interrupt

8E DE ; Interrupt Vector: NMI Non-maskable interrupt
8C 8B ; Interrupt Vector: Restart

The L8.3 checksum is highlighted in the ROM output, above. Some interesting characteristics of the
checksum are as follows:

The 2™ byte of the checksum is used by the game to declare the version. For L-8, the 2™ byte is
0x08. For L8.1, L8.2 and L8.3, efforts were in place to ensure the second byte remain at 0x08.
The 2™ byte of the checksum is saved in battery-backed RAM at $180B so the game remembers
the most recent ‘version’ of software has used.

At startup, if the battery-backed copy of the checksum version-byte at $180B doesn’t match the
currently running software checksum second-byte, then memory is wiped and “Factory Settings
Restored” happens.

The L8.1, L8.2, L8.3 retain 0x08 as second byte to prevent the “Factory Settings Restored” from
taking place when switching between L-8 and these variations. Factory Settings don’t need to
be reset in this situation due to the commonalities between memory usage among these images.
In order to generate a checksum that specifically has fixed byte 0x08 as its second byte, it is
necessary to fixup a 3™ byte in ROM image so that the sum of all bytes results in a 16-bit value
with 2" byte having the desired 0x08 byte.

Without certainty about which ROM bytes were used in the original L-8 as the fixup bytes, for
L8.3 an unused byte in ROM at $7FBF,35 (ROM Offset 0x57FBF) was adjusted in order to get the
desired checksum with 2" byte having byte value 0x08. Online references indicate the bytes
preceding the checksum at SFFEC could be used for such purpose.

If the 2 bytes immediately prior to the checksum at SFFEC are set to 00 FF, the game power-up
will bypass the “Testing...” phase and immediately go to attract mode. This is a debug mode to
allow quick testing of new code without worrying about checksum and should not be used for
released game ROMs. It is not clear if other behaviors ensure while in this mode.

o Some 3" party sound boards may fail to play sounds when game powers up in this mode
as they, apparently, require the power-up messages from the CPU board before they
will function, after a power-up.

If the high nibble of the checksum contains ‘D’ it enables a ‘prototype’ designation which will
cause the version string to use “P-8” instead of “L-8”. For example if the 2™ byte of the
checksum had 0xD8 instead of 0x08. Changing checksum in this way will alter the 2" byte in

such a way that “Factory Settings Restored” will take place.

The L8.1, L8.2 and L8.3 modify the version strings so that they automatically contain the “.1”, “.2”
or “.3”, respectively. The underlying game code treats it like L-8 but simply displays the updated
string which contains the extra version suffix designator.

General Illumination and Zero Cross
This section describes some information about General lllumination circuit which was gathered during

the development of L8.3 to have better understanding of the lighting in T2. The information was

gathered from online resources and from general electric/electronic knowledge. It may be possible
some of the information provided is not 100% accurate however it can serve as a starting point for
understanding the General Illumination design of T2 and other WPC games.

The General Illumination circuit utilizes a 6.3 A/C circuit which is gated by a triac component. There are
5 such circuits or Gl strings, in most WPC games. The original design is such that each circuit can
accommodate up to 18 incandescent bulbs.

The interesting part of how the triacs behave, is that the ASIC on the CPU board gets a “zero-cross”
signal (aka “ZC”) which is simply a single wire signal (pcb trace) that originates from the power-driver
board. The ZC signal simply indicates whenever the A/C sine wave crosses the zero voltage x-axis. For
systems that are on 60hz line voltage, the ZC signal pulses at a rate of 120 times per second. For
systems that are on 50hz line voltage, the ZC signal pulses at a rate of 100 times per second. This is due
to how a full hertz cycle consists of 2 crossings of the sine wave across the 0 axis (once as the wave is
going up and once as the wave is going down).

I [T ——

Zera Cross Signal

Shown above is the ZC signal that occurs based on the sine wave of the AC line voltage. These 2 pulses
occur for each cycle. This signal depiction is based on the healthy ZC signal depicted online at
www.pinwiki.org.

The ASIC on the CPU board takes the ZC signal and, from it, controls a single signal to the Triacs in order
to produce dimming effect. The ZC signal goes into the ASIC. The ASIC also receives L8.3 software
originated messages from the CPU to control brightness levels for the 5 Gl circuits. The ASIC then
controls the “TRIAC” signal back to the power driver board which gets fanned out to the 5 different
triacs at chip U1 (refer to board schematics and pinwiki for details)

When the game is set to full Gl brightness, the ZC signal is ignored and the triacs are always ‘on’.

When game needs to dim the GlI, the ZC signal is used along with the desired brightness level by the ASIC
to set the signal levels to control each triac. In this case, the triac itself is inherently aware of zero-cross
as it is directly provided the A/C voltage, it does not need the distinct ZC signal mentioned above. When

A/C crosses the zero point (regardless if the sine wave is going up or going down in its cycle) the triac
will turn OFF the voltage to the lamps. Then some tiny moment in time after this, the ASIC sends short
signal to turn on the triac for the remainder of the half-cycle. If brightness is to be mostly bright, then
this short signal is sent soon after the zero-cross. If the brightness is to be more dim, then this short
signal is sent a while later. When the sine wave crosses zero again, the process starts over.

Taking an image from internet search of “triac sine wave” the following image is copyright by its
respective owner (multiple sites host this image) and augmented to indicate ZC and TRIAC signals:

Triggering Triac Conducts
Foint ™

= Tero point

Waveform

TRIAC signal from ASIC
to Povwver Driver board

Zero Cross Signal
—| _| —| _| from Powver Driver
board to AZIC
=N By T By T By g, General lluminstion
Brightness:

The drawing above is an example of the triac output during Gl dimming. The blue portions are when the
voltage is “on”. If the game wants to dim the Gl further, the B, value would increase so that the blue
regions would then be smaller. This effectively dims incandescent bulbs by reducing the time period
that they get power during each A/C cycle. Since the ‘off’ moments are at a rate of 120 or 100 times per
second and since incandescent bulbs retain illumination for a brief moment when power is taken away,
this produces a mostly decent dimming effect.

For those using LEDs in the Gl circuit, it should be noted that since the LEDs only conduct in one
direction, everything below the zero would be an “Off” LED period. Depending on wiring of the Gl and
of the LED bulb, it may be the opposite, meaning everything below the zero could be on while everything
above the zero is off. This means that even without enabling “Dimming” in the game, the LEDs are only
half as bright as they could be.

Triggering Triac Conducts
Foint ™=

+In — o |- SR |

o Gl iy
=

I LED Off

Using a full-wave bridge rectifier (4 diodes) could effectively flip the bottom part of the sine-wave to the
top, allowing the LED to be on for both parts of the sine wave, such as depicted below.

zero point

— N N — — LED 2N

— L LED Off

Using a capacitor could then smooth the voltage or cause the on-time of the LED to be longer during
each cycle and possibly allow the LED to participate in the Gl dimming provided by the WPC system
without noticeable flickering. The purpose of these statements are to inspire hobbyists to consider
these things when using LEDs in Gl circuits and whether to disable the GI dimming in the game

adjustments or consider using external circuitry to allow better dimming of the LEDs with less flicker.
Any such experiments with bridge rectifiers, diodes, capacitors, etc are done at your own risk. Ideally,
only those with proficient knowledge in these areas should be attempting such things.

Attract Mode Code

The attract mode code, mostly annotated, is shown below for reference. A lot of different functions get
called for the different portions of the attract mode. This code may be helpful for those interested in
further understanding how the T2 code works. This code includes some comments about where such
L8.3 hooks would be located to alter the original attract mode for L8.2 and L8.3 design. This code starts
at $793F,30 (ROM offset 0x4393F).

793F: BD FB AE JSR SFBAE ; Clear display data

7942

7945:
7948 :

7949:

794B:
794E:
7951:

7954 :
7957:

7958:

795C:
795F:

7960:

7962:
7965:
7966:
7969:
796A:
796D:

796E:
7971 :

7974 :
7977

797A:
797D:

7980:
7983:
7985:
7987 :

798A:
798D:
7990:
7993:
7996:

TE

BD
D3

24

BD
76
16

BD
DB

10

BD
DA

24

BD
DA
BD
DC
BD
D9

BD
BD

TE
BD

48
BD

51
C6
34
BD

BD
BD
BD
BD
BD

79

84

09

88
CB
00

84

24

84

21

84

84

84

cC
88

DB
88

03
88

67
03
04
B

7D
7D
7B
7C
88

45

AD

F5
35
98

AD

00

AD

80

80

80

43
F5

35
F5

24
F5

24

El

02
9F
74
43
F5

90

JMP

JSR

BCC

JSR

LBRA

JSR

LBCC

JSR

BCC

JSR

JSR

JSR

JSR
JSR

JSR

JSR

LDB
PSHS
JSR

JSR
JSR
JSR
JSR
JSR

$7945

$84AD

$7954

$88F5

$T79EC

$84AD

ST9EC

$84AD

$7983

$8480

$8480

$8480

$7C43
$88F5

$88F5

$88F5

#3503

$7TBE1L

$7D02
$7DIF
$TB74
$7C43
$S88F5

’

’

<nop>
Determine if in game-over or power-up mode
GetMemoryFlag ()

0xD3 game-over mode, set by game-over code in $3B

c-bit clear = game-over mode, skip over bash effect
c-bit set = power-up mode, play bash effect
CallBankedFunction Param WPCAddr ()

AttractMode T2BashEffect() at start of attract mode
Now go down to power-up attract mode after bash effect

Game-Over Attract-Mode Starts Here

GetMemoryFlag ()
0xDB indicating power-up sequence started

GetMemoryFlag ()
0xDA flag gets cleared in bank 0x3B

SetMemoryFlag ()

0xDA flag gets cleared in bank 0x3B
SetMemoryFlag ()

0xDC main inner attract block played 2 times
SetMemoryFlag ()

0xD9 main outter attract block played 5 times

AttractMode HighScores ()
CallBankedFunction Param WPCAddr ()
L8.3 Attract Mode Fixup 09:
If L8.2 mode: Replace FanClubMessage with
CreditsInsertCoin/LastGamesScores
-->AttractMode FanClubMessage ()
CallBankedFunction Param WPCAddr ()
L8.3 Attract Mode Fixup 10:
If L8.1 mode: CastCredits
else for L8.2 do TerminatorLightning
-->AttractMode CastCredits()
CallBankedFunction Param WPCAddr ()
L8.3 Attract Mode Fixup 11:
If 18.1 mode: SpecialThanks and CustomRomMessage
else for L8.2 CyborgComputerReadout and
CustomRomMessage
-->AttractMode SpecialThanks ()

AttractMode LastGameScores ()

Call $7F69 function that clears display prior

to LastGameScores in special circumstances.
AttractMode ReplayAt ()
AttractMode GameOver ()
AttractMode CreditsInsertCoin()
AttractMode HighScores()
CallBankedFunction Param WPCAddr ()

L8.3 Attract Mode Fixup 12:

If 1L8.2 mode: Replace FanClubMessage with

; CreditsInsertCoin/LastGamesScores

7999: 7E DB 35 ; ——->AttractMode FanClubMessage ()
799C: BD 7B 33 JSR $7B33 ; AttractMode WilliamsLogoBlockyWipe ()
799F: BD 7B 58 JSR $7B58 ; AttractMode Presents()

79A2: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAddr ()
79A5: 76 CB 35 ; ——>AttractMode T2BashEffect ()

79A8: BD FB E2 JSR SFBE2 ; AttractMode StaringArnold()

79AB: 7E 79 AE JMP $T79AE ; <null>

; L8.3 Attract Mode Fixup 13:
; If 1L8.2 mode: GameOver

79AE: BD 7B E1 JSR S7TBE1 ; AttractMode LastGameScores ()
79B1: BD 7D 02 JSR $7D02 ; AttractMode ReplayAt ()
79B4: BD 7C 43 JSR $7C43 ; AttractMode HighScores ()
79B7: BD 7B 74 JSR $TB74 ; AttractMode CreditsInsertCoin()
79BA: BD 88 F5 JSR $S88F5 ; CallBankedFunction Param WPCAddr ()
79BD: 44 12 24 ; ——->AttractMode PullTrigger ()
79C0: BD 7B E1 JSR S7TBE1 ; AttractMode LastGameScores ()
79C3: BD 7D 02 JSR $7D02 ; AttractMode ReplayAt ()
79C6: BD 7B 00 JSR $7B00 ; AttractMode WilliamsLogoDraw ()
79C9: BD 7B E1 JSR $TBE1 ; AttractMode LastGameScores ()
79CC: BD 7C 43 JSR $7C43 ; AttractMode HighScores()
79CF: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAddr ()
79D2: TE 43 35 ; —->AttractMode ArnoldShootingShotgun ()
79D5: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAddr ()
79D8: T7E B2 35 ; ——>AttractMode SayNoToDrugs ()
79DB: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAJdr ()

; L8.3 Attract Mode Fixup 14:

; Play CustomMessage and CustomRomMessage
79DE: 54 86 24 ; ——>AttractMode CustomMessage ()
79E1: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAJdr ()
79E4: T7E 18 33 ; —->AttractMode CyborgComputerReadout ()
79E7: 35 04 PULS B ;
79E9: 5A DECB ;
79EA: 26 99 BNE $7985 ;

; The following is done at power-up, code jumps here
; immediately after having played the T2 bash effect.

79EC: BD 84 80 JSR $8480 ; SetMemoryFlag()

79EF: DB ; 0xDB indicating power-up sequence started
79F0: C6 05 LDB #$05 ;

79F2: 34 04 PSHS B ;

79F4: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAJdr ()

; L8.3 Attract Mode Fixup 01:
; Replace SpecialThanks with

; SpecialThanks/CustomRomMessage
79F7: 51 67 24 ; ——>AttractMode SpecialThanks ()
79FA: C6 02 LDB #$02 ;
79FC: 34 04 PSHS B ;
79FE: BD 7D 02 JSR $7D02 ; AttractMode ReplayAt ()
7A01: BD 7C 43 JSR $7C43 ; AttractMode HighScores()
7A04: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAddr ()

; L8.3 Attract Mode Fixup 02:
; If L8.2 mode: Replace FanClubMessage with

; CreditsInsertCoin/LastGamesScores
7A07: 7E DB 35 ; ——->AttractMode FanClubMessage ()
7A0A: BD 7B 74 JSR STB74 ; AttractMode CreditsInsertCoin()

; L8.3 Attract Mode Fixup 03:
; If L8.1 mode: CreditsInsertCoin
; else for L8.2 ReplayAt

7A0D:
7A10:
TA13:
7TAl6:

7TA19:
TAlC:
TALF:
TA22:
TA25:
TA28:
TA2B:
TA2E:
TA31:
TA34:
TA37:
TA3A:
7A3D:

TR40:
TA43:
TA46:
TRA49:
TAAC:
TA4F:

TA52:
TA54:

TA56:
TA59:

TA5A:

7TA5C:
7TASF:
TA61:
TA64 :
TAG6:

TA69:
TA6C:

7TA6D:
TA70:
TAT3:
TAT6:
TAT9:
TATC:
TATE:
TA82:

TA85:

TA88:
TABA:

BD
78
BD
TE

BD
BD
BD
BD
76
BD
BD
BD
BD
BD
78
BD
TE

BD
BD
BD
44
BD
BD

10
24

BD
D9

25

BD
00
TE
86
BD

BD
A5

BD
7C
BD
BD
BD
78
BD
TE

BD

10
24

88
92
FB
TA

7B
7B
7B
88
CB
7C
7B
7B
7B
88
62
FB
TA

e
B
88
12
7D
86

00
17

84

11

8B
E4
FO
04
co

85

88
Al
7B
7B
88
92
FB
TA

86

00
16

F5
35
E2
19

El
00
58
F5
35
43
74
1D
58
F5
35
E2
40

43
74
F5
24
02
5B

AD

77

30

DB

46

F5
33
33
58
F5
35
E2
85

5B

JSR

JSR

JMP

JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JMP

JSR

JSR

JSR

JSR

JSR

BCC

JSR

BCS

JSR

LDA

JSR

JSR

JSR
JSR
JSR
JSR

JSR

JSR

BCC

$88F5
SFBE2

$TAL9

$STBE1
$7B0O0
$7B58
$88F5
$7C43
$TB74
$7B1D
$7B58
$88F5
SFBE2
$7A40

$7C43
$TB74
$S88F5
$7D02
$865B

$7A6D

$84AD

$7A6D

$8B77

#504

SCODB

$8546

$S88F5
$7B33
$7B58
$S88F5

SFBE2

$865B

STAA2

CallBankedFunction Param WPCAddr ()
-->AttractMode T2ShineyLogo ()
AttractMode StaringArnold()

<null>

18.3 Attract Mode Fixup 04:

If 1L8.2 mode: GameOver
AttractMode LastGameScores ()
AttractMode WilliamsLogoDraw ()
AttractMode Presents()
CallBankedFunction Param WPCAddr ()
-->AttractMode T2BashEffect ()
AttractMode HighScores()
AttractMode CreditsInsertCoin ()
AttractMode WilliamsLogoBlocky ()
AttractMode Presents ()
CallBankedFunction Param WPCAddr ()
-->AttractMode JudgementDay ()
AttractMode StaringArnold()
<null>

18.3 Attract Mode Fixup 05:

If L8.2 mode: LastGameScores
AttractMode HighScores()
AttractMode CreditsInsertCoin()
CallBankedFunction Param WPCAddr ()
-->AttractMode PullTrigger ()
AttractMode ReplayAt ()
LookupGameAdjustmentParameterlandCheckIfEqualsParam? ()

C-bit set when not-equal
0x10 == Attract Sounds, C-bit = not equal to 0x00

GetMemoryFlag ()
0xD9 main outer attract block played 5 times

Normally: C-bit set, skip "I am a cybornetic organism"

ScheduleFunctionStart ()
<related to "I am a cybornetic organism" and music>

DoSoundTableParameterByte ()
0xA5="I am a cybernetic organism"

CallBankedFunction Param WPCAddr ()
-->AttractMode TerminatorLightning()
AttractMode WilliamsLogoBlockyWipe ()
AttractMode Presents|()
CallBankedFunction Param WPCAddr ()
-->AttractMode T2ShineyLogo ()
AttractMode StaringArnold()
<null>
Call hook function that only does this when NOT time
to pay "Cybornetic organism" speech
18.3 Attract Mode Fixup 06:
If L8.2 mode: LastGameScores
LookupGameAdjustmentParameterlandCheckIfEqualsParam?2 ()
C-bit set when not-equal
0x10 == Attract Sounds, C-bit set when not 0x00

7A8C:
7TA8F:

7A90:

TA92:
7TA95:

7TA96:
TA99:
7TA9B:

TA9E:
7AAL:

TARA2:
TAAS5:
TAA8:
7TAAB:
7TAAE:
7AB1:
TAB4 :
7TAB7T:
7TABA:
7ABD:
7TACO:
TAC3:

7TACG:
7TACY:
7TACC:
7TACEF:
7TAD2 :

7ADS5:
7AD8:
7ADA:
7TADB:
7ADEF:
TAE2:

TAES:

7TAES8:
TAE9:
TAEB:
TAEC:
TAFO:
TAF3:
TAFG:

TAF9:
TAFC:

7TAFD:

BD
D9

25

BD
9D

BD
00
TE

BD
D9

BD
TE
BD
BD
44
BD
BD
BD
BD
78
BD
TE

BD
TE
BD
TE
BD

54
35
5A
10
BD
7D

BD

DC
35
5A
10
BD
BD
48

BD
D9

16

84

10

85

8B
E4
A2

84

88
18
7B
88
12
7D
e
B
88
62
FB
TA

88
43
88
B2
88

86

04

26

88

82

84

04
26
7D
88
03

84

FE

AD

46

77

30

8F

F5
33
74
F5
24
02
43
74
F5
35
E2
Cé

F5
35
F5
35
F5

24

FF
F5
35

80

FF
5A
F5
24

80

1D

02

JSR

BCS

JSR

JSR

JSR

JSR

JSR
JSR

JSR
JSR
JSR
JSR

JSR

JSR

JSR

JSR

PULS
DECB
LBNE
JSR

JSR

PULS
DECB
LBNE
JSR
JSR

JSR

LBRA

$84AD

STAA2

$8546

$8B77

$848F

$88F5

$TB74
$88F5

$7D02
$7C43
$TB74
$S88F5

SFBE2

$88F5

$88F5

$88F5

$79FC
$88F5

$8480

ST9F2
$7D5A
$88F5

$8480

GetMemoryFlag ()
0xD9 main outer attract block played 5 times

DoSoundTableParameterByte ()
0x9D="1 am a cyberdyne systems series 800 terminator"

<related to "I am a Cyberdyne series 800-terminator">

ClearMemoryFlag()
0xD9 main outer attract block played 5 times

CallBankedFunction Param WPCAddr ()
-->AttractMode CyborgComputerReadout ()
AttractMode CreditsInsertCoin ()
CallBankedFunction Param WPCAddr ()
-->AttractMode PullTrigger ()
AttractMode ReplayAt ()
AttractMode HighScores /()
AttractMode CreditsInsertCoin()
CallBankedFunction Param WPCAddr ()
-->AttractMode JudgementDay ()
AttractMode StaringArnold()

<null>

18.3 Attract Mode Fixup 07:

If 1L8.2 mode: LastGameScores
CallBankedFunction Param WPCAddr ()
-->AttractMode ArnoldShootingShotgun ()
CallBankedFunction Param WPCAddr ()
-->AttractMode SayNoToDrugs ()
CallBankedFunction Param WPCAddr ()

18.3 Attract Mode Fixup 08:

Play CustomMessage and CustomRomMessage

-->AttractMode CustomMessage ()

CallBankedFunction Param WPCAddr ()
-->AttractMode TamTheFuture ()

SetMemoryFlag ()

18.3 Attract Mode Fixup 15:
At inner-x2 if L8.3 set flag for Cybornetic Sounds
0xDC main inner attract block played 2 times

AttractMode TimeDate ()
CallBankedFunction Param WPCAddr ()
-->AttractMode CastCredits()

SetMemoryFlag ()
0xD9 main outer attract block played 5 times

Fan Club Code

Shown below is the T2 Fan Club code that was removed from L8.3. It is being shown as an aid for those
interested in T2 code since this function involves writing some messages on the display and also
checking the system date. In L-8 ROM this code started at S7EDB,35 (ROM offset Ox57EDB).

; AttractMode FanClubMessage() (74 bytes of ROM)
7EDB: BD 86 5B JSR $865B ; LookupGameAdjustmentParameterlandCheckIfEqualsParam?2 ()
; C-bit set when not-equal
7EDE: 12 00 ; 0x12 == T2FanClub, C-bit set when not equal to 0x00
TEEQ: 27 42 BEQ $TF24 ;
TEE2: 4F CLRA ;
7EE3: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAddr ()
TEE6: 42 DC 39 ; GetTimeDateYearIntoD ()
7EE9: 10 83 07 C8 CMPD #$07C8 ; Checks if current year is 1992 or less
7EED: 25 0D BCS STEFC ; If year is less than 1992 then C is set, go to $7EFC
TEEF: 22 33 BHI $TF24 ; If year is > 1992 then no fan club message, go to end
TEF1l: 4F CLRA ;
7TEF2: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAddr ()
TEF5: 42 E5 39 ; GetTimeDateMonthIntoA ()
TEF8: 81 06 CMPA #3506 ; Checks if current month is June
TEFA: 22 28 BHI $STF24 ; If greater than June, skip to the end.
; So fan club not allowed after June 1992
7EFC: BD D3 4C JSR $D34C ;
7EFF: BD D3 60 JSR $D360 ;
7F02: BD D7 99 JSR $D799 ;
7F05: 00 DO ; String index 0xDO = "TERMINATOR 2"
7E07: 01 ; Font index 0x01 = 7 high single stroke
7F08: 40 07 ; Center horizontally, bottom starts at line 7
7F0A: BD D7 99 JSR $D799 ;
7F0D: 00 D1 ; String index 0xD1 = "Fan Club"
7FOF: O1 ; Font index 0x01 = 7 high single stroke
7F10: 40 11 ; Center horizontally, bottom starts at line 17
7F12: BD D7 99 JSR $D799 ;
7F15: 00 D2 ; String index 0xD2 = "Call 1-800-237-4400"
7F17: 01 ; Font index 0x01 = 7 high single stroke
7F18: 40 1C ; Center horizontally, bottom starts at line 28
7F1A: BD 88 F5 JSR $88F5 ; CallBankedFunction Param WPCAddr ()
7F1D: 7F 57 33 ;
7F20: BD 83 46 JSR $8346 ; Sleep()
7F23: CO ;

TF24: 39 RTS ;

ROM Image Changes

The table, below, identifies every ROM change in L8.3 as compared to the official L-8 ROM image with a

brief description of each ROM change.

ROM WPC Original Bytes Original Description New Bytes New Description
Offset Address
0x1012C | $412C,24 | ©° 2 Security Level animation. | °7 *° Security Level animation.
Original jump address at New jump address to
end of animation. $5749,24 new code.
FF FF FF FF FF FF FF FF H 34 02 86 55 97 B4 35 02 H H
0x11749 | $5749,24 v oER PP PR PR PR Unused bytes in bank b FB AR 7B 0O 5o New end-of-animation code
- - S24 to prevent flicker at end of
0x11756 | $5756,24 the animation.
0x400D5 | $40D5,30 | 7o ;¢ 92 0 92 20 02 °° | Feature Adjustments, o0 pe oz Al 9t o7 o2 97 | Sound Test, English
= - 5D 41 6E 41 7F 41 90 41 | English selections string | 2E 67 B9 51 8B 4E 6F 4E | selections string pointer
Al 41 B2 41 C1 41 CF 41 . C2 57 B6 41 62 7A 75 67
0x40103 | $4103,30 | op 41 £5 41 Fo 42 08 42 | pointers. 20 52 69 65 68 65 6= oo | table at S40D5 - S40EF.
19 42 25 42 35 42 47 FF FF FF FF FF FF FF German strlng at $40F0_
40FC. Unused bytes at
S40FD - $4103.
00 16 02 41 04 44 44 H 00 OC 02 41 04 6D C4 6
0x404AB | $44AB,30 | [, .7 oo 1: ob as 18 .o | Feature Adjustments, b o5 b en om en o on | Sound Test, German
- - 29 45 3a 45 42 45 5B 45 | German selections string | 02 6E 1B 5B CF 6E 25 52 | selections string pointer
6C 45 7B 45 89 45 96 45 . 36 57 B6 FF FF FF FF FF
0x404D9 $44D9,30 A3 45 B2 45 BF 42 08 42 | pointers. °F FF FF Fr Fr rr rF rF | table at S44AB - S44C5.
19 42 25 42 35 42 47 FF FF FF FF FF FF FF Unused byteS at $44C6'
S44D9.
0x40577 | $4577,30 | 4° %° German string content. 8 e Corrected German text.
0x407EA | S$47EA,30 | 00 ;¢ 92 01 0% °° 12 ¢ | Feature Adjustments, Jo 00 oz fr 28 7 2l 1t | Sound Test, French
- - 6E 48 80 48 91 48 a4 48 | French selections string | E3 71 F3 71 FE 72 oc 72 | selections string pointer
B7 48 C8 48 DA 48 EC 41 . 17 57 B6 FF FF FF FF FF
0x40818 $4818,30 DD 48 FE 49 10 49 21 42 | pointers. FF FF FF FF Fr rr rF rF | table at S47EA - $4804.
19 49 33 49 44 42 47 FF FF FF FF FF FF FF Unused bytes at 54805'
$4818.
0x41864 | $5864,30 | °» FE oA 4 German string pointers. | °® #F 40 F0 Corrected/fixed pointers.
0x4187E | $587E,30 | 2 13 o2 18 °8 58 °F 55 | German string pointers. | 77 1% 20 00 50 98 51 12 | Corrected/fixed pointers.
0x41889 | $5889,30
0x41952 | $5952,30 | °° “* German string pointer. oA EE Corrected/fixed pointer.
0x419C6 | $59C6,30 | *F ¢ German FUA pointer. 57 B6 Corrected/fixed pointer.
0x419D6 | $59D6,30 | 4B ©° German FUA pointer. S B Corrected/fixed pointer.
0x41AA1 | $5AA1,30 | “B 20 German string content. 43 4B Corrected German text.
0x41AEE | $5AEE,30 | 22 °° °° °5 2 99 °° °F | German string content. | ;2 17 > 29 26 22 °° % | Repurposed German string
= - 73 73 45 4E content as part of text
0x41AFF | S5AFF,30 corrections.
54 42 41 43 4B 20 42 45 H 43 4B 42 41 43 4B 20 42
0x41B38 | $5B38,30 | ;02 .- 50 b o0 2 0 | German string content. o ae e oo e he 4 4o | Corrected German text.
- - 43 4B 20 42 45 00 4B 49 42 41 43 4B 20 42 00 5A Repurposed German String
54 42 41 43 4B 20 20 00 69 65 6C 65 6E 20 55 6E
0x41B69 | $5B69,30 | 15 49 54 42 41 00 4B 49 64 20 44 65 68 00 Fr Fr | CONtent as part of text
54 42 00 4B 49 54 00 4B FF FF FF FF FF FF FF FF .
75 00 o oer corrections.

Moved string now unused
bytes at S5B5E - $5B69.

53 54 41 52 54 20 44 52 o 44 52 55 45 43 4B 45 20
0x41C00 | $5C00,30 2% 43 4B 45 1m German string content. 3 4 21 55 e Corrected German text.
0x41COD | S5C0D,30

20 54 41 54 54 45 4E 00 H 54 41 53 54 45 52 4E 00
0x41DC2 | $5DC2,30 12 19 ac 14 20 =7 45 43 | G€rman string content. o br o or e e on pp | COrrected German text.

- - 48 53 45 4C 4E 00 FF FF FF FF FF FF Moved string now unused
0x41DD7 | $5DD7,30 bytes at $5DCA - $5DD7.
0x42029 | $6029,30 | “E ¢° French FUA pointer. I 1 Corrected/fixed pointer.
0x42039 | $6039,30 | “F ©° French FUA pointer. 57 B6 Corrected/fixed pointer.

00 OB 02 41 04 67 62 67 4 FF FF FF FF FF FF FF FF
0x42749 | $6749,30 e 67 70 61 8o c7 on ¢y | Sound Test, English o ore re e e roee ;e | MOved table.
- = AE 67 B9 51 8B 4E 6F 4E | selections string FF FF FF FF FF FF FF FF | Now unused bytes.
c2 i FF
0x42761 | $6761,30 pointers.
00 OB 02 41 04 6D C4 6D FF FF FF FF FF FF FF FF
0x42DAB | $6DAB,30 B b be 60 B en oo ep | SOUNd Test, German o ore rr e e e oee o | MOved table.
- - OE 6E 1B 5B CF 6E 25 52 | selections string FF FF FF FF FF FF FF FF | Now unused bytes.
36 . FF
0x42DC3 | $6DC3,30 pointers.
00 OB 02 41 04 71 97 71 FF FF FF FF FF FF FF FF
0x4317E | S717E,30 a7 71 e 71 e 91 be 01 | Sound Test, French o ore re e e roee o | MOved table.
- = E3 71 F3 71 FE 72 0C 72 | selections string FF FF FF FF FF FF FF FF | Now unused bytes.
17 . FF
0x43196 | $7196,30 pointers.
0x43942 | $7942,30 | '® 79 45 Attract Mode start, NOP | B0 7% 7° Jump to fix for WPC Custom
instruction. Message “Testing...” bug.
BD 88 F5 7E DB 35 BD 88] BD 7F CD 12 12 12 BD 7F
0x43971 | $7971,30 oo 48 03 24 Bp 85 ps 51 | Attract Mode routine ta 1 10 10 8o 70 B3 1o | Attract Mode updates,
- = 67 24 C6 03 34 04 BD 7B 12 12 c6 03 34 04 BD 7F | calling new logic in the S30
E1 BD 7D 02 BD 7D 9F BD 69 BD 7D 02 BD 7D 9F BD
0x439AD | $79AD,30 | 78 74 20 7c 43 BD 88 F5 78 74 BD 7C 43 BD 7F cp | bank.
7E DB 35 BD 7B 33 BD 7B 12 12 12 BD 7B 33 BD 7B
58 BD 88 F5 76 CB 35 BD 58 BD 88 F5 76 CB 35 BD
FB E2 7E 79 AE FB E2 BD 7F D7
BD 88 F5 54 86 24 BD 88 . BD 7F AB 12 12 12 BD 88
0x439DB | $79DB,30 7o 7m 18 33 3¢ 04 =a ac | Attract Mode routine oo 7m 18 33 35 04 =a a¢ | Attract Mode updates,
- - 99 BD 84 80 DB C6 05 34 99 BD 84 80 DB C6 05 34 caIIing new Iogic in the $30
04 BD 88 F5 51 67 24 Co6 04 BD 7F 9E 12 12 12 C6
0x43A18 | $S7A18,30 | 02 34 04 30 70 02 BD 7C 02 34 04 BD 7D 02 BD 7¢c | bank.
43 BD 88 F5 7E DB 35 BD 43 BD 7F CD 12 12 12 BD
78 74 BD 88 F5 78 92 35 7F Cl1 BD 88 F5 78 92 35
BD FB E2 7E 7A 19 BD FB E2 BD 7F D7
0X4’3A3D $7A3D 30 7E T7A 40 «“« BD 7F DF “«
’
0x43A82 | $S7A82,30 | 78 7A 85 “ BD 7F 60 p
7
0X4’3AC3 $7AC3 30 7E 7A C6 “ BD 7F DF “
’
0X43AD2 $7AD2 30 BD 88 F5 54 86 24 “ BD 7F AB 12 12 12 “
7
OX43AE5 $7AE5 30 BD 84 80 DC “« BD 7F 87 12 “«
7
0x43BE1 | $7BE1,30 | B° 73 €0 Attract Mode Display BD 7E 72 Branch to bug fix for game-
routine for showing over attract mode failure to
scores from previously display previously played
played game, start. scores during L8.1 mode.
FF FF FF FF FF FF FF FF A] BD 88 F5 64 23 3D 25 77
0x43F60 | $7F60,30 o e e re o e ee e | UNUSEd region in bank 35 Bo 88 55 c1 op 3p e | Updated Attract Mode
- = FF FF FF FF FF FF FF FF [$30, 78 E1 BD D3 4C BD D3 60 | |ogic. These are small
FF FF FF FF FF FF FF FF 39 34 14 8E 01 60 C6 60 .
0x43FFF | S7FFF,30 | er rr #r rF £7 FF FF FF 6F 80 5a 26 FB 35 94 Bp | functions called from the
FF FF FF FF FF FF FF FF 84 80 DC 8D 07 25 04 BD . .
FF FF FF FF FF FF FF FF 84 80 D9 39 34 02 BD 82 main attraCt mOde flxups'
FF FF FF FF FF FF FF FF FF 17 81 02 35 82 BD 88 above in order to ShOW
FF FF FF FF FF FF FF FF F5 51 67 24 BD 88 F5 7F !
FF FF FF FF FF FF FF FF 65 3D 39 BD 88 F5 54 86 | correct attract mode based
FF FF FF FF FF FF FF FF 24 20 F1 8D 41 24 02 20 th tt t d
FF FF FF FF FF FF FF FF E5 BD 88 F5 7E 18 33 20 | ON theattract modae
FF FF FF FF FF FF FF FF E3 8D 33 24 04 BD 7B 74 adjustment
FF FF FF FF FF FF FF FF 39 BD 7D 02 39 8D 27 25 .
FF FF FF FF FF FF FF FF 05 8D F2 BD 7B E1 39 8D
FF FF FF FF FF FF FF FF 1D 25 03 BD 7D 9F 39 8D

0x444B4

0x455CB

0x4671E

0x46CI9E

0x46CCC

0x46CD9

0x46D7B

0x46D87

0x47F9B

0x47FFB

0x4F4C9

0x4FFF6

0x57723

$44B4,31

$55CB,31

$671E,31

$6C9E,31

$6CCC,31

$6CD9Y,31

$6D78,31

$6D87,31

$7F9B,31

$7FFB,31

$74C9,33

S7FF6,33

§7723,35

B
1T
1T
FF
TE

BD

BD

TE

BD

BD
84

FF

BD

1707
ER
EB
FF
44

85

84

6C

83

86
AD

FE

85

B
1T
1T
FF
B7

46

8F

Al

46

90
48

FF

46

1707
EB
EB
FF
26

89

E3

02

00
24

FE

94

B
1T
1T
FF
41

BD
27

A9
DB

FF

170 1917 I
[EESEIESSELE]
[EESEIESSELE]
T 17T

8B

24

FE

c3

E1l

00

BD

Outhole switch handler,
NOP and BNE
instruction.

Database award handler
for 100,000 points. Plays
“Big Points” sound call.

Drop-target switch
handler code.

Multiball start code.
NOP instruction.

Multiball start code.
Code that waits until all
balls have been ejected
onto playfield.

Multiball maintenance
code. Thisisend of a
loop that continuously
checks for conditions
that ensure MB is active.
Unused bytes in bank
S31.

Database award handler
call to check Profanity
mode, always returns
Profanity=off.

Unused bytes in bank
$33

Attract mode where first
“Boom” is played.

TE

BD

BD

BD
TE

BD

TF

TF

TF

88

88
6D

TF

86

TF

FO
10%5)
7T
1717
BD

E8

A2

BA

F5

F5
88

5B

co

39

Al
17
TF

12

12

79

79
12

16

94

35

22
12

01

10 24 07
24 39 BD
39 34 02
01 35 82

3B

3B

39

20

24

06

EO

Moved BNE in place of NOP
and added a branch to bug
fix routine related to ball
drain at MB start.

Branch to routine to check
profanity adjustment and
play “Big Points” or FUA
sound call.

Insert jump to new code to
ensure DT switch is ignored
when it had been kicked up
or down automatically by
software.

Branch to new code to
check DT-Action adjustment
and set DT up or down as
needed.

Branch to new code to fix
multiball startup bugs. Due
to space issues this jumps to
fixup function located in a
different bank at $7935,3B.
Branch to new code to fix
multiball bugs. Due to
space issues this jumps to
fixup function located in a
different bank at $7922,3B.
New code for:

Outhole switch bug fix.
Drop-target switch bug fix.
Multiball DT-Action up/dn.

Database “Big Points/FUA”.
FUA Adjustment Checker.

Jump to new code that
reads the Profanity
adjustment and returns
on/off.

New code that reads
Profanity adjustment and
returns on/off.

Branch to new code that
only plays the “Boom” if
“Attract Sounds”

0x577B7

0x57EDB

0x57F24

0x57F9B

0x57FBF

0x57FFF

0x62CDE
0x69C53

0x6AD95

0x6ADB4

0x6BI9ED

0x6BA1A

0x6E09A

$77B7,35

S7EDB,35

S7F24,35

$7F9B,35

S7FBF,35

S7FFF,35

$6CDE,38
$5C53,3A

$6D95,3A

S6DB4,3A

S79ED,3A

S7A1A,3A

$609A,3B

BD

TE

BD

BD

BD
8B

85

TF

1777
1777
1777
1777
1777
1777
FF

53

C7

6D

AC

86
77

46

9E

FF
FF
FF
FF
FF
FF
71

50

26

F3

38

5B

94

BD

1777
1777
1777
1777
1777
1777
FF

49

07

14
E7

83

FF
FF
FF
FF
FF
FF
71

45

00

46

1777
1777
1777
1777
1777
1777
FF

4c

27
D1

20

FF
FF
FF
FF
FF
FF
71

oc
3B

1777
1777
1777
1777
1777
1777
FF

BD

Attract mode where
second “Boom” is
played.

T2 Fan Club code that
checks adjustment and
system date and displays
the attract mode “T2 Fan
Club” message if
appropriate to do so.

At end of animation
handler for Extra ball
award T-1000 shotgun
blast, NOP and % second
sleep function call.
Unused bytes in bank
$35.

German string content.
Adjustment allowance
checker function start.

During sound-test
advancement to next
sound, this is code that
calls the function to stop
current sound before
playing next sound.
During sound-test index
calculation this code that
checks the sound-test
index number is valid.
Unused bytes in bank
S3A.

Ball-search code used
when drop-target is

BD

BD

BD

BD

BD
BD

TF

83

TA

79

8B

co

46

0B

FE

77
5B

94

20

00
14

BD

E7
01

TE

60
27

DC

D1
04

3B

adjustment is on.

“"

Function for neatly ending
animation and clearing
display memory. Called for
better end-of-animation to
prevent flicker/brightness
change at last frame.
Unused bytes.

The % second sleep call
followed by jump to the
new code, above, to neatly
end the animation to
prevent flicker.

Checksum fixup byte is in
this region. The “boom
boom” fixes call this code to
only play “boom” if “Attract
Sounds” are on. Author sig.

Corrected German text.
Jump to new code that
checks if adjustment is “Fan
club” to ensure the
adjustment is disabled (not
shown in menu).

Jump to new code that
ensures sound T06 is fully
stopped prior to playing
next sound.

Jump to new code that can
perform additional fixup on
the sound-test index based
on Profanity adjustment.
Adjustment allowance code
to disable fan-club
adjustment.

Sound-test index
adjustment based on
“Profanity” adjustment.
Sound test TO6 extra code
to ensure sound is stopped.
Corrected ball-search drop-
target code to prevent

0x6E0AS8

0x6E309

0x6F290

0x6F894

0x6F8D9

0x6F900

0x6F965

0x6F9F9

0x6FA85

0x70202

0x70CA7

0x70CAF

S60A8,3B

$6309,3B

$7290,3B

$7894,3B

$78D9,3B

$7900,3B

$7965,3B

S79F9,3B

S7A85,3B

$4202,3C

S4CA7,3C

7E 63 0C

BD 6F OF

FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FE
FE
FE
FE
FE
FE
FE
FE
4D

4E

45

54

FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
62

48

45

52

FF
FF
FF
FF
FF
FF
FF
FF

4C

FF
FF
FF
FF
FF
FF
FF
FF

4E

kicked up as part of ball
search.

Start-of-ball audit and
housekeeping function.
NOP.

Code in common switch-
handler for gun-loaded,
left-lock, top-lock, and
ball-popper. This is code
when it was found that
the hit switch is
currently closed.

Unused bytes in bank
S3B.

Unused bytes in bank
S3B.

Unused bytes in bank
S3B.

English string pointers
for version strings.
German string content.

BD 79 00

BD 79 F9

4F

4C

E3
3F
83
E4
BD
BD
46
46
TE

86
A5
oc
BD
86
90
48
BD
27
22
07
4A
E3

BD
OF
Cl
84
24
09
20
D6
90
00
EO
25
06
35
86
AA
27
35
B9

4C

41

4F

44

00

drop-target reset during
ball-search when “Drop
Target Broken” adjustment
is set. Also prevents point
accumulation when DT is
automatically knocked
down during ball-search.
Branch to new function to
perform solid 3-bank lamp
extinguish, as per
adjustment.

Branch to new code to fix
issues with “forgotten-
multiball” when switch is hit
during hunter-ship
explosion at very start of
multiball.

Code to handle the DT-
Action of automatically
knocking drop-target down
or kicking it up at start of
multiball depending on
adjustment.

The 3-bank lamp extinguish
function, per adjustment.
Multiball startup bug-fix
code functions to prevent
“forgotten-multiball”
problems. Multiball-end
bug-fix to prevent lost
“load-the-ball” period.
Additional helper functions
for bug-fixes for the
“forgotten-multiball” bug.

Pointers to new version
strings, English.
Corrected German text.

S4CAF,3C

0x7192A | $592A,3C | °° € German string pointer. E 9B Corrected/fixed pointer.
0x71930 | $5930,3C | °® *7 German string pointer. B R4 Corrected/fixed pointer.
0x71B04 | $5B04,3C | ©2 ¢ 62 B8 German string pointers | 7F €6 7F P4 Pointers to new version
for version strings. strings, German.
0x71D1C | $5D1C,3C | P #2 54 57 4F 43 48 00 | German string content. | FF F¥ ¥F FF FE FE EE Y | Gtring moved, leaving this as
unused bytes.
0x71D37 | $5D37,3C | °3 41 4B 54 41 47 00 “ FEEFE FE FEOFE FEOEE String moved, leaving this as
unused bytes.
0x71D88 | $5D88,3C | ** “ 4 Corrected German text.
0X71E7E $5E7E 3C 20 4D 45 4E 55 45 “ 4D 45 4E 55 45 00 “«
7
0x721A1 | $61A1,3C | *° “ 4B “
0x72288 | $6288,3C *° “ 4B “
OX722A4 $62A4 3C 45 20 4D 45 4E 55 45 “ 4D 45 4E 55 45 00 00 “
7
0x722DA | $62DA,3C | *° “ 46 “
0x72491 | $6491,3C | 5 “ 18 u
0X72505 $6505 3C 20 53 50 49 45 4cC “ 50 49 45 4C 00 00 “
’
0x72C42 | $6C42,3C | 74 64 74 7L French string pointers 4F B2 7F FL Pointers to new version
for version strings. strings, French.
FF FF FF FF FF FF FF FF g 4D 49 54 54 57 4F 43 48
0x73F9B | $7F9B,3C | (= °% *° *F 20 S0 °T °7 | Unused bytes in bank 00 53 a1 a5 o5 o4 41 4 | Relocated/corrected
- = FF FF FF FF FF FF FF FF $3C. 00 52 45 56 2E 20 4C 2D | German text strings at
FF FF FF FF FF FF FF FF 25 58 41 2E 33 00 52 45
0x73FFF | S7FFF,3C | v #r rF rF rr rF PP #F 56 28 20 50 2D 25 58 41 | S7F9B - S7FAB.
FF FF FF FF FF FF FF FF 2E 33 00 45 50 52 4F 4D
FF FF FF FF FF FF FF FF 20 4C 2D 25 58 41 2E 33
FF FF FF FF FF FF FF FF 00 45 50 52 4F 4D 20 50 Relocated version strings
FF FF FF FF FF FF FF FF 2D 25 58 41 2E 33 00 50 .
FF FF FF FF FF FF FF FF 52 4F 47 52 2E 20 4c 2p | for Engllsh, German and
FF FF FF FF FF FF FF FF 25 58 41 2E 33 00 50 52
FF FF FF FF FF FF FF EF 4r 47 52 21 20 50 20 25 | French at $7FAC - S7FFF.
FF FF FF FF FF 58 41 2E 33 00
00 16 0C 00 00 00 00 0O H FF FF FF FF FF FF FF FF H H
0x75680 | $5680,3D | o0 o0 oF oo om po oo o | Feature Adjustments o e re re e e pe op | 1ADIE relocated, leaving this
- - 03 00 00 00 0a 00 01 00 | [Metadata Table. FF FF FF FF FF FF FF FF | gs unused bytes.
71 E8 3A 00 0A 00 00 0O FF FF FF FF FF FF FF FF
0x7578A S578A,3D | 23 00 01 00 71 E8 3a 00 FF FF FF FF FF FF FF FF
01 00 00 00 01 74 13 3A FF FF FF FF FF FF FF FF
72 70 3A 00 01 00 00 0O FF FF FF FF FF FF FF FF
01 74 13 3A 72 70 3A 00 FF FF FF FF FF FF FF FF
01 00 00 00 03 00 01 0O FF FF FF FF FF FF FF FF
72 79 3A 00 02 00 00 0O FF FF FF FF FF FF FF FF
04 00 01 00 72 79 3A 00 FF FF FF FF FF FF FF FF
02 00 00 00 04 71 E7 31 FF FF FF FF FF FF FF FF
72 70 3A 00 02 00 00 0O FF FF FF FF FF FF FF FF
04 71 E7 31 72 70 3A 00 FF FF FF FF FF FF FF FF
0B 00 05 00 63 00 01 0O FF FF FF FF FF FF FF FF
71 B2 31 00 OF 00 05 00 FF FF FF FF FF FF FF FF
63 00 01 00 71 B2 31 00 FF FF FF FF FF FF FF FF
OF 00 07 00 63 00 01 0O FF FF FF FF FF FF FF FF
71 B2 31 00 14 00 OA 0O FF FF FF FF FF FF FF FF
63 00 01 00 71 B2 31 00 FF FF FF FF FF FF FF FF
0C 00 08 00 63 00 01 0O FF FF FF FF FF FF FF FF
71 B2 31 00 01 00 00 0O FF FF FF FF FF FF FF FF
01 74 13 3A 72 70 3A 00 FF FF FF FF FF FF FF FF
00 00 00 00 78 00 01 0O FF FF FF FF FF FF FF FF
71 C7 31 00 00 00 00 0O FF FF FF FF FF FF FF FF
01 74 13 3A 72 70 3A 00 FF FF FF FF FF FF FF FF
00 00 00 00 01 74 13 3A FF FF FF FF FF FF FF FF
72 70 3A 00 01 00 00 0O FF FF FF FF FF FF FF FF
01 74 13 3A 72 70 3A 00 FF FF FF FF FF FF FF FF
00 00 00 00 01 74 13 3A FF FF FF FF FF FF FF FF
72 70 3A 00 00 00 00 0O FF FF FF FF FF FF FF FF
01 74 13 3A 72 70 3A 00 FF FF FF FF FF FF FF FF
00 00 00 00 01 74 13 3A FF FF FF FF FF FF FF FF
72 70 3A FF FF FF

0x7640F | $640F,3D | I IF F *F FE FEEF P | Unused bytes in bank S e ez 2 e It | Bug fix for game-over
- = FF FF FF FF FF FF FF FF $3D. 7F D2 35 96 BD 84 AD D9 | gttract mode L8.1 display of

FF FF FF FF FF FF FF FF 25 0C BD 86 5B 10 00 24 .

0x764DF $64DF,3D FF FF FF FF FF FF FF FF 03 1C FE 39 1A 01 39 4E | previous game scores at
FF FF FF FF FF FF FF FF 4F 4E 45 00 4B 45 49 4E
FF FF FF FF FF FF FF FF 45 00 41 55 43 55 4E 00 $640F - 56422.
FF FF FF FF FF FF FF FF 44 4F 57 4E 00 55 4E 54
FF FF FF FF FF FF FF FF 45 4E 00 42 21 53 00 55 .
FF FF FF FF FF FF FF FF 50 00 4F 42 45 4E 00 48 | Attract mode ‘cybornetic
FF FF FF FF FF FF FF FF 41 55 54 00 31 20 4D 42 .,
FF FF FF FF FF FF FF FF 20 44 4F 57 48 00 31 20 | Organism’ code update at
FF FF FF FF FF FF FF FF 4D 42 20 55 4E 54 45 4E _
FF FF FF FF FF FF FF FF 00 31 20 4D 42 20 42 41 $6423 - 56435.
FF FF FF FF FF FF FF FF 53 00 33 20 4D 42 20 44
FF FF FF FF FF FF FF FF 4F 57 4E 00 33 20 4D 42 .
FF FF FF FF FF FF FF FF 20 55 48 54 45 48 00 32 | English, German, French
FF FF FF FF FF FF FF FF 20 4D 42 20 42 41 53 00 ; ;
FF FF FF FF FF FF FF FF 33 20 4D 42 20 44 4F 57 strings used in some of the
FF FF FF FF FF FF FF FF 4E 00 33 20 4D 42 20 55 new feature adjustment
FF FF FF FF FF FF FF FF 4E 54 45 4E 00 33 20 4D .
FF FF FF FF FF FF FF FF 42 20 42 41 53 00 4r 46 | Selectable settings at $6436
FF FF FF FF FF FF FF FF 46 20 41 54 20 45 4F 42 | _&eAnF
FF FF FF FF FF FF FF FF 00 41 55 53 20 42 45 49 :
FF FF FF FF FF FF FF FF 20 45 4F 42 00 46 49 4E
FF FF FF FF FF FF FF FF 20 44 55 20 42 51 4C 4C
FF 00

0x7653D | $653D,3D | IT T FT TR T PR P T | Unused bytes in bank Do L2t or 22 38 20 | Feature Adjustment handler

- - FF FF FF FF FF FF FF FF | §3D, 06 11 83 00 00 26 06 8E | for “Timed 3Bank Lamps” at

FF FF FF FF FF FF FF FF 66 44 7TE 65 E3 11 83 00

0x766DF | S66DF,3D | rr rr rr rr FF FF FF FF 01 26 06 8E 65 68 7E 66 | 653D - $6570.
FF FF FF FF FF FF FF FF AC 8E 65 AB 35 86 64 BD
FF FF FF FF FF FF FF FF 64 C8 64 D4 Cl 02 26 04
FF FF FF FF FF FF FF FF 1C FE 20 02 1A 01 39 8D Feature Adjustment helper
FF FF FF FF FF FF FF FF F3 24 01 39 34 50 8D 05)
FF FF FF FF FF FF FF FF BD B9 51 35 D0 8E 65 aB | function at $6571 - S657B.
FF FF FF FF FF FF FF FF 11 83 00 00 26 04 8E 65
FF FF FF FF FF FF FF FF B6 39 11 83 00 01 26 04
FF FF FF FF FF FF FF FF 82 65 BB 39 11 83 00 02 | Feature Adjustment handler
FF FF FF FF FF FF FF FF 26 03 8E 65 CO 39 4D 45
FF FF FF FF FF FF FF FF aE 55 20 45 52 52 4F 52 | for “Attract Mode” at $657C
FF FF FF FF FF FF FF FF 00 4C 38 2E 31 00 4C 38
FF FF FF FF FF FF FF FF 28 32 00 4c 38 28 33 oo | - 965C4.
FF FF FF FF FF FF FF FF 8D AA 24 01 39 34 50 8D
FF FF FF FF FF FF FF FF 05 BD B9 51 35 DO 34 06
FF FF FF FF FF FF FF FF 11 83 00 00 26 05 8E 66 | Feature Adjustment handler
FF FF FF FF FF FF FF FF 44 20 03 8E 66 4A BD 82 . . ”
FF FF FF FF FF FF FF FF FF 95 81 02 22 04 1F 8o | for “Animation Code” at
FF FF FF FF FF FF FF FF 58 3A AE 84 35 86 BD 65
FF FF FF FF FF FF FF FF 71 24 01 39 34 50 8D 05 $65C5 - S65F2.
FF FF FF FF FF FF FF FF BD B9 51 35 DO 34 06 11
FF FF FF FF FF FF FF FF 83 00 00 26 05 8E 66 44 .
FF FF FF FF FF FF FF FF 20 D4 8E 66 50 35 86 4r | Feature Adjustment handler
FF FF FF FF FF FF FF FF 52 49 47 49 4E 41 4C 00 « A
FF FF FF FF FF FF FF FF 4F 52 49 47 a9 ag 41 4c | fOF “Lamp Driver” at $65F3 -
FF FF FF FF FF FF FF FF 45 00 43 4F 52 52 45 43 | §6613,
FF FF FF FF FF FF FF FF 54 45 44 00 4B 4F 52 52
FF FF FF FF FF FF FF FF 49 47 49 45 52 54 00 43
FF FF FF FF FF FF FF FF 4F 52 52 49 47 45 00 66 . .
FF FF FF FF FF FF FF FF 14 66 14 66 10 66 27 66 | Strings for new adjustment
FF FF FF FF FF FF FF FF 3166 3C 4C 45 44 00 BD | “Qriginal”, “Corrected”,
FF FF FF FF FF FF FF FF 65 71 24 01 39 34 50 8D
FF FF FF FF FF FF FF FF 05 BD B9 51 35 D0 34 06 | “Led” at $6614-$6653,
FF FF FF FF FF FF FF FF 11 83 00 00 26 05 8E 66
FF FF FF FF FF FF FF FF BC 20 3C 11 83 00 01 26
FF FF FF FF FF FF FF FF 05 8E 66 C2 20 31 11 83 ;
FF FF FF FF FF FF FF FF 00 02 26 05 8E 66 C8 20 Feature Adjustment handler
FF FF FF FF FF FF FF FF 26 11 83 00 03 26 05 8E | for “MB Start DT Action” at
FF FF FF FF FF FF FF FF 66 CE 20 1B 11 83 00 04
FF FF FF FF FF FF FF FF 26 05 88 66 D4 20 10 11 | $6654 - S66DF.
FF FF FF FF FF FF FF FF 83 00 05 26 05 8E 66 DA
FF FF FF FF FF FF FF FF 20 05 8E 65 AB 20 OE BD
FF FF FF FF FF FF FF FF 82 FF 95 81 02 22 04 1F
FF FF FF FF FF FF FF FF 89 58 3A AE 84 35 86 64
FF FF FF FF FF FF FF FF 36 64 3B 64 41 64 47 64
FF FF FF FF FF FF FF FF 4C 64 52 64 56 64 59 64
FF FF FF FF FF FF FF FF SE 64 63 64 6D 64 78 64
FF FF FF FF FF FF FF FF 81 64 8B 64 96 64 9F 64
FF FF FF A9 64 B4

R 0 1C 02 67 43 67 48 67 A stments
700,3D | EE EE EFFEFEFEFEEF | ynused bytes in bank PO S g Feat},lre Adju. :
Ox76700 | 56700, FE TF FE TF FE TR FE T S3D 9c 67 AD 67 BE 67 CF 67 | English selections string
- FF FF FF FF FF FF FF FF . Ch o0 s om ca ; ;
: tr TE TE TE PE PE PF bF]ig g; Z‘: 68 38 68 47 68 p0|nter table at $6700
0x768EA | S68EA,3D | rr rr rr rr FF FF FF FF S5 55 61 o8 70 68 35 66 | GeranT U s
FF FF FF FF FF FF FF FF oo tn 1 ce am o oo e
r TE TE TE PE PE PF fF C9 68 DA 67 43 67 43 67 $68EA
tr TE TE TE PE PE PF b 43 67 43 4E 55 4C 4C 00
FF FF FF FF FF FF FF FF o3 oh an an ae a4 %0
r TE TE TE PE PE PF fF 50 45 52 43 45 4E 54 00
r TE TE TE PE PE PF fF 45 58 54 52 41 42 41 4cC
FF FF FF FF FF FF FF FF 4o 30 o0 2t o5 4a am g
tr TF TF TE PE PE PF b 00 45 58 54 52 41 42 41
FF FF FF FF FF FF FF FF de 40 30 b a2 4 4 o5
Tt PP Fr P FE OF PE o 59 00 43 4F 4E 53 4F 4cC
tr PE PE PE bF bE bF b 41 54 49 4F 4E 20 42 41
FF FF FF FF FF FF FF FF 16 2e 00 4a oo aoeo oo
FF FF FF FF FF FF FF FF cu a1 o5 4o s s 29 an
tr PE PE PE bF bE DF o 55 4E 54 00 54 48 52 45
FF FF FF FF FF FF FF FF 2e 50 a5 25 op s 20 40
tr PE PE PE bF bE OF o 4F 55 4E 54 00 4B 49 43
e rr Ee e er br be bE 4B 42 41 43 4B 20 53 45
FF FF FF FF FF FF FF FF cs s 45 45 40 00 o3 am
tr Pr tE pE bE bE bE o 49 4C 4C 20 53 48 4F 54
FF FF FF FF FF FF FF FF AR S
tr Pr tE pE bE bE bE o 52 4F 50 20 54 41 52 47
FF FF FF FF FF FF FF FF Sy o0 a a0 an e oo
FF FF FF FF FF FF FF FF 24 05 oo e 4z a0 a0 a0
FF FF FF FF FF FF FF FF e un o0 a0 ap ae o5
FF FF FF FF FF FF FF FF 00 45 o oo oo to a0 i
Tr TE TE PE PF PF PF b 50 20 54 49 4D 45 52 00
Tr TE TE PE PF PF PF b 50 41 59 42 41 43 4B 20
FF FF FF FF FF FF FF FF 29 45 on e 5 00 4m a0
tr TE Pr Pr Pr or rr o 43 4B 50 4F 54 20 54 49
Tr TE TE PE PF PF PF b 4D 45 52 00 4D 49 4C 4cC
FF FF FF FF FF FF FF FF 1o 4m or 03 50 to ac ac
Tr TE TE PE PF PF PF b 53 00 54 49 4D 45 44 20
FF FF FF FF FF FF FF FF 20 4o e am 4o ae o5 o0
FF FF FF FF FF FF FF FF TR R
FE PE PE PE PE PE PE b 53 4F 55 4E 44 53 00 44
FF FF FF FF FF FF FF FF 2h o o0 oa an oa 20 4
tr Pr tE pE bE bE bE o 55 54 4F 46 49 52 45 00
be PE bE bE bE bE bE bF 54 32 20 46 41 4E 20 43
FF FF FF FF FF FF FF FF e 2t 29 00 4 ac 29 20
FF FF FF FF FF FF FF FF S0 2% 55 90 c4 o5 a9 29
PF IF P PR PR PR PF P 47 45 52 00 44 52 4F 50
FF FF FF FF FF FF FF FF 50 54 25 97 t4 om 20 29
FF FF FF FF FF FF FF FF 25 or a5 b a2 00 44 25
PF IF P PR PR PR PF P 50 54 52 47 54 20 44 57
FF FF FF FF FF FF FF FF e 20 ab ac 4 29 00 20
FF FF FF FF FF FF FF FF S5 an ac 41 am 49 54 20
FE PE PE PE PF PE PF bF 00 41 54 54 52 41 43 54
FF FF FF FF FF FF FF FF 0 4D ie 24 2t 00 43 am
FF FF FF FF FF FF FF FF o un 4s 4 a9 a0 am 20
FF FF FF FF FF FF FF FF 4a 4m a4 2t 00 dc an an
FE PE PE PE PF PF PF b 50 20 44 52 49 56 45 52
FF FF FF FF FF FF FF FF STt s s
FF FF FF FF FF FF FF FF o 50 4s o4 90 1 45 oa
FE PE PE PE PF PF PF b 4E 00 54 49 4D 45 44 20
FF FF FF FF FF FF FF FF 3 15 21 am 4 a0 ae a0
FF FF FF FF FF FF FF FF i eo o0
T H 0 1C 02 67 43 6A 43 6A B stments
A00,3D | FF FE FEFEFEFEFF FF | Unused bytes in bank 0y o9mor as om0 ot | Feature Adju ! 3
0x76A00 | 56400, P ET FE ET FE ET PF PR $3D 92 6A A3 6A B3 6A C4 6A | German selections string
- FF FF FF FF FF FF FF FF . b on ot on !
: r TE PE PE PE PE bE bF E’i 22 ?g ZB 28 68 47 68 | pointer table at S6A00 -
0x76B7E | S6B7E,3D | ¢r rr rr rF £r FF FF FF B Bt % ni e b % | bepny and trings at SOA43
FF FF FF FF FF FF FF FF PO il e
' Tr P PR PR PD Br bF 5D 6B 6E 67 43 67 43 67 - SGB7E
FF FF FF FF FF FF FF FF PP I
FF FF FF FF FF FF FF FF e e
FF FF FF FF FF FF FF FF 5 29 00 a2 oo o4 b u
FF FF FF FF FF FF FF FF 1 a1 e e e e e
FF FF FF FF FF FF FF FF D s
FF FF FF FF FF FF FF FF e
TE TE TE PE bE bE bF b 45 49 43 48 2E 00 54 52
FF FF FF FF FF FF FF FF PR el sl i
FF FF FF FF FF FF FF FF 00 2a e a2l
Tr TE TE PE TE bE bF b 52 47 54 20 5A 41 45 48
FF FF FF FF FF FF FF FF P TSl sl
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF 41 4E 4B 20 5A 41 45 48
FF FF FF FF FF FF FF FF 4C 2E 00 4B 49 43 4B 42
FF FF FF FF FF FF FF FF 41 43 4B 20 45 49 4E 53
FF FF FF FF FF FF FF FF 54 2E 00 53 4B 49 4C 4C
FF FF FF FF FF FF FF FF 20 53 48 4F 54 20 5A 45
FF FF FF FF FF FF FF FF 49 54 2E 00 44 52 4F 50
FF FF FF FF FF FF FF FF 20 54 41 52 47 45 54 20
FF FF FF FF FF FF FF FF 5A 45 49 54 00 33 2D 45
FF FF FF FF FF FF FF FF 52 2D 42 41 4E 4B 20 5A
FF FF FF FF FF FF FF FF 49 45 54 00 48 55 52 52
FF FF FF FF FF FF FF FF 59 20 55 50 20 5A 45 49
FF FF FF FF FF FF FF FF 54 00 50 41 59 42 41 43
FF FF FF FF FF FF FF FF 4B 20 5A 45 49 54 00 4A
FF FF FF FF FF FF FF FF 41 43 4B 50 4F 54 20 5A
FF FF FF FF FF FF FF FF 45 49 54 00 4D 49 4C 4C
FF FF FF FF FF FF FF FF 49 4F 4E 45 4E 20 50 4C
FF FF FF FF FF FF FF FF 55 53 00 50 4C 55 4E 47
FF FF FF FF FF FF FF FF 45 52 20 5A 45 49 54 00
FF FF FF FF FF FF FF FF 57 45 52 42 45 4D 45 4C
FF FF FF FF FF FF FF FF 4F 44 49 45 00 57 45 52
FF FF FF FF FF FF FF FF 42 45 4D 4F 44 55 53 00
FF FF FF FF FF FF FF FF 41 4E 49 4D 41 54 49 4F
FF FF FF FF FF FF FF FF 4E 53 43 4F 44 45 00 4C
FF FF FF FF FF FF FF FF 41 4D 50 45 4E 54 52 45
FF FF FF FF FF FF FF FF 49 42 45 52 00 4D 42 20
FF FF FF FF FF FF FF FF 53 54 41 52 54 20 44 54
FF FF FF FF FF FF FF FF 20 41 4B 54 4E 00 5A 45
FF FF FF FF FF FF FF FF 49 54 20 33 42 41 4E 4B
FF FF FF FF FF FF FF 20 4C 41 4D 50 45 00
FF FF FF FF FF FF FF FF . 00 1C 02 67 43 6D 43 6D -
0x76D00 | $6D00,3D or e ore re pe pe op pe | UNUSEd bytes in bank o5 6o c4 b 1 en se o | Feature Adjustments,
- = FF FF FF FF FF FF FF FF $3D_ 98 6D AR 6D BB 6D CE 6D | French selections String
FF FF FF FF FF FF FF FF ELl 6D F2 6E 04 6E 16 68]
0x76ED3 | S6ED3,3D | rr rF rF FF FF FF FF FF 1c 68 28 6E 3a 6E 4B 68 | pointer table at S6D00 -
FF FF FF FF FF FF FF FF 58 6E 5D 6E 6E 68 86 68]
FF FF FF FF FF FF FF EF 57 5 50 ¢z 90 e a1 en | 96D42 and strings at $6D43
FF FF FF FF FF FF FF FF B2 6E C3 67 43 67 43 67 | - SGED3,
FF FF FF FF FF FF FF FF 43 67 43 50 4F 55 52 43
FF FF FF FF FF FF FF FF 45 4E 54 2E 20 53 50 45
FF FF FF FF FF FF FF FF 43 49 41 4C 00 5C 25 20
FF FF FF FF FF FF FF FF 45 58 54 52 41 20 42 49
FF FF FF FF FF FF FF FF 4C 4C 45 00 4D 45 4D 4F
FF FF FF FF FF FF FF FF 49 52 45 20 45 58 2E 20
FF FF FF FF FF FF FF FF 42 49 4C 4C 45 00 42 49
FF FF FF FF FF FF FF FF 4C 4C 45 20 43 4F 4E 53
FF FF FF FF FF FF FF FF 4F 4C 41 54 2E 00 44 49
FF FF FF FF FF FF FF FF 46 46 2E 20 43 49 42 4C
FF FF FF FF FF FF FF FF 45 20 54 4F 4D 42 2E 00
FF FF FF FF FF FF FF FF 44 49 46 46 2E 20 43 49
FF FF FF FF FF FF FF FF 42 4C 45 53 20 43 4E 54
FF FF FF FF FF FF FF FF 52 00 52 45 47 4C 41 47
FF FF FF FF FF FF FF FF 45 20 4B 49 43 4B 42 41
FF FF FF FF FF FF FF FF 43 4B 00 44 49 46 46 2E
FF FF FF FF FF FF FF FF 20 54 49 52 20 4C 2E 20
FF FF FF FF FF FF FF FF 42 49 4C 4C 45 00 4D 49
FF FF FF FF FF FF FF FF 4E 55 54 2E 20 43 49 42
FF FF FF FF FF FF FF FF 4C 45 20 54 4F 4D 42 2E
FF FF FF FF FF FF FF FF 00 4D 49 4E 2E 20 43 49
FF FF FF FF FF FF FF FF 42 4C 45 53 20 43 4E 54
FF FF FF FF FF FF FF FF 52 00 4D 49 4E 55 54 2E
FF FF FF FF FF FF FF FF 20 22 48 55 52 52 59 20
FF FF FF FF FF FF FF FF 55 50 22 00 4D 49 4E 55
FF FF FF FF FF FF FF FF 54 2E 52 49 45 20 50 41
FF FF FF FF FF FF FF FF 59 42 41 43 4B 00 4D 49
FF FF FF FF FF FF FF FF 4E 55 54 2E 52 49 45 20
FF FF FF FF FF FF FF FF 47 41 43 4B 50 4F 54 00
FF FF FF FF FF FF FF FF 4C 2E 20 42 49 4C 4C 45
FF FF FF FF FF FF FF FF 20 41 55 54 4F 4D 41 54
FF FF FF FF FF FF FF FF 2E 00 53 4F 4E 20 44 27
FF FF FF FF FF FF FF FF 41 54 54 52 41 43 54 49
FF FF FF FF FF FF FF FF 4F 4E 00 41 55 54 4F 46
FF FF FF FF FF FF FF FF 49 52 45 20 43 49 42 4C
FF FF FF FF FF FF FF FF 45 20 54 2E 00 46 4C 49
FF FF FF FF FF FF FF FF 50 50 45 52 20 47 41 43
FF FF FF FF FF FF FF FF 48 45 54 54 45 00 43 49
FF FF FF FF FF FF FF FF 42 4C 45 20 54 4D 42 2E
FF FF FF FF FF FF FF FF 20 43 41 53 53 45 45 00
FF FF FF FF FF FF FF FF 4D 4F 44 45 20 41 54 54
FF FF FF FF FF FF FF FF 52 41 43 54 49 4F 4E 00
FF FF FF FF FF FF FF FF 43 4F 44 45 20 44 27 41
FF FF FF FF FF FF FF FF 4E 49 4D 41 54 49 4F 4E

FF FF FF FF FF FF FF FF 00 44 52 49 56 45 52 20
FF FF FF FF FF FF FF FF 44 45 20 4C 41 4D 50 45
FF FF FF FF FF FF FF FF 53 00 4D 42 20 44 45 42
FF FF FF FF FF FF FF FF 55 54 20 44 54 20 41 43
FF FF FF FF FF FF FF FF 54 4E 00 54 45 4D 50 53
FF FF FF FF FF FF FF FF 20 33 42 41 4E 43 20 4C
FF FF FF FF 41 4D 50 00
FF FF FF FF FF FF FF FF H 00 1C 0C 00 00 00 00 OO H
0x77000 | $7000,3D or e e re re pe op pe | UNUSEd bytes in bank 00 00 01 00 & mc rr oo | FEAture Adjustments
- - FF FF FF FF FF FF FF FF $3D. 03 00 00 00 0a 00 01 00 | [Metadata Table at $7000 -
FF FF FF FF FF FF FF FF 71 E8 3A 00 0A 00 00 0O
0x771A9 | $71A9,3D | wr rr rF rF Fr FF FF FF 23 00 01 00 71 E8 3a 00 | $7182.
FF FF FF FF FF FF FF FF 01 00 00 00 01 74 13 3A
FF FF FF FF FF FF FF FF 72 70 3A 00 01 00 00 0O
FF FF FF FF FF FF FF FF 01 74 13 3A 72 70 3A 00 Sound Test Sound Call Table
FF FF FF FF FF FF FF FF 01 00 00 00 03 00 01 00
FF FF FF FF FF FF FF FF 72 79 3a 00 02 00 00 oo | at $7183 - $71A9.
FF FF FF FF FF FF FF FF 04 00 01 00 72 79 3A 00
FF FF FF FF FF FF FF FF 02 00 00 00 04 71 E7 31
FF FF FF FF FF FF FF FF 72 70 3A 00 02 00 00 OO
FF FF FF FF FF FF FF FF 04 71 E7 31 72 70 3A 00
FF FF FF FF FF FF FF FF 0B 00 05 00 63 00 01 0O
FF FF FF FF FF FF FF FF 71 B2 31 00 OF 00 05 0O
FF FF FF FF FF FF FF FF 63 00 01 00 71 B2 31 00
FF FF FF FF FF FF FF FF OF 00 07 00 63 00 01 0O
FF FF FF FF FF FF FF FF 71 B2 31 00 14 00 0OA 00
FF FF FF FF FF FF FF FF 63 00 01 00 71 B2 31 00
FF FF FF FF FF FF FF FF 0C 00 08 00 63 00 01 0O
FF FF FF FF FF FF FF FF 71 B2 31 00 01 00 00 0O
FF FF FF FF FF FF FF FF 01 74 13 3A 72 70 3A 00
FF FF FF FF FF FF FF FF 00 00 00 00 78 00 01 0O
FF FF FF FF FF FF FF FF 71 C7 31 00 00 00 00 0O
FF FF FF FF FF FF FF FF 01 74 13 3A 72 70 3A 00
FF FF FF FF FF FF FF FF 00 00 00 00 01 74 13 3A
FF FF FF FF FF FF FF FF 72 70 3A 00 01 00 00 0O
FF FF FF FF FF FF FF FF 01 74 13 3A 72 70 3A 00
FF FF FF FF FF FF FF FF 00 00 00 00 01 74 13 3A
FF FF FF FF FF FF FF FF 72 70 3A 00 00 00 00 OO
FF FF FF FF FF FF FF FF 01 74 13 3A 72 70 3A 00
FF FF FF FF FF FF FF FF 00 00 00 00 01 74 13 3A
FF FF FF FF FF FF FF FF 72 70 3A 00 00 00 00 OO
FF FF FF FF FF FF FF FF 01 74 13 3A 72 70 3A 00
FF FF FF FF FF FF FF FF 02 00 00 00 02 00 01 00
FF FF FF FF FF FF FF FF 65 7C 3D 00 01 00 00 00
FF FF FF FF FF FF FF FF 01 00 01 00 65 C5 3D 00
FF FF FF FF FF FF FF FF 00 00 00 00 01 00 01 00
FF FF FF FF FF FF FF FF 65 F3 3D 00 00 00 00 00
FF FF FF FF FF FF FF FF 05 00 01 00 66 54 3D 00
FF FF FF FF FF FF FF FF 00 00 00 00 01 00 01 0O
FF FF FF FF FF FF FF FF 65 3D 3D 00 00 00 00 00
FF FF FF FF FF FF FF FF 00 00 01 00 8E BC FF 00
FF FF FF FF FF FF FF FF 00 00 00 00 00 00 01 0O
FF FF FF FF FF FF FF FF 8E BC FF 00 00 00 00 00
FF FF FF FF FF FF FF FF 00 00 01 00 8E BC FF 00
FF FF FF FF FF FF FF FF 00 00 00 00 00 00 01 0O
FF FF FF FF FF FF FF FF 8E BC FF 00 OC 03 00 00
FF FF FF FF FF FF FF FF 00 03 00 00 04 00 00 07
FF FF FF FF FF FF FF FF 00 00 14 00 00 B2 00 0O
FF FF FF FF FF FF FF FF BF 00 60 C6 00 60 25 01
FF FF FF FF FF FF FF FF 60 27 01 60 28 01 60 3F
FF FF 01 88
FF FF FF FF FF FF FF FF Q 20 43 6F 70 79 72 69 67 R
0x77DFO0 | $7DF0,3D o oer e oer e e er pp | UNUSed bytes in bank 8 72 20 28 63 29 20 3. | WMS Copyright message
- - FF FF FF FF FF FF FF FF | S3D, if 29 gé §<13 ig g; ;9) gg and team credits moved
FF FF FF FF FF FF FF FF C
0x77EC3 | $7EC3,3D | rF Fr FF FF FF FF FF FF 57 69 6c 6C 69 61 6p 73 | here from unbanked ROM
FF FF FF FF FF FF FF FF 20 45 6C 65 63 74 72 6F .
FF FF FF FF FF FF FF FF 6 69 63 73 20 47 61 ¢p | region, below.
FF FF FF FF FF FF FF FF 65 73 20 49 6E 63 2E 20
FF FF FF FF FF FF FF FF 20 41 6C 6C 20 52 69 67
FF FF FF FF FF FF FF FF 68 74 73 20 52 65 73 65 | The unbanked ROM bytes
FF FF FF FF FF FF FF FF 72 76 65 64 20 20 53 79
FF FF FF FF FF FF FF FF 73 74 65 ep 20 53 er 66 | Wererepurposed for lamp
FF FF FF FF FF FF FF FF 74 77 61 72 65 20 62 79 drlver and anlmatlon flx
FF FF FF FF FF FF FF FF 20 4C 61 72 72 79 20 44
FF FF FF FF FF FF FF FF 65 4D 61 72 2C 20 42 69 Code.
FF FF FF FF FF FF FF FF 6C 6C 20 50 66 75 74 7TA
FF FF FF FF FF FF FF FF 65 6E 72 65 75 74 65 72
FF FF FF FF FF FF FF FF 2C 20 54 65 64 20 45 73 H
FF FF FF FF FF FF FF FF 74 65 73 20 26 20 4D 61 Wlth a” due reSpGCt to
FF FF FF FF FF FF FF FF 72 6B 20 50 65 6E 61 63

IE}ER EN R L A ERE A EL R FR S B I FRES 68 6F 20 20 45 6C 65 63 R
FF FF FE FF FE' FEF FE EF 74 72 6F 6E 69 63 73 20 Orlglnal developers' the
FF FF FF FF FF FF FF FF 62 79 20 43 68 75 63 6B copyright message was
I N I A U 20 42 6C 65 69 63 68 20
FF FF FF FF FF FF FF FF 61 6E 64 20 4D 61 72 8 | moved here.
I N I A U 20 43 6F 6C 64 65 62 65
FF FF FF FF 6C 6C 61 20
FF FF FF FF FF FF FF FF H 34 16 86 00 8D 5A 8E 7F .
0x77F65 | $7F65,3D | -7 ©° T° T C0 CT °T o7 | Unused bytes in bank 00 50 48 5p 27 35 34 0o | Custom ROM —embedded
- - FF FF FF FF FF FF FF FF $3D. 8D 5B 8D 31 BD D7 99 00 | gttract mode message
FF FF FF FF FF FF FF FF 00 01 40 07 8D 27 BD D7
0x77FFF | S7FFF,3D | &% ¢r vF vF rr rF PP #F 99 00 00 01 40 11 sp 1p | handler.
FF FF FF FF FF FF FF FF BD D7 99 00 00 01 40 1cC
FF FF FF FF FF FF FF FF BD E2 74 12 12 12 35 02
FF FF FF FF FF FF FF FF 4D 26 04 86 00 8D 21 BD Code reads ROM bytes
FF FF FF FF FF FF FF FF 83 46 CO 35 96 8D 3B 20 . .
FF FF FF FF FF FF FF FF 06 a1 00 27 02 Ea 00 30 | located prior to this code:
FF FF FF FF FF FF FF FF 88 20 39 34 12 5F 86 FF
FF FF FF FF FF FF FF FF 8D EF 8D ED 8D EB 35 92
FF FF FF FF FF FF FF FF 27 OA BD 86 5B 10 00 24 Line 1 text at $7F00 - $7F1F'
FF FF FF FF FF FF FF FF 03 BD BD FB 39 86 01 BD .
FF FF FF FF FF FF FF FF FB 88 BD 83 46 08 86 55 | Line 2 text at $7F20 - S7F3F.
FF FF FF FF FF FF FF FF 97 B4 BD FB AE BD 83 46 .
FF FF FF FF FF FF FF FF 08 39 34 56 cm 03 86 ce | Line 3 text at $7F40 - S7F5F.
FF FF FF FF FF FF FF FF 20 A6 80 81 FF 26 01 4F
FF FF FF FF FF FF FF FF A7 CO 27 05 5A 26 F2 6F
FF FF FF C4 35 D6
0x781EF S81EF | °° 80 3P Feature Adjustments 7000 3D New table pointer value.
Metadata Table Pointer.
0x781FB | S$81FB | *° 0P 3P Sound Test, Sound Call 7183 3D New table pointer value.
Vector Table Pointer.
0x78261 | $8261 | 1) P° 70 4% AR 30 4T ER | Featyre Adjustments 6100 3p 6A 00 306D 00 | New table pointer values.
- - strings table pointers for $8261 is English. $8264 is
0x78269 $8269 English, German, French. German. $8269 is French.
0x7827C | $827C | §] ®7 30 e 22 30 7178 | sound Test strings table | 50 °° 3¢ % #2 30 47 B2 | New table pointer values.
- - pointers for English, $827C is English. $827F is
0x78284 $8284 German, French. German. $8282 is French.
0x7DAA9 | SDAA9 | °F °F 30 01 Lamp Matrix code start. | 7% FF PP 12 Jump to updated lamp
driver code that has LED
patch or jumps back to
original code depending on
“Lamp Driver” adjustment.
0x7FB88 SFBgg | 3% 12 34 02 DMD Animation JEEE 55 12 Jump to updated DMD
initialization code. animation code that
performs corrected or
original animation
depending on “Animation
Code” adjustment.
FF FF FF FF FF FF FF FF 9E 9F 30 01 F6 1B EC 26 .
Ox7FEDD | SFEDD | ;& ;= " o° ©° °° o0 oo | Unused bytes. 05 75 e Ab o¢ on a5 s | AtSFFEDD - SFF54: Updated
- = FF FF FF FF FF FF FF FF [\WMS Copyright 12 96 6D 27 11 0A A1 2B | |amp driver code to update
FF FF FF FF FF FF FF FF 09 4F B7 3F E4 B7 3F E5 . .
0x7FFA5 SFFA5S FF FF FF 20 43 6F 70 79 | Message. 20 53 96 68 97 a1 s 02 | lamp matrix using LED patch
72 69 67 68 74 20 28 63 EO 86 01 9F 9F 97 9E E6 Fp)
29 20 31 39 39 32 2C 20 Unused bytes' 88 10 53 E4 88 08 D7 9C or go baCk to Orlglnal Iamp
31 39 39 31 2C 20 31 39 E6 88 10 E4 88 18 DB 9C Code depending on ”Lamp
39 30 20 57 69 6C 6C 69 D7 9C E6 88 20 E4 88 28 . ! ” .
61 6D 73 20 45 6C 65 63 p7 9p 5F F7 3F 85 F7 3F | Driver” adjustment.
74 72 6F 6E 69 63 73 20 E4 E6 89 00 20 53 D4 9C
47 61 6D 65 73 20 49 6E DB 9D D7 9C E6 89 00 30
63 2E 20 20 41 6C 6C 20 E4 89 00 38 D7 9D E6 89 At SFFSS _ sFFAS Updated
52 69 67 68 74 73 20 52 00 30 53 D4 9C DB 9D F7) .
65 73 65 72 76 65 64 20 3F E4 B7 3F E5 78 DB 17 | animation code handler to
20 53 79 73 74 65 6D 20 BD 86 5B 18 00 25 07 34
53 6F 66 74 77 61 72 65 12 34 02 75 B 8C 34 06 | perform corrected

0x7FFEE

SFFEE

20 62 79 20 4C 61 72 12 97 B5 4C 97 B6 0D B4 26 S

79 20 44 65 4D 61 72 2C 02 0n 54 86 03 o1 na 2o | @Nimations or go back to
20 42 69 6C 6C 20 50 66 02 97 B4 CC FF 84 DD OA 0rigina| animation code

75 74 A 65 6E 72 65 75 86 04 B7 3F BD 35 86 34 i .
74 65 72 2C 20 54 65 64 02 96 B4 4a 27 oa 81 03 | dependging on “Animation
20 45 73 74 65 73 20 26 24 OF 97 B4 96 B5 20 06 DT

20 4D 61 72 6B 20 50 65 86 03 97 B4 96 m¢ 27 ar | COde” adjustment.

6E 61 63 68 GF 20 FF FF BF 86 04 B7 3F BD 35 02

FF 3B

8E 08 73 08

WPC Checksum

Updated checksum.

L8.3 Test/Verification
Testing of the L8.3 image was done to ensure all scenarios behave as expected. Each major set of
changes provided in each beta L8.3 ROM image were carefully constructed and thoroughly tested.

Each Beta image was crafted using a custom patch tool to aid in the L8.3 image build process. The tool
ensures each and every ‘before’ and ‘after’ byte of ROM change is as expected. Prior to making any
changes, it ensures the entire ROM image is the original, unmodified, L-8 ROM image. After applying
the specific modifications, the tool calculates an updated checksum and records it into the ROM image.

A file comparison tool was also used to observe the difference in ROM image updates to ensure
expected set of changes were made at the specific regions of ROM. This tool presents the ROM data in
hex format, depicting all differences, making it easy to find all differences in file data.

Each ROM image is immediately tested in emulator environment, single stepping through the changed
code to ensure correct addresses and values are used. Along the way, occasional errors in the new code
were identified and corrected. Typically, such errors would be immediately obvious even without the
emulator as they would lead to immediate program crash and game restart. Once corrected to their
intended logic, the new code is then exercised in the emulator prior to being released for beta testing on
real machines.

Testing included:

e Extensive testing of the custom ROM message was done, ensuring multiple font selection,
placement and appearance was as expected, as well as optional sound-call option. Since this
feature involves changes to ROM image, testing of this feature was done on emulator where all
other improvement testing was done on emulator and on real machines.

e Extensive testing of the attract mode changes was done, ensuring all selections L8.1, L8.2 and
L8.3 behave as expected, including both “on” and “off” settings for “attract sounds” to ensure
correct behavior occurs every time.

e Single player and multi-player games tested

e English, German and French modes tested for expected text.

e Each bug-fix tested to ensure expected behavior and problem resolution.

e Each new adjustment tested to ensure correct behavior for each possible adjustment setting.

During testing, any found bugs were reported, studied, and fixed (if bug was reproducible). Beta testers
identified several bugs which existed in original L-8 which were fixed in latter L8.3 beta and release
image. A big THANK YOU to all beta testers! Your feedback was instrumental in the final L8.3 image
containing so many bug fixes!

