
August 2022

Terminator 2 ROM L8.3

ROM L8.3 Manual Includes

Change Log

Technical Details

Appendix

ROM Image Changes

Terminator 2 L8.3
History/Summary of Releases:

Revision Date Checksum Info

L-8 Dec. 15, 1992 BE08 Official release

L8.1 April 9, 2011 7608 Small change to have the attract mode “boom boom” sound only
when Feature Adjustment A2.16 “Attract Sounds” is set to “ON”.

L8.2 April 1, 2012 6F08 This is 8.1 plus changes to attract mode sequence to have
previously played game scores shown more often especially at
game-over. This image also deletes the “T2 Fan Club”.

L8.3 June 28, 2022 7308 Selectable 8.1, 8.2, 8.3 attract mode. L8.3 attract mode playing “I
am a cybernetic organism” more often. Profanity ROM logic.
Custom ROM embedded attract mode message. Bug fixes for:
attract mode, DMD animation flicker, multiball ball-lock issues,
German text, ball-search. Selectable original or corrected DMD
animation logic. Selectable original and LED lamp driver.
Selectable drop-target state at multiball start. Selectable 3-bank
lamp behavior.

L8.3 Beta ROM Image History
Revision Date Checksum Info

L8.3 April 15, 2022 3E08 Selectable 8.1, 8.2, 8.3 attract mode. L8.3 attract mode
playing “I am a cybernetic organism” more often. Profanity
ROM logic. Custom ROM embedded attract mode message.
Bug fixes for attract mode and for DMD animation flicker.

L8.3 April 28, 2022 4508 DMD Animation flicker ISR routine was reverted to original L-8
so that certain 3rd party color display, which was designed for
original L-8, will not flicker.

L8.3 May 8, 2022 BB08 Added Lamp Driver adjustment to select between original and
LED lamp driver code.

L8.3 May 21, 2022 A008 Added the “MB START DT ACTN” adjustment to select how
drop target behaves at start of multiball.

L8.3 May 25, 2022 7508 Image with update to sound test.

L8.3 June 7, 2022 FF08 Experimental change to sound test and initial fix
w/adjustment for the 3-bank target lamp behavior.

L8.3 June 22, 2022 7708 Removed experimental sound test changes. Added multiball
fixes.

L8.3 June 27, 2022 7608 Ball-search bug fix.

L8.3 June 28, 2022 7308 Minor correction to German text. Final. Release image.

Beta ROM info provided only for historical accounting. Images not intended for public release.

L8.3 Change Log
 Added a “L8.3” attract mode. Same as 8.2 but plays “I am a cybernetic organism” call more often.

 Supports T2 “Profanity ROM” w/FUA database award in place of 100,000 (w/adjustment).

 Added selectable attract mode, 8.1, 8.2, 8.3. The 8.1 mode will not include T2 Fan Club message.

 Fixed bug in display animations that were being shown with unintended flickering (w/adjustment).

 Support of the anti-ghosting lamp matrix code patch to prevent LED ghosting (w/adjustment).

 Improved anti-ghosting patch code to prevent controlled-lamp flicker during “GI Power Saver” mode.

 Added Feature Adjustment 22 to allow enable/disable of profanity mode.

 Added Feature Adjustment 23 to allow selection of the attract mode, L8,1, L8,2 or L8.3.

 Added Feature Adjustment 24 to allow selection of original or corrected DMD animation logic.

 Added Feature Adjustment 25 to allow selection of original or anti-ghost LED lamp driver code.

 Added Feature Adjustment 26 to allow selection of drop-target state at multiball start.

 Added Feature Adjustment 27 to allow selection of timed 3-bank lamp state at end-of-ball.

 Fixed bug in WPC custom message where it was showing “Testing…” message prior to display.

 Fixed bug in Game-Over L8.1 attract mode where the previous game scores were not displaying.

 Added support for a custom embedded attract mode message w/ 3-line selectable font & placement.

 Corrected spelling errors in the German text strings.

 Fixed multiball bug where multiball state was being exited while multiple balls remained on playfield.

 Fixed multiball bug where ball lock sometimes reported “Jackpot Multiplied 0x=0”.

 Fixed multiball bug when final “Load the gun” period was sometimes skipped at end of multiball.

 Fixed ball-search bug, drop-target knock-down was accumulating points and played speech.

 Fixed ball-search bug, drop-target was getting kicked up when adjustment A.2 20 was set to “On”.

 Fixed Sound Test T.7 05 (Database) during “repeat” doesn’t restart the music every few seconds.

o Some 3rd party sound boards classify 05 as non-music & continue playing 05 during “running” test.

L8.3 Changes to L-8 ROM Image, Summary Table
Table is shown below for quick reference of changes done for each L8 ROM image. Details on the L8.3

changes are provided in the next section of this document.

Note: With L8.3, regardless of “Attract Mode” selection, the “T2 Fan Club” message will never be shown.

Regardless of the “Attract Mode” selection, the custom ROM embedded message, if present, will always

be shown, periodically, during attract mode.

Document Revision History
Revison 1.0, March 2022, Initial draft.
Revision 1.1, April 2022, Cleaned up L8.3 revision statements. Moved sections to make document

consistent in ordering of the L8.3 update items. Added DMD Animation flicker bug fix.

Revision 1.2, April 2022, Indicated beta L8.3 rom images used for testing purposes.

Revision 1.3, August 2022, Added remaining sections describing L8.3.

ROM
Image

O
ri

gi
n

al
 T

2
Fa

n
 C

lu
b

 A
tt

ra
ct

 M
o

d
e

M

e
ss

ag
e

A
tt

ra
ct

 M
o

d
e

 L
8.

1

 (
o

ri
gi

n
al

 L
-8

 s
e

q
u

e
n

ce
)

A
tt

ra
ct

 M
o

d
e

 L
8.

2

(s
co

re
s

sh
o

w
n

 m
o

re
 o

ft
e

n
)

A
tt

ra
ct

 M
o

d
e

 L
8.

3

(‘
C

yb
e

r
n

et
ic

’ s
o

u
n

d
s

m
o

re
 o

ft
e

n
)

Se
le

ct
ab

le
 A

tt
ra

ct
 M

o
d

e

L8
.1

, L
8

.2
, L

8
.3

B
u

g
Fi

x:
“B

o
o

m
 B

o
o

m
”

at
tr

ac
t

so
u

n
d

s

B
u

g
Fi

x:
 W

P
C

 C
u

st
o

m
 M

es
sa

ge
 “

Te
st

in
g”

B
u

g
Fi

x:
 G

am
e

-o
ve

r
La

st
 s

co
re

s
d

is
p

la
y

B
u

g
Fi

x:
 A

n
im

at
io

n
 f

lic
ke

r
p

ro
b

le
m

W

it
h

 s
el

ec
ta

b
le

 o
ri

gi
n

al
/f

ix
ed

 m
o

d
e

B
u

g
Fi

x:
 M

u
lt

ib
al

l b
al

l-
lo

ck
 is

su
e

s

B
u

g
Fi

x:
 B

al
l-

se
ar

ch
 d

ro
p

-t
ar

ge
t

is
su

e
s

Se
le

ct
ab

le
 L

am
p

 D
ri

ve
r

O
ri

gi
n

al
 /

 L
ED

Se
le

ct
ab

le
 3

-b
an

k
la

m
p

 b
u

gf
ix

 b
e

h
av

io
r

C
o

rr
ec

te
d

 G
er

m
an

 T
ex

t

U
p

d
at

e
d

 S
o

u
n

d
 T

e
st

 C
o

d
e

 f
o

r
so

u
n

d
 0

5

P
ro

fa
n

it
y

(F
U

A
)

o
p

ti
o

n

C
u

st
o

m
 R

O
M

 e
m

b
ed

d
e

d
 c

u
st

o
m

m

e
ss

ag
e

in
 a

tt
ra

ct
 m

o
d

e

L-8

L8.1

L8.2

L8.3

Table of Contents
Terminator 2 L8.3 .. 2

L8.3 Beta ROM Image History ... 2

L8.3 Change Log .. 3

L8.3 Changes to L-8 ROM Image, Summary Table .. 4

Document Revision History ... 4

L8.3 Changes to L-8 ROM Image, Technical Details .. 9

The L8.3 Fan-Club Adjustment Replacement.. 11

The L8.2/L8.3 changes to attract mode .. 12

The L8.3 “Cybernetic Organism” and “LastGameScores” changes ... 14

The L8.1 “boom boom” bug fix ... 15

The L8.3 “Testing…” WPC Custom Message bug fix ... 16

The L8.3 “Last-Game-Scores” game-over attract mode bug fix ... 20

The “LastGameScores” Missing Display (L-8, L8.1 ROM images).. 20

The “LastGameScores” Incorrect Display (L-8, L8.1, L8.2 ROM images)... 21

The L8.3 “Last-Game-Scores” game-over attract mode code fixes .. 23

The L8.3 FUA code inclusion ... 25

The L8.3 Display Animation flicker bug fix .. 26

The L8.3 Display Animation flicker problem analysis ... 27

The L8.3 Display Animation flicker affected animations .. 30

The $EE91 Interrupt Service Routine .. 32

The Getaway L-5 Interrupt Service Routine .. 34

Analysis of T2 memory $B4 for new logic ... 36

Corrections to Animation Init Code and ISR Code for L8.3 ... 37

Initial Fix in L8.3 Beta .. 38

Final Fix in L8.3 Release Image .. 38

The L8.3 Display Animation Analysis and Fixes ... 41

Animation Fix: Security Levels ... 45

Animation Fix: T-1000 Self-Healed/Extra Ball Award ... 46

The L8.3 Custom Message support in the ROM ... 48

The L8.3 Custom Message Assembly Code ... 49

The L8.3 Custom Message Adjustable Values Table ... 50

The L8.3 Custom Message Adjustable Values Info ... 51

Line Text .. 51

Line Font .. 52

Line X-Position... 53

Line Y-Position ... 53

Sound Call ... 54

Reveal/Wipe .. 61

Display Period ... 65

Fonts.. 65

Font 0x00 .. 67

Font 0x01 .. 67

Font 0x03 .. 68

Font 0x04 .. 68

Font 0x05 .. 68

Font 0x06 .. 68

Font 0x07 .. 68

Font 0x08 .. 68

Font 0x09 .. 69

Font 0x0A .. 69

Font 0x0B .. 70

Font 0x0C .. 71

Font 0x0F ... 71

Font 0x10 .. 72

Font 0x11 .. 72

Font 0x12 .. 72

Font 0x13 .. 72

Font 0x14 .. 73

Font 0x15 .. 73

Font 0x16 .. 73

Font 0x17 .. 73

Font 0x18 .. 73

Font 0x1A .. 74

The L8.3 Feature Adjustments Additions .. 75

Determining Total Number of Adjustments ... 75

The L-8 Adjustments Memory Map .. 76

Feature Adjustments Metadata Table .. 79

Feature Adjustment: Profanity ... 81

Feature Adjustment: Attract Mode .. 81

Feature Adjustment: Remaining New Adjustments ... 83

Feature Adjustments String Tables ... 83

The L8.3 Text String Corrections ... 87

The L8.3 Sound Test Updates.. 89

Sound Test Update: Sound 05 Playing Unexpectedly ... 89

Sound 05 Classification ... 89

Sound 05 Explicit Stop ... 91

FUA Inclusion Into Sound Test .. 93

Relocated Sound Test Table .. 93

Updated Sound Test Logic for FUA ... 95

The L8.3 Multiball Bug-Fixes ... 96

WPC Scheduled Functions and Function IDs .. 97

Scheduling a Function ... 97

Scheduled Function ID .. 97

Multiball Logic Overview... 98

Multiball Startup Balls-In-Play Timing Problem .. 99

Multiball Startup Balls-In-Play Timing Fix: Startup waits for balls-in-play greater than 1 99

Multiball Startup Balls-In-Play Timing Fix: Maintenance function checks if startup is running 103

Multiball Startup Balls-In-Play Timing Fix: Corrected Multiball Logic ... 108

Multiball Switch Handler Logic Updates ... 109

Switch Handling, A brief overview .. 109

Switch Handling, Ball Lock Switch Handler ... 116

Switch Handling, Outhole Switch Handler .. 126

Multiball Corrected Logic .. 128

The L8.3 Lamp Driver Update ... 130

LED Patch Summary .. 130

LED Patch Improvement, power-saver improvement .. 130

Lamp Driver Code Modifications .. 133

Relocated Copyright Message .. 135

Lamp Driver Results .. 136

The L8.3 Multiball-Start Drop-Target Action Enhancement ... 137

Drop Target Down Multiball Adjustment ... 137

Multiball-Start Drop-Target Action Adjustment ... 137

Multiball-Start Drop-Target Action Adjustment Code .. 138

Multiball-Start Drop-Target Action Adjustment Code, Up/Down Functions 142

Multiball-Start Drop-Target Action Adjustment Code, Drop-Target Switch Handler 144

Multiball-Start Drop-Target Action Adjustment Code Analysis .. 148

Drop-Target Up Function ID 00 B9 Overlap .. 150

The L8.3 Timed 3-Bank Lamp Fixes ... 157

The L8.3 Ball-Search Bug Fixes .. 164

Appendix ... 169

Solenoid Table ... 169

Checksum Bytes .. 169

General Illumination and Zero Cross .. 170

Attract Mode Code ... 173

Fan Club Code ... 178

ROM Image Changes ... 179

L8.3 Test/Verification .. 191

L8.3 Changes to L-8 ROM Image, Technical Details
For transparency and education to the pinball hobbyists interested in such information, the following

sections provide technical details on the changes involved with the L8.3 image. Various parts of the L8.3

enhancements will be described, including:

 The L8.3 Fan-Club Adjustment Removal

 The L8.2/L8.3 changes to attract mode

 The L8.3 “Cybernetic Organism” and “LastGameScores” changes

 The L8.1 “boom boom” bug fix

 The L8.3 “Testing…” WPC Custom Message bug fix

 The L8.3 “Last-Game-Scores” game-over attract mode bug fix

 The L8.3 Display Animation flicker bug fix

 The L8.3 FUA code inclusion

 The L8.3 Custom Message support in the ROM

 The L8.3 Feature Adjustments additions

 The L8.3 Text String corrections

 The L8.3 Sound Test updates

 The L8.3 Multiball bug-fixes

 The L8.3 Lamp Driver update

 The L8.3 Multiball-Start Drop-Target Action enhancement

 The L8.3 Timed 3-Bank lamp fixes

 The L8.3 Ball-search bug fixes

For reference, the following page provides some basic addressing information on the T2-L8 ROM and is

applicable to all WPC ROMs (although the bank/page information differs depending on size of the ROM

image). When trying to understand the ROM modifications, it is important to understand the difference

between an address offset within the ROM image as compared to an address that the running WPC code

cites. To understand this requires some understanding of the paged ROM layout. In this document the

terms ‘bank’ and ‘page’ are used interchangeably. Also note syntax for representing hexadecimal values,

the use of the “$” symbol and “0x” are used interchangeably.

When modifying strings in WPC code it is necessary to ensure the German and French strings are also

updated. All of the changes for L8.3 take all three languages into consideration.

Note that replacing a L-8 or L8.1 or L8.2 with L8.3 should not cause the game to reset to factory settings.

This is because the major version number (2nd byte of the checksum) ‘8’ is not changed and, as such, the

game will not trigger factory reset of settings. The L8.3 image utilizes 6 new feature adjustments.

Memory for these adjustments, while running L-8, L8.1 or L8.2 is set to 0 which corresponds to the initial

value for each of the 6 new adjustments when upgrading to L8.3. It is advised that the new

adjustments are checked to ensure desired values are set after installing L8.3.

ROM Image Size: 524288 bytes, ROM Address Range: 0x00000 - 0x7FFFF

ROM Address Range refers to addresses when looking at the ROM binary in a hex editor.

In this case bytes are addressed from 0x00000 to 0x7FFFF.

Code Addresses refer to addresses that the actual running code cites when jumping to

different functions or accessing fixed/constant data bytes. There is a non-paged

region which is always accessible to running code when it references addresses in this

range from 0x8000 through 0xFFFF. System startup code and commonly used functions are

in this region. There is paged ROM regions which refer to code addressed from 0x4000

through 0x7FFF. When code wants to jump into a function in this range, it must

specify the bank number along with the address in the range of 0x4000 through 0x7FFF.

Code running in paged ROM may jump to other code or read ROM content within the same

page (0x4000 through 0x7FFF) as well as access the non-paged region.

+------------+--------+-------------------+-----------------+

| Bank/Page | Bytes | ROM Address Range | Code Addresses |

----------------------+-------------------+-----------------+

| Bank 0x20 | 16384 | 0x00000 - 0x03FFF | 0x4000 - 0x7FFF |

| Bank 0x21 | 16384 | 0x04000 - 0x07FFF | 0x4000 - 0x7FFF |

| Bank 0x22 | 16384 | 0x08000 - 0x0BFFF | 0x4000 - 0x7FFF |

| Bank 0x23 | 16384 | 0x0C000 - 0x0FFFF | 0x4000 - 0x7FFF |

| Bank 0x24 | 16384 | 0x10000 - 0x13FFF | 0x4000 - 0x7FFF |

| Bank 0x25 | 16384 | 0x14000 - 0x17FFF | 0x4000 - 0x7FFF |

| Bank 0x26 | 16384 | 0x18000 - 0x1BFFF | 0x4000 - 0x7FFF |

| Bank 0x27 | 16384 | 0x1C000 - 0x1FFFF | 0x4000 - 0x7FFF |

| Bank 0x28 | 16384 | 0x20000 - 0x23FFF | 0x4000 - 0x7FFF |

| Bank 0x29 | 16384 | 0x24000 - 0x27FFF | 0x4000 - 0x7FFF |

| Bank 0x2A | 16384 | 0x28000 - 0x2BFFF | 0x4000 - 0x7FFF |

| Bank 0x2B | 16384 | 0x2C000 - 0x2FFFF | 0x4000 - 0x7FFF |

| Bank 0x2C | 16384 | 0x30000 - 0x33FFF | 0x4000 - 0x7FFF |

| Bank 0x2D | 16384 | 0x34000 - 0x37FFF | 0x4000 - 0x7FFF |

| Bank 0x2E | 16384 | 0x38000 - 0x3BFFF | 0x4000 - 0x7FFF |

| Bank 0x2F | 16384 | 0x3C000 - 0x3FFFF | 0x4000 - 0x7FFF |

| Bank 0x30 | 16384 | 0x40000 - 0x43FFF | 0x4000 - 0x7FFF |

| Bank 0x31 | 16384 | 0x44000 - 0x47FFF | 0x4000 - 0x7FFF |

| Bank 0x32 | 16384 | 0x48000 - 0x4BFFF | 0x4000 - 0x7FFF |

| Bank 0x33 | 16384 | 0x4C000 - 0x4FFFF | 0x4000 - 0x7FFF |

| Bank 0x34 | 16384 | 0x50000 - 0x53FFF | 0x4000 - 0x7FFF |

| Bank 0x35 | 16384 | 0x54000 - 0x57FFF | 0x4000 - 0x7FFF |

| Bank 0x36 | 16384 | 0x58000 - 0x5BFFF | 0x4000 - 0x7FFF |

| Bank 0x37 | 16384 | 0x5C000 - 0x5FFFF | 0x4000 - 0x7FFF |

| Bank 0x38 | 16384 | 0x60000 - 0x63FFF | 0x4000 - 0x7FFF |

| Bank 0x39 | 16384 | 0x64000 - 0x67FFF | 0x4000 - 0x7FFF |

| Bank 0x3A | 16384 | 0x68000 - 0x6BFFF | 0x4000 - 0x7FFF |

| Bank 0x3B | 16384 | 0x6C000 - 0x6FFFF | 0x4000 - 0x7FFF |

| Bank 0x3C | 16384 | 0x70000 - 0x73FFF | 0x4000 - 0x7FFF |

| Bank 0x3D | 16384 | 0x74000 - 0x77FFF | 0x4000 - 0x7FFF |

| Non-paged | 32768 | 0x78000 - 0x7FFFF | 0x8000 - 0xFFFF |

+------------+--------+-------------------+-----------------+

The L8.3 Fan-Club Adjustment Replacement

The “T2 FAN CLUB” adjustment at A2.18 is removed starting in L8.2. The L8.2 attract mode replaced the

calls for “T2 Fan Club” with calls to display other attract-mode sequences. The L8.3 ROM removes the

fan-club code from the ROM image entirely and re-uses its code region for new code used in other parts

of the L8.3 ROM image.

Shown below is how the A2.18 adjustment appears in ROM images L8.1 and older:

For reference, and perhaps as a final farewell to this rarely seen attract mode item, below is what the

fan-club message looked like, when shown during attract mode. This was a message that would only

play when enabled in the Feature Adjustments and when the system date is June 1992 or earlier. Please

note the phone number shown has most certainly been repurposed and should not be called.

The L8.2/L8.3 changes to attract mode

The L8.2 and L8.3 ROM modifications for attract mode are too numerous to list. Instead of depicting

each individual ROM change, here we will describe how the attract mode works and the changes that

are done to support the L8.2 and L8.3 attract mode sequences. The main T2 attract-mode loop code is

in page $30, starting at $793F,30 (ROM offset 0x4393F).

The flowchart on the next page depicts the attract mode for ROM images:

 L8.1 (which is same sequence as L-8)

 L8.2 (which replaces a few of the L8.1 elements and inserts some additional elements)

 L8.3 (which plays ‘cybernetic’ sound more frequently & displays custom ROM message)

When running the L8.3 ROM image, the sequence for the attract mode depends on how the “Attract

Mode” is configured in the Feature Adjustments menu:

 “L8.1”, All non-highlighted items and all blue highlighted items

o The “fanClub” item is shown for completeness as it was available in L-8 and the genuine

L8.1 ROM image. It has been removed in the L8.3 ROM completely and, as such, has

been shown but with strikethrough as it will not appear when using L8.3 ROM image.

 “L8.2”, All non-highlighted items, all green, all yellow highlighted items

 “L8.3”, All non-highlighted items, all green, all yellow, all red highlighted items

Regardless of the “Attract Mode” setting, if the 8.3 feature of adding a custom message to the ROM

image is being utilized, the display of such message will take place wherever the violet highlighted item

is shown.

The L8.3 attract mode (and added to L8.2, retroactively) also inhibits the report of “LastGameScores”

during the “I am a cybernetic organism” speech sequence. This retains the original L-8 dramatic effect

and alignment of the speech to the display during this period. This logic change is shown in teal.

In all modes, L8.1, L8.2 or L8.3, the L8.3 ROM image includes bug-fix for the LastGameScores that is

shown during the Game-Over loop. The original L-8 code had a bug where it did not display scores the

first time through. Subsequently, when it was shown immediately after CyborgComputerReadout, it

may incur a flicker of the scores prior to revealing the display in a center-out reveal pattern.

The attract mode items listed on the flowchart each represent a certain sequence during the attract

mode. Sometimes an item consists of a single panel message on the display (such as ‘insert coin’) and

other times the item might consist of multiple panels of information (such as high-scores report). The

T2 attract mode can be observed and followed along to match the flowchart.

In some cases multiple items are shown on a single line, using ‘/’ character to separate them.

In cases where L8.2 replaced an L8.1 item, a hyphen ‘-‘ is used to separate the L8.1 and new L8.2 items.

Power-Up

T2BashEffect

Game-Over

LastGameScores

HighScores

FanClubMessage - CreditsInsertCoin / LastGameScores

CastCredits - TerminatorLightning

SpecialThanks – CyborgComputerReadout

CustomRomMessage

LastGameScores

ReplayAt

GameOver

CreditsInsertCoin

HighScores

FanClubMessage - CreditsInsertCoin / LastGameScores

WilliamsBlockyLogo

Presents

T2BashEffect

StaringArnold / GameOver

LastGameScores

ReplayAt

HighScores

CreditsInsertCoin

PullTrigger

LastGameScores

ReplayAt

WilliamsLogoDraw

LastGameScores

HighScores

ArnoldShootingShotgun

SayNoToDrugs

CustomMessage / CustomRomMessage

CyborgComputerReadout

ReplayAt

HighScores

FanClubMessage - CreditsInsertCoin / LastGameScores

CreditsInsertCoin - ReplayAt

T2ShineyLogo

StaringArnold / GameOver

LastGameScores

WilliamsLogoDraw

Presents

T2BashEffect

HighScores

CreditsInsertCoin

WilliamsLogoBlocky

Presents

JudgmentDay

StaringArnold / LastGameScores

HighScores

CreditsInsertCoin

PullTrigger

ReplayAt

*CyberneticOrganism

TerminatorLightning

WilliamsLogoBlockyWipe

Presents

T2ShineyLogo

StaringArnold / LastGameScores, not during *Cybernitic

*CyberdyneSeries800

CyborgComputerReadout

CreditsInsertCoin

PullTrigger

ReplayAt

HighScores

CreditsInsertCoin

JudgmentDay

StaringArnold / LastGameScores

ArnoldShootingShotgun

SayNoToDrugs

CustomMessage / CustomRomMessage

SpecialThanks / CustomRomMessage

IAmTheFuture

Has above block

played 2 times?

NO

YES

Has above block

played 5 times? NO

YES

Has above block

played 3 times?

NO

YES

Terminator 2 Attract Mode

L-8.1, L8.2, L8.3

*The sounds for “CyberneticOrganism” only

play after logic has passed through the

block(s) indicated to the left to enable their

play during the main attract loop. After

these sounds are played during the main

loop, logic must pass through the block(s)

again before they play again.

Only in L-8 and L8.1 blue highlighted item(s)

In L8.2, replaced L-8 & L8.1 items with green highlight

In L8.2, inserted new items with yellow highlight

In L8.3, inserted new logic with red highlight

In L8.3, Custom ROM Message gets shown, violet highlight

In L8.3, Fix for Game-Over LastGameScores display

In L8.3, Logic change applied to L8.2 and L8.3 modes

TimeDate / CastCredits

* Enable sounds for CyberneticOrganism and

CyberdyneSeries800 next pass through.

* Enable sounds for CyberneticOrganism and

CyberdyneSeries800 next pass through.

The L8.3 “Cybernetic Organism” and “LastGameScores” changes
A change is made to the attract mode L8.2 where “LastGameScores” had been added after the

“StaringArnold” message. This change is highlighted in teal in the attract mode flowchart earlier in this

document. Logic is updated so that when the “I am a cybernetic organism” speech is playing, the L8.2

addition of “LastGameScores” is not shown while Arnold speech is reporting his model number. This

particular change is being retroactively applied to the L8.2 attract mode (when “L8.2” is selected in

“Attract Mode” adjustment) as well as the “L8.3” attract mode because it provides a neater experience

during L8.2 or L8.3 attract modes alike when the “I am a cybernetic organism” sequence plays with the

intended, uninterrupted, sequence from L-8.

The original speech sequence is timed so that Arnold speech reporting his model number occurs in

conjunction with the display showing computer readout with similar information. For L8.2/L8.3 attract

modes, when the cybernetic speech is playing, the attract mode will not display the “LastGameScores”

information. If attract sounds are “off” no speech is occurring so the original L8.2 sequence will occur

with the “LastGameScores” being shown at such time.

Code changes are briefly depicted below. The original attract mode code related to this is in bank $30

(ROM image offset 0x40000 through 0x43FFF), specifically at $7A82 (ROM image offset 0x43A82):

7A7F: BD FB E2 JSR $FBE2 ; AttractMode_StaringArnold()

7A82: 7E 7A 85 ; <null>

Note the instruction at $7A82 is effectively a null, jump instruction to the very next instruction that

occurs after. This is likely a placeholder or debug hook used in original L-8. In L8.2 this null instruction

was replaced with a JSR instruction to a function that reports the “LastGameScores”. In L8.3 this is

replaced with a JSR instruction to jump to new code at $7F60.

7A7F: BD FB E2 JSR $FBE2 ; AttractMode_StaringArnold()

7A82: BD 7F 60 JSR $7F60 ; Fixup Function

At $7F60 (ROM image offset 0x43F60) new code is added to previously unused ROM region:

7F60: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7F63: 64 23 3D ; Sets C-bit when ok play LastGameScores

7F66: 25 77 BCS $7FDF ; Show LastGameScores if in L8.2 or L8.3 mode

7F68: 39 RTS ; Return without showing LastGameScores

The new function, above, calls yet another function that sets C-bit if it is safe to show LastGameScores.

Otherwise, if the “I am a cybernetic organism” is playing then C-bit is clear so function returns without

trying to show “LastGameScores”. The function at $6423 in bank $3D (ROM image offset 0x74000

through 0x77FFF) is depicted below. Function is located at ROM image offset 0x76423:

6423: BD 84 AD JSR $84AD ; GetMemoryFlag()

6426: D9 ; 0xD9 indicating time to play „cybernetic‟

6427: 25 0C BCS $6435 ; C-bit clear=no cyber, C-bit set=cyber

6429: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

642C: 10 00 ; 0x10 == Attract Sounds, C-set when not 0x00

642E: 24 03 BCC $6433 ; If C-bit is clear, sounds are OFF

6430: 1C FE ANDCC #$00FE ; Clear C-bit

6432: 39 RTS ; Return C-clear, not okay for LastGameScores

6433: 1A 01 ORCC #$0001 ; Set C-bit

6435: 39 RTS ; Return C-set, okay to show LastGameScores

Details of the above logic is left as an exercise to the reader.

The L8.1 “boom boom” bug fix
This fix takes place in page $35 (ROM region 0x54000 through 0x57FFF) which is where the “Boom Boom”

attract mode sequence is handled. Below are the two places in the code where it makes the call to play

the “Boom”. As there are 2 “booms” there are also 2 places where the sound call is made. For

simplicity purposes only the call to play the sound is depicted below. These are at ROM image offsets

0x57723 and 0x577B7:

7723: BD 85 46 JSR $8546 ; Play sound number 0x94, Boom!

7726: 94 ;

<and>
77B7: BD 85 46 JSR $8546 ; Play sound number 0x94, Boom!

77BA: 94 ;

The original code simply calls a function in the non-paged region at $8546 which plays the sound

number that was provided in the byte immediately after the JSR instruction. In this case it is sound

number 0x94. To fix this, we change the call from $8546 to call a new function added in an unused area

in this same bank at address $7FC0,35 (ROM image offset 0x57FC0) as depicted below:

7723: BD 7F C0 JSR $7FC0 ; Play sound number 0x94 if attract sounds are on, Boom!

7726: 94 ;

<and>
77B7: BD 7F C0 JSR $7FC0 ; Play sound number 0x94 if attract sounds are on, Boom!

77BA: 94 ;

The new function added at $7FC0,35 (ROM image offset 0x57FC0) performs the simple task of querying

the game feature adjustments to determine if “attract sounds” are “on” and, if so, proceed to play the

“boom” sound. If the “attract sounds” are “off” then the sound is not played. The actual code

disassembly of this new function is left as an exercise for the reader.

The L8.3 “Testing…” WPC Custom Message bug fix
During the creation of the L8.3 ROM image it was observed that there is a bug in the built-in WPC

custom message feature. Since the L8.3 involves an enhancement involving a custom (ROM embedded)

custom message, it seems appropriate to also fix the WPC custom message bug to complement the set

of updates in L8.3 being a ROM update with enhanced ‘custom message’ support.

This bug is present in several WPC titles and is related to how the WPC custom message is scrolled onto

the display to the left, revealing each frame of the WPC custom message in this way. This display

mechanism is internally utilizing the same code and memory that is also used for the display of the “Test

Report” which scrolls each test report message onto the display in this way (sliding to the left to reveal

each test report frame).

It turns out the power-up “Testing…” message is also written to this same region of memory when it is

first displayed. After power-up, as the attract mode is normally running, this “Testing…” message is

actually retained in this region of memory unnecessarily. This region of memory is cleared out when

entering and exiting the test menu and also cleared out at the end of the normal display of a WPC

custom message (if one is set).

The bug is when the WPC custom message is shown for the first time after a system power-up (if menu

system has not been entered/exited), this stale “Testing…” message is briefly shown and sliding to the

left as the first frame of the WPC custom message is revealed onto the display. It doesn’t matter if a

game is played or not, but the first display of the WPC custom message that occurs after a power-up (as

long as the coin door ‘enter’ button hasn’t been pressed) will show the “Testing…” message as the WPC

custom message is revealed for the first time. Subsequent displays of the WPC custom message won’t

have this issue since the previous display of the WPC custom message left this region of RAM blank.

To demonstrate the bug, we create a single-frame WPC custom message with the following:

After saving this message, restart the game and wait for this message to appear (after the Arnold with

shotgun and then “Say no to drugs” message).

As shown above, the reveal of the WPC custom message briefly shows the “Testing…” message. A

careful examination of the WPC code reveals that this is an oversight in how the WPC custom message

uses the left-scrolling effect normally used by the ‘test report’ function. The WPC custom message code

is making false assumption that the memory has previously been cleared as it reveals the first frame of

the WPC custom message. This assumption is valid only after the test menu has previously been

entered/exited and after the WPC custom message has previously been shown. However after a game

power-up this is not the case.

To correct this problem, the attract-mode sequence now simply clears out the region of memory that is

retaining this stale “Testing…” message so that subsequent display of WPC custom message will display

without this problem.

The new function that clears this region of memory is located in page $30 (ROM region 0x40000 through

0x43FFF) in a previously unused space near the end of this bank starting at $7F79,30 (ROM image offset

0x43F79):

---;---

 ; --------------------------------

 ; L8.3 stale "Testing" message fix

 ; --------------------------------

7F79: 34 14 PSHS X,B ;

7F7B: 8E 01 60 LDX #$0160 ; 0x0160 is start of first panel

7F7E: C6 60 LDB #$60 ; 0x60 = 96 bytes to clear.

7F80: 6F 80 CLR ,X+ ;

7F82: 5A DECB ;

7F83: 26 FB BNE $7F80 ;

7F85: 35 94 PULS B,X,PC ;

 ;

---;---

The memory address $0160 is where the stale “Testing…” message is retained. In this region is space to

accommodate 16 characters for the top row and 16 characters for the bottom row of text. The left-

scrolling code employs a method whereby each character takes up of 3 bytes in memory. One byte

contains the letter to be displayed and the remaining 2 bytes contain values used during the scrolling

effect (further study into the WPC code would be necessary to accurately report how these are used).

Since there are 32 characters total and 3 bytes per character, there are 96 bytes to clear in total.

Technically speaking, the memory immediately after these cleared 96 bytes could also be cleared as

they contain characters that are used in the left-scrolling logic (containing the next frame to reveal)

however to simply fix the bug at hand, only the first 96 bytes are being cleared.

This clearing takes place at the start of attract mode (both at power-up and at game-over). The stale

“Testing…” message is unconditionally cleared out of ram. In the event that a WPC custom message is

to be displayed it will no longer show the “Testing…” message as it is revealed onto the display.

The attract mode in L-8 begins in this same page $30 at $793F,30 (ROM image offset 0x4393F) with the

following code:

793F: BD FB AE JSR $FBAE ; Clear display data

7942: 7E 79 45 JMP $7945 ; Jump to next instruction

7945: BD 84 AD JSR $84AD ; GetMemoryFlag()

7948: D3 ; 0xD3 game-over mode

As shown, the L-8 attract mode starts out with some housekeeping code to clear out the display pixel

data and has a check if it is in game-over mode (or power-up mode) and proceeds from there. In these

instructions is a dummy instruction that simply jumps to the next instruction. This jumps from $7942 to

$7945. This may have been placeholder code for original s/w development for prototyping or

debugging the code. This dummy instruction is being replaced with a call to the new function depicted

above:

793F: BD FB AE JSR $FBAE ; Clear display data

7942: BD 7F 79 JSR $7F79 ; Call bugfix function

7945: BD 84 AD JSR $84AD ; GetMemoryFlag()

7948: D3 ; 0xD3 game-over mode

This will now, at start of attract mode, call the new function that clears out the stale “Testing…”

message and return back to $7945 to proceed with normal attract mode code. With this fix in place, the

first display of the WPC custom message now reveals the first frame without the stale “Testing…”

message:

The L8.3 “Last-Game-Scores” game-over attract mode bug fix
During the development of the T2 L8.3 image some additional bugs were noticed in the original T2 L-8

code. During the game-over attract mode loop, as depicted earlier in this document, there is a block of

sequences that plays for 3 times before transitioning to the normal attract mode loop. This block begins

with “LastGameScores” which is intended to display the scores from the previously played game. This

refers to the blue-highlighted “LastGameScores” item in the attract-mode flowchart presented earlier in

this document. Two problems were found regarding this “LastGameScores” display and are fixed in L8.3:

 After any game, the first time the “LastGameScores” is (attempted to be) displayed during the

main Game-Over attract mode loop in L-8 or L8.1 it actually shows an empty/blank display. This

is after the “SpecialThanks” message is displayed after Game-Over in L-8 and L8.1. There is a

small period where the display is blank but the code intended to show the previous game scores.

 The subsequent 2 displays of the first “LastGameScores” at top of the game-over attract mode

loop also have a minor problem. This refers to when the display of “LastGameScores” is done

immediately after the “CyborgComputerReadout” when the game-over attract mode loop

restarts 2 more times. Using an emulator it is evident that there is a very brief display of the

screen with scores immediately followed by the intended center-out reveal of the display of the

“LastGameScores” information. It may be that this is only noticed in emulator and not real game.

Both of these issues are fixed in L8.3 and will be corrected regardless of which attract mode is selected

in the “Attract Mode” adjustment. The first time “LastGameScores” is (attempted to be) displayed, it

will actually be shown, and subsequent times through the game-over attract mode loop, there will be no

incorrect display of the “LastGameScores” screen as it is being revealed onto the display.

The “LastGameScores” Missing Display (L-8, L8.1 ROM images)
The missing display of “LastGameScores” during game-over attract mode sequence is depicted here. In

L-8 and L8.1 at the start of game-over attract mode sequence, there is a lengthy display of “CastCredits”

and a “SpecialThanks” messages. After the “SpecialThanks” message the code intended to display the

scores from the most recently played game. What actually takes place is a period of time of blank

display while the game is intending to display the “LastGameScores” sequence.

For the L8.3 ROM image, this bug is being fixed and will be observable when the “Attract Mode”

adjustment is set to “L8.1”. This problem does not happen for L8.2 or L8.3 attract-mode sequences

because of how they display “CyborgComputerReadout” in place of the “SpecialThanks” sequence

immediately prior to this display of “LastGameScores” which indirectly fixes the bug.

The “LastGameScores” Incorrect Display (L-8, L8.1, L8.2 ROM images)
The problem with incorrect display of “LastGameScores” during the game-over attract mode sequence is

depicted here. Since the game-over attract mode block is played 3 times, the transition from ending

“CyborgComputerReadout” back to the top “LastGameScores” sequence will take place 2 times before

the attract mode goes to the regular attract mode loop. For each of these 2 transitions, the display is as

follows:

Blank display shown for period of time that the

“LastGameScores” is intended to be shown.

After the display period is over the next attract

mode item is shown, the “ReplayAt” value.

Display of last game scores (not including

“credits”) is briefly shown briefly in dim

Display is then blanked

Normal center-out reveal then takes place

The brief display of scores prior to the reveal may not be noticeable on real display hardware, however

it is evident in an emulated environment. Out of completeness and to further improve the L8.3

software, this display issue is being corrected in the L8.3 image.

The L8.3 “Last-Game-Scores” game-over attract mode code fixes
The game-over attract mode code is located in bank $30 (ROM image offset 0x40000 through 0x43FFF).

The location where the first “LastGameScores” is called is at $7987,30 (ROM image offset 0x43987).

7987: BD 7B E1 JSR $7BE1 ; AttractMode_LastGameScores()

As part of this fix, the function call is replaced with a call to a new function located later in this bank in

previously unused region of ROM space:

7987: BD 7F 69 JSR $7F69 ; Call new bugfix function at $7F69,30

Located in previously unused region near the end of bank $30 at $7F69,30 (ROM image offset 0x43F69)

is a small function added as part of the bug fix:

7F69: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7F6C: 64 0F 3D ; -->LastGameScores_DisplayClear()

7F6F: 7E 7B E1 JMP $7BE1 ; Jump to AttractMode_LastGameScores()

The new function, above, calls a function in bank $3D at $640F,3D which performs fix for the brief

display of scores prior to the reveal of the “LastGameScores”. Upon returning from that function, code

jumps to the original “LastGameScores” function at $7BE1,30. Using the JMP instruction in this way will

cause the $7BE1,30 function, when finished, to return back to the original starting point (returns to

instruction after $7987,30).

The fixup function at $640F,3D corresponds to ROM image offset 0x7640F which at the start of the

region of unused ROM space located in bank $3D. This fixup function is as follows:

640F: 34 16 PSHS X,B,A ; If B is not 0x03 then we're not

6411: C1 03 CMPB #$03 ; at start of game-over x3 loop

6413: 26 09 BNE $641E ; so we definitely want blank display

6415: 8E 7F 00 LDX #$7F00 ; Address of string #1. Each str 0x20 bytes

6418: BD 7F B8 JSR $7FB8 ; Call subroutine to set B if there is a msg

641B: 5D TSTB ; If B!=0x00 there is a msg to show

641C: 26 03 BNE $6421 ; so we don't want to blank the display

641E: BD 7F D2 JSR $7FD2 ; Branch to routine that blanks the display

6421: 35 96 PULS A,B,X,PC ;

The fixup routine, above, is crafted to check whether the Game-Over attract loop is at the very first pass

and whether there was an L8.3 Custom ROM message to display. This also calls new code used by the

Custom ROM message that clears out the display so that the unexpected display of scores doesn’t take

place prior to the center-out reveal. The fixup routine will skip the display-blanking if there was a

custom ROM message to show since the center-out reveal of “LastGameScores” is shown neatly when it

is replacing an L8.3 custom ROM message.

Lastly, there is a code-change that is needed to fix the “AttractMode_LastGameScores()” function to

correct the display of “LastGameScores” so that the display is not blank when first shown (on L-8 and

L8.1). The original L-8 code for “LastGameScores” is located at $7BE1,30 (ROM image offset 0x43BE1):

7BE1: BD D3 60 JSR $D360

7BE4: BD 88 F5 JSR $88F5

7BE7: 6A F4 3B

7BEA: BD 88 F5 JSR $88F5

7BED: 7F 57 33

7BF0: BD 83 46 JSR $8346

7BF3: 80

7BF4: 39 RTS

To fix the code for this function, the first JSR instruction is replaced with a jump to a new function as

shown below:

7BE1: BD 7F 72 JSR $7F72

7BE4: BD 88 F5 JSR $88F5

7BE7: 6A F4 3B

7BEA: BD 88 F5 JSR $88F5

7BED: 7F 57 33

7BF0: BD 83 46 JSR $8346

7BF3: 80

7BF4: 39 RTS

A new function is added near the end of bank $30 at $7F72,30 (ROM image offset 0x43F72) as shown

below:

7F72: BD D3 4C JSR $D34C ; Load 0x3800 into $1799

7F75: BD D3 60 JSR $D360 ; Clear DMD data at $1799 pointer, 0x3800

7F78: 39 RTS ;

The new function simply calls a function $D34C to set value 0x3800 into $1799 and then calls the

function $D360 which was originally called at the start of the “LastGameScores” but replaced with the

call to this new function. The loading of 0x3800 into $1799 is the main fix for the blank display issue.

This, along with the changes described above for the center-out reveal display fix both result in the

correct display of “LastGameScores” on all versions of attract mode, L-8, L8.1, L8.2, L8.3.

The L8.3 FUA code inclusion

The database award code for L8.3 is updated to include the FUA logic from previous software where

FUA was (unofficially) supported. The database award code is located in bank $33 (ROM image region

0x4C000 through 0x4CFFF) and is updated to include the FUA text during the Database Award and

updated to perform the necessary sound call when FUA is the winning selection.

What is interesting about the Database Award sequence is that the order of the possible selections is

not random. There is a fixed list of 16 possible awards. A random starting point is chosen within this list

of 16 awards. The 8 awards from such starting position are displayed and a random selection is made

from those 8. The list of possible awards is shown below. The FUA code simply replaces the “100,000”

award with the FUA. The chances of winning FUA are identical to the chances of winning “100,000”.

Addr. Data Bytes Index String

--

4C04: 4E 3B ; 0x0b "POSSIBLE SELECTIONS:"

4C06: 4E 50 ; 0x0c "CHASE LOOP"

4C08: 4E 5B ; 0x0d "EXTRA BALL"

4C0A: 4E 66 ; 0x0e "100,000"

4C0C: 4E 6F ; 0x0f "AUTOFIRE"

4C0E: 4E 78 ; 0x10 "SECURITY PASS"

4C10: 4E 86 ; 0x11 "LITE SPECIAL"

4C12: 4E 2D ; 0x12 "HURRY UP"

4C14: 4E 93 ; 0x13 "1,000,000"

4C16: 4E 9F ; 0x14 "MULTIBALL"

4C18: 4E A9 ; 0x15 "LITE EXTRA BALL"

4C1A: 4E B9 ; 0x16 "500,000"

4C1C: 4E C2 ; 0x17 "VIDEO MODE"

4C1E: 4E CD ; 0x18 "LITE KICKBACK"

4C20: 4E DB ; 0x19 "SPECIAL"

4C22: 4E E3 ; 0x1a "LITE HURRY UP"

4C24: 4E F1 ; 0x1b "3,000,000"

Below are a couple examples of the Database award where it is shown how the list of awards follows

the list shown above. The code specifically adjusts the left column of awards to the left by a few pixels

when FUA is enabled (when adjustment A2.18 is set to allow awarding FUA).

Randomly chosen starting point

The L8.3 Display Animation flicker bug fix
During the L8.3 image development it was requested that the display animation ‘flicker’ problem of T2

to also be fixed. Some investigation into the nature of the problem ensued and the issue was found to

be reproducible in an emulator environment and, as such, is something that could be fixed as part of the

L8.3 image.

To demonstrate the problem, the “Pull trigger” animation is shown in a series of frames depicting the

flicker effect in slow motion as pixel data pages are put onto the display. Notice the changes in pixel

brightness as the frames progress.

To illustrate the speed of this flickering effect, the images captured below depict every transition of

display intensity during the first few seconds of the “Pull trigger” animation sequence. This depicts all

transitions up until the moment of the hand appearing in the sequence. During the entire sequence

with hand pulling the trigger, the same flickering effect continues until the animation is complete.

Shown below are 3 columns. Images are shown on the display starting at the top-left, then going down

each column and resuming at the top of the next column to the right.

The L8.3 Display Animation flicker problem analysis
The flickering appears to be due to the WPC code that interacts between the CPU board and the DMD

display driver board. For a given still image in an animation, the WPC software is simply switching back

and forth between 2 pages of medium and dim pixel data while the DMD display driver board expects to

receive 3 page updates per frame (consisting of 2 updates of ‘medium’ pixel data and single update of

‘dim’ pixel data).

A little background in WPC 3-color image data is in order. To neatly display a 3-color image (or 4-color if

you include black/off pixel color), the WPC software overlaps 2 planes of pixel data. One plane consists

of dots that should be dim and the other plane consists of dots that can be medium or bright. If a dot is

set in both planes it is to be displayed with bright intensity. If a dot is set in only the medium plane then

it is medium intensity. If a dot is set only in the dim plane then it is dim intensity.

A brief example of this can be depicted below. With understanding that there are 8 bits in a byte and

assumption that a single byte can represent 8 pixels in a horizontal line on the display, the table below

depicts how the intensity can be set for a series of 8 pixels in a row, with 4 different examples:

Dim plane Medium plane Resulting Pixel Intensities

Hex

Binary

Hex

Binary

0x80
Pixel 8

0x40
Pixel 7

0x20
Pixel 6

0x10
Pixel 5

0x08
Pixel 4

0x04
Pixel 3

0x02
Pixel 2

0x01
Pixel 1

0xF0 11110000 0xAA 10101010 Bright Dim Bright Dim Medium Off Medium Off
0xAA 10101010 0xF0 11110000 Bright Medium Bright Medium Dim Off Dim Off
0x01 00000001 0xFF 11111111 Medium Medium Medium Medium Medium Medium Medium Bright
0xFF 11111111 0x80 10000000 Bright Dim Dim Dim Dim Dim Dim Dim

A survey of the L-8 WPC code and comparison with other WPC titles (most notably, “The Getaway”

which also has an animation for ball-shooter control usage), it seems that the L-8 animation flicker

problem boils down to the way in which the L-8 software notifies the DMD driver board about which of

the pixel planes are to be used for dim/medium/bright.

After loading the DMD memory with the 2 planes (or “pages”) of pixel data, the WPC software then

repeatedly directs the DMD driver board the brightness levels to use for each of these memory planes.

Since the DMD driver board memory is already loaded with the necessary dim/medium pixel data, this

issue involves tiny messages between the CPU and DMD driver board that effectively say “use page X for

medium and page Y for dim”. The L-8 code is simply cycling between these messages, repeatedly,

during the display of these animation frames “use page X for medium and page Y for dim”, over and

over for the duration in which the image should appear on the display.

It seems, however, the DMD driver board doesn’t expect to receive a repeating pair of messages “use

page X for medium and page Y for dim”. It appears the DMD driver board expects to receive a repeating

triplet of messages whereby the CPU board should indicate the “use page X for medium” is sent 2 times

while the “use page Y for dim” is sent one time per frame, repeatedly.

Let’s explore how this might behave with some example image data. For the “Pull Trigger” animation

sequence, we have 2 pages of pixel data that get built up and sent to DMD driver board (by using

mapped memory), below is the DIM pixel data page:

Below is the data loaded into the MEDIUM pixel data page:

The intended/desired result is the blending of these pages as per previously described logic so the image

is as follows:

You can see in the previous image that the pixels that are set in both DIM and MEDIUM planes appear

brighter than the rest. The pixels that are only set in the MEDIUM plane are medium intensity and pixels

that are only in the DIM are dim intensity in the blended image (i.e. the “Pull Trigger” text).

As depicted in previous display images, the actual result from L-8 is not the constant blended image but

a varying intensity image as pixels are changing in intensity as their dim/medium/bright status is rapidly

changing while the image is on the display.

Let’s examine the mismatch between what the WPC software sends to the DMD driver board compared

to what the DMD driver board actually expects. Utilizing the previously indicated DIM and MEDIUM

planes example images we can see how the DMD board behaves.

Sent from L-8 CPU to DMD driver board Resulting image

The display images on the left, above, represents the L-8 software sending the DIM/MEDIUM repeatedly

while the images on the right depict how the WPC DMD driver board interprets each message, expecting

groups of 3. The displayed image represents the 3 most recent messages received from the CPU board.

As depicted in these images, the resulting display seemingly flickers bright and medium as the most

recent 3 messages refer to mostly MEDIUM to mostly DIM page indicators, respectively.

The L8.3 Display Animation flicker affected animations
The problematic code has been identified and can be discovered by how it creates the animation

sequences by way of the following:

 Calls function $FB88 which initializes DMD related memory elements and establishes an

interrupt service routine (ISR) at $EE91 to repeatedly send messages to the DMD driver board

for the duration of the animation sequence.

 Populates pixel data into DMD memory and updates memory values for the ISR to use while

sending messages to the DMD driver board. Medium DMD ram page number stored in $B5.

Dim DMD ram page number stored in $B6.

 Finishes by flagging memory that it is done so that the ISR knows to stop sending display-page

messages to the DMD driver board. This involves writing a value other than 0x00 or 0xFF to

memory location $B4. Not all animations sequences do this.

 Clears out display memory in anticipation for what is drawn to memory next.

A survey of the L-8 ROM image reveals 19 locations where the $FB88 initialization function is invoked.

Each such invocation represents an animation display sequence that may be experiencing the flicker

problem. Each of the 19 locations has been analyzed and described in the table below. Included in this

table are memory values used during the animation (more info described next).

ROM
Offset

WPC Addr Sequence $B4 Values
$Addr:Value

$B5 Medium
$B6 Dim

Example

1 0x100A3 $40A3,24

Doors
Opening
revealing
award text
based on
value of the
B register.

$FB8C:0x00 0x0F
0x10

2 0x101F9 $41F9,24

Hunter ship $FB8C:0x00

0x01,0x03
0x02,0x04

3 0x10294 $4294,24 “Fire at will”

crosshairs
$FB8C:0x00 0x05,0x01,0x03

0x06,0x02,0x04

4 0x10426 $4426,24 Pull Trigger
to shoot ball

$FB8C:0x00
$44AA,24:0x55

0x01,0x03
0x02,0x04

5 0x4F880 $7880,33 Jackpot $FB8C 0x00

$788C,33:0x55
0x01
0x02

6 0x4FA49 $7A49,33 Replay $FB8C 0x00 0x01

0x02

7 0x4FA73 $7A73,33 Special $FB8C 0x00 0x01
0x03,0x04,0x05

8 0x57392 $7392,35 Shoot Again $FB8C 0x00 0x01

0x02

9 0x57740 $7740,35 “Boom” 1 $FB8C 0x00

$7759,35:0x55
0x01,0x03
0x02,0x04

10 0x577B1 $77B1,35 “Boom” 2 $FB8C 0x00

$77C2,35:0x55
0x05
0x06

11 0x5787C $787C,35 Judgment

day
$FB8C 0x00
$7888,35:0x55

0x01
0x02

12 0x578AA $78AA,35 T2 $FB8C 0x00

$78E7,35:0x55
0x01
0x02

13 0x57990 $7990,35 Kickback Lit

This
function is
also used by
bonus
multiplier.

$FB8C 0x00 0x01,0x03,0x05
0x02,0x04,0x06

As shown in the table, above, all animations start with init code at $FB8C setting $B4 to 0x00. Not

depicted is the fact that during the display of the animation $B4 toggles from 0x00 to 0xFF, at each

toggle, the ISR sends to the WPC driver board, the medium pixel page index number from $B5 or the

dim pixel page index from $B6. Some animations involve code that sets $B4 to 0x55 to notify the ISR

that it is done. When $B4 is set to a value other than 0x00 or 0xFF it essentially tells the ISR to stop

updating the DMD driver board with dim/medium pixel plane index numbers.

The $EE91 Interrupt Service Routine
As mentioned, the problem animations utilize an interrupt route located in non-banked ROM region at

address $EE91 (ROM image offset 0x7EE91). Shown below is the assembly code along with some C-like

comments describing the code logic.

EE91: 34 02 PSHS A ;

EE93: 86 FF LDA #$FF ;

EE95: 98 B4 EORA $B4 ;

EE97: 97 B4 STA $B4 ; Flip bits in $B4

EE99: 27 08 BEQ $EEA3 ; if ($B4 was 0xFF but we just changed it to 0x00)

 ; {

EE9B: 81 FF CMPA #$FF ; if ($B4 was NOT 0x00, and not 0xFF)

 ; {

EE9D: 26 0C BNE $EEAB ; goto $EEAB

 ; }

 ; // Here when $B4 was 0x00 and changed to 0xFF

EE9F: 96 B6 LDA $B6 ; A gets dim pixel plane number from $B6

EEA1: 20 02 BRA $EEA5 ; }

 ; else

 ; {

 ; // Here when $B4 was 0xFF and changed to 0x00

EEA3: 96 B5 LDA $B5 ; A gets medium pixel plane number from $B5

 ; }

14 0x57D94 $7D94,35 “I am the

future”
$FB8C 0x00
$7DC6,35:0x55

0x01,0x03
0x02,0x04

15 0x57DF1 $7DF1,35 Kickback $FB8C 0x00

$7E32,35:0x55
0x01,0x03
0x02,0x04

16 0x57E5B $7E5B,35 Arnold with

shotgun
$FB8C 0x00
$7EA3,35:0x55

0x01,0x03
0x02,0x04

17 0x57F54 $7F54,35 Elevator

doors closed
$FB8C 0x00 0x05

0x06

18 0x57F6F $7F6F,35 T-1000
blasted

$FB8C 0x00 0x07
0x08

19 0x57F98 $7F98,35 T-1000 self-

healed
$FB8C 0x00 0x05

0x06

EEA5: B7 05 37 STA $0537 ; Put selected dim/medium plane into $0537

EEA8: B7 3F BF STA $3FBF ; Put selected dim/medium plane into $3FBF

EEAB: 86 04 LDA #$04 ;

EEAD: B7 3F BD STA $3FBD ; Put 0x04 into $3FBD

EEB0: 35 02 PULS A ;

EEB2: 3B RTI ;

This interrupt routine is called regularly during WPC software runtime. The 68B09 CPU has an interrupt

vector table at the last 16 bytes of the ROM. At location IRQ vector $FFF8 (ROM offset 0x7FFF8) is the

address 0xD9C0 which is the start of the main interrupt service routine which eventually calls this $EE91

DMD Driver board update interrupt routine (This $EE91 address is loaded into $0A:$0B to notify the

main ISR to call this function as part of its work). This gets called periodically as the IRQ input line into

the CPU (at pin 3) toggles. Further details into the nature of the IRQ itself are left as an exercise to the

reader. A quick look at the WPC schematics reveals that the IRQ comes in from the ASIC which likely

toggles the IRQ line at a regular, fixed, rate.

Below is the initial setup function that each of the affected animations calls at the start of the animation

sequence. Some animations are done in such a way that each frame of the animation runs through this

init code and interacts with the $EE91 distinctly for each frame, such as ‘Fire at will’.

FB88: 34 12 PSHS X,A ;

FB8A: 34 02 PSHS A ;

FB8C: 0F B4 CLR $B4 ; Clear $B4

FB8E: 8E EE 91 LDX #$EE91 ;

FB91: 9F 0A STX $0A ; Put 0xEE91 into $0A:$0B to tell ISR to call it

FB93: 86 04 LDA #$04 ;

FB95: B7 3F BD STA $3FBD ; Put 0x04 into $3FBD DMD driver board register

FB98: 35 02 PULS A ;

FB9A: 97 B5 STA $B5 ; Store medium pixel page number into $B5

FB9C: 4C INCA ;

FB9D: 97 B6 STA $B6 ; Store dim pixel page number into $B6

FB9F: 4A DECA ;

FBA0: 35 92 PULS A,X,PC ;

As can be seen in the init code, above, the previously mentioned memory locations are cited, $B4, $B5

and $B6. The $B4 value will be given extra scrutiny since its usage will be altered to effectively fix the

flicker problem.

Depicted above is a summary flowchart of the $EE91 interrupt function in how it interacts with the DMD

driver board using values from memory. As shown, the $B4 value alternates between 0xFF and 0x00 to

determine whether to push the medium or the dim pixel page index to the WPC display driver board.

The Getaway L-5 Interrupt Service Routine
To get an idea on how to repair the T2 L-8 $EE91 code, another WPC title was used as a basis to fix the

T2 code. The Getaway title has some similarities with T2 especially in the fact that it also contains an

animation depicting how to use the shifter lever to shoot the ball comparable to the T2 “Pull Trigger”

animation. The comparable routine from The Getaway (L-5) is as follows:

EB4A: 34 02 PSHS A ;

EB4C: 0A D1 DEC $D1 ; Decrement $D1, cycles from $D4 val to 0x01

 ; $D1 goes from 0x03 to 0x02, load med pixels

 ; $D1 goes from 0x02 to 0x01, load med pixels

 ; $D1 goes from 0x01 to 0x03, load dim pixels

 ;

EB4E: 2E 08 BGT $EB58 ; If $D1 decrements from 0x01 to 0x00 then

EB50: 96 D4 LDA $D4 ; {

EB52: 97 D1 STA $D1 ; Reset $D1 back to $D4 restart value

EB54: 96 D3 LDA $D3 ; A gets $D3 (dim pixel page index)

EB56: 20 02 BRA $EB5A ; }

ISR Start

Is $B4 0xFF or

0x00

Toggle $B4 0xFF/0x00

Is $B4 now

0xFF?

Write medium pixel page

index from $B4 to $3FBF

and save it in ram at $537

Write dim pixel page

index from $B5 to $3FBF

and save it in ram at $537

Write 0x04 to $3FBD

ISR Done

no

yes

no

yes

 ; else

EB58: 96 D2 LDA $D2 ; A gets $D2 (medium pixel page index)

EB5A: B7 05 41 STA $0541 ; Store A into $0541

EB5D: B7 3F BF STA $3FBF ; Store A into $3FBF

EB60: 86 04 LDA #$04 ;

EB62: B7 3F BD STA $3FBD ; Store 0x04 into $3FBD

EB65: 35 02 PULS A ;

EB67: 3B RTI ;

The init code from The Getaway which is called at start of animations sequences or at start of each

frame (as what T2 L-8 does for some animation sequences):

EB68: 34 07 PSHS B,A,CC ;

EB6A: C6 02 LDB #$02 ; Load B with restart value: 0x02

EB6C: 20 04 BRA $EB72 ;

 ;

EB6E: 34 07 PSHS B,A,CC ;

EB70: C6 03 LDB #$03 ; Load B with restart value: 0x03

EB72: D7 D4 STB $D4 ; $D4 gets restart value

EB74: 1A F0 ORCC #$00F0 ;

EB76: 97 D2 STA $D2 ; $D2 gets medium pixel data page index

EB78: 4C INCA ;

EB79: 97 D3 STA $D3 ; $D3 gets dim pixel data page index

EB7B: 86 03 LDA #$03 ;

EB7D: 91 D1 CMPA $D1 ; Compare $D1 with 0x03.

EB7F: 22 02 BHI $EB83 ; If $D1 has 0x01, branch down to $EB83

 ; If $D1 has 0x02, branch down to $EB83

 ; If $D1 >= 0x03, no branch, set it to 0x03

 ;

EB81: 97 D1 STA $D1 ; $D1 gets 0x03

EB83: CC EB 4A LDD #$EB4A ;

EB86: DD 0A STD $0A ; $0A:$0B gets 0xEB4A

EB88: 86 04 LDA #$04 ;

EB8A: B7 3F BD STA $3FBD ; $3FBD gets 0x04

EB8D: 35 87 PULS CC,A,B,PC ;

The Getaway logic, above reveals how the DMD Driver board will be loaded with 3 page indexes in a

repeating loop. When initiated with the call to $EB6E, the restart value 0x03 is loaded to $D4 and, as

the routine runs, the memory $D1 is decremented from 0x03 to 0x02 to 0x01 and back to 0x03 (getting

the 0x03 restart value from $D4). As the $D1 is decremented to 0x02 and 0x01 it pushes the medium

pixel page index from $D2 to the DMD driver board. When $D1 is decremented to 0x00 it pushes the

dim pixel page index from $D3 to the DMD driver board.

An interesting observation is that The Getaway also has some support for the T2 L-8 method whereby

the init route being called at $EB68 will establish a reset value of 0x02 into $D4 which would effectively

result in the T2 L-8 flickering behavior however this appears to be unused in The Getaway. Searching

The Getaway ROM image reveals zero hits for a JSR instruction to the $EB68 while there are many such

JSR instructions to the $EB6E init address. The corresponding flowchart for The Getaway is as follows:

The Getaway logic is fairly straightforward and will be used as the basis of the T2 L-8 fix for the same

part of the code. Some analysis is needed to ensure the use of T2 L-8 $B4 can be adapted to this model.

Analysis of T2 memory $B4 for new logic
The preceding text paints the picture for updating the T2 DMD ISR routine at $EE91 so that it behaves

similar to what The Getaway does in its comparable function. It seems that the $B4 memory should

simply decrement from 0x03 to 0x02 to 0x01 to 0x00 and reset back to 0x03. The medium/medium/dim

triplet could then be sent for each frame to match what it appears the DMD driver board expects.

The way in which T2 L-8 animation code pushes a non-0x00/non-0xFF byte into $B4 to stop the routine

from pushing page indexes to the driver board can also be leveraged. Since it appears the L-8 code

typically pushes a large value such as 0x55 into $B4 the new code can simply check for values greater

than 0x03 and assume that such a value means the existing L-8 code invoked its code to disable the

interrupt routine from pushing page data into the WPC Driver board, and react accordingly.

The whole T2 L-8 ROM was evaluated for how it interacts with memory location $B4 to ensure this fix

will be consistent and predictable. For example if some animation sequence elected to write value 0x01

to the $B4 (as a non-0x00/non-0xFF value) then it would conflict with the fix where $B4 cycles from 0x03

to 0x01. A survey of the T2 L-8 ROM was performed for all places where $B4 is written and summarized

in the following table.

ISR Start

Is $D1 now

0x00?

Reset $D1 with value

from $D4

Write medium pixel page

index from $D2 to $3FBF

and save it in ram at $541

Write 0x04 to $3FBD

ISR Done

Decrement $D1

Write dim pixel page

index from $D3 to $3FBF

and save it in ram at $541

yes

no

ROM Image
Offset

WPC Addr Instruction(s) Opcode
Bytes

Usage

0x102B9

0x102BB

$42B9,24

$42BB,24

LDA #$55

STA $B4

0x86 0x55

0x97 0xB4

At end of “Pull trigger” animation preceding
“Fire at will” in some circumstances hits this

0x104A8

0x104AA

$44A8,24

$44AA,24

LDA #$55

STA $B4

0x86 0x55

0x97 0xB4

At end of “Pull trigger” animation preceding
“Fire at will” in most circumstances hits this

0x4F88A

0x4F88C

$788A,33

$788C,33

LDA #$55

STA $B4

0x86 0x55

0x97 0xB4

At end of “Jackpot” animation

0x572B7

0x572B9

$72B7,35

$72B9,35

LDA #$37

STA $B4

0x86 0x37

0x97 0xB4

Uncertain. Appears to be around code that
plays bonus multiplier and kickback animations.

0x57757

0x57759

$7757,35

$7759,35

LDA #$55

STA $B4

0x86 0x55

0x97 0xB4

At end of first “Boom” animation in the “Boom
Boom” sequence

0x577C0

0x577C2

$77C0,35

$77C2,35

LDA #$55

STA $B4

0x86 0x55

0x97 0xB4

At end of second “Boom” animation in the
“Boom Boom” sequence

0x57886

0x57888

$7886,35

$7888,35

LDA #$55

STA $B4

0x86 0x55

0x97 0xB4

At end of “Judgement day” animation sequence

0x578E5

0x578E7

$78E5,35

$78E7,35

LDA #$55

STA $B4

0x86 0x55

0x97 0xB4

At end of “T2” animation sequence

0x57DC4

0x57DC6

$7DC4,35

$7DC6,35

LDA #$55

STA $B4

0x86 0x55

0x97 0xB4

At end of “I am the future” animation sequence

0x57E30

0x57E32

$7E30,35

$7E32,35

LDA #$55

STA $B4

0x86 0x55

0x97 0xB4

At end of Kickback animation

0x57EA1

0x57EA3

$7EA1,35

$7EA3,35

LDA #$55

STA $B4

0x86 0x55

0x97 0xB4

At end of Arnold with shotgun animation

0x7EE93

0x7EE95

0x7EE97

$EE93

$EE95

$EE97

LDA #$FF

EORA $B4

STA $B4

0x86 0xFF

0x98 0xB4

0x97 0xB4

This is the original L-8 $EE91 ISR routine where it
flips the bits in $B4

0x7FB8C $FB8C CLR $B4 0x0F 0xB4 The $EE91 ISR Init clearing of $B4

Other methods of modifying $B4 have been searched in the L-8 image such as:

 STB $B4, 0xD7 0xB4, 15 occurrences in the ROM but as an address used in JSR instruction.

 COM $B4, 0x03 0xB4, 2 occurrences in the ROM but as data bytes, not executable code.

There are other indirect methods in which code could modify $B4 however it seems fairly conclusive

that the use of $B4 memory location is limited to these animations listed in preceding text and used only

in the ways described above. The non-0x00/non-0xFF byte values used to stop the ISR are 0x55 and, in

one location, 0x37.

Corrections to Animation Init Code and ISR Code for L8.3
As mentioned, the affected animations consist of two parts of code:

Original L-8

Animation Initialization Code

$FB88 - $FBA1

ROM Offset: 0x7FB88 – 0x7FBA1

Original L-8

Animation ISR Code

$EE91 - $EEB2

ROM Offset: 0x7EE91 – 0x7EEB2

Initial Fix in L8.3 Beta

For posterity, it is worth noting the original L8.3 code in beta completely replaced the original

initialization and ISR code with corrected animation code based on The Getaway. The new initialization

code was larger than the old so some unused ROM space (in the copyright message text) was

repurposed as code to complete the initialization code.

Final Fix in L8.3 Release Image

Preliminary testing of the L8.3 Beta “new and improved” animation code revealed that some 3rd party

DMD displays were designed to overcome the flicker problem from the original L-8 software. Such

displays were designed to receive the 2-updates per-frame method that causes flickering on original gas-

plasma display panels. Due to this finding, it was deemed necessary to have a new Feature Adjustment

that allows selection between original animation code or corrected animation code.

The need to have such an adjustment is what lead to the introduction of new adjustments for L8.3 and

the variety of new feature adjustments. Prior to this, the early L8.3 beta releases had the Fan Club

adjustment repurposed to allow selection of Attract Mode and Profanity mode. With the L8.3 utilizing

new Feature Adjustments, the Fan Club adjustment was simply left disabled as it was in L8.2.

The resulting set of code changes allow the original L-8 animation initialization code to remain and the

original animation ISR code to remain in place. A minor change in the initialization code was added to

check the Feature Adjustment to have the animation sequence utilize original or new code.

Beta L8.3

New Animation Initialization Code

$FB88 - $FBA1

ROM Offset: 0x7FB88 – 0x7FBA1

Beta L8.3

New Animation ISR Code

$EE91 - $EEB2

ROM Offset: 0x7EE91 – 0x7EEB2

Beta L8.3

Continued Animation Init Code

$FFA3 - $FFAD

ROM Offset: 0x7FFA3 – 0x7FFAD

The L8.3 Beta replacement of the L-8 animation

initialization and ISR code is depicted here for

completeness. Final L8.3 code retained original L-8

and added corrected new animation code selectable

by a new Feature Adjustment, described below.

A minor change to the start of the original animation initialization code at $FB88 is done to jump to the

new code at $FF55. The new code at $FF55 will first check the Feature Adjustment value. If “Original”,

then code jumps back to the original animation init code where the original L-8 animation code

proceeds, which includes the establishment of original ISR function $EE91 for the animation display

routine.

If the Feature Adjustment value is “Corrected” then instead of going back to original animation

initialization code, the new animation initialization code proceeds which establishes new animation ISR

function at $FF84 to perform the animation routine.

For L8.3, the animation init function is updated as shown below.

FB88: 34 12 PSHS X,A ;

FB8A: 34 02 PSHS A ;

FB88: 7E FF 55 JMP $FF55 ; Jump to new code to pick original or corrected

FB8B: 12 NOP ;

FB8C: 0F B4 CLR $B4 ; Clear $B4

FB8E: 8E EE 91 LDX #$EE91 ;

FB91: 9F 0A STX $0A ; Put 0xEE91 into $0A:$0B to tell ISR to call it

FB93: 86 04 LDA #$04 ;

FB95: B7 3F BD STA $3FBD ; Put 0x04 into $3FBD DMD driver board register

FB98: 35 02 PULS A ;

FB9A: 97 B5 STA $B5 ; Store medium pixel page number into $B5

FB9C: 4C INCA ;

FB9D: 97 B6 STA $B6 ; Store dim pixel page number into $B6

FB9F: 4A DECA ;

FBA0: 35 92 PULS A,X,PC ;

The animation initialization code replaces two PSHS instructions with a JMP to new code at $FF55. This

is code added where the original ROM had copyright message text (the copyright message was moved,

in its entirety, to the end of bank $3D).

FF55: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

FF58: 18 ; 0x18 == Animation Mode, Config setting returned in A

FF59: 00 ; 0x00 == Original. Compare adjustment against 0x00.

 ; C-bit set = "Corrected"

Original L-8

Animation Initialization Code

$FB88 - $FBA1

ROM Offset: 0x7FB88 – 0x7FBA1

Original L-8

Animation ISR Code

$EE91 - $EEB2

ROM Offset: 0x7EE91 – 0x7EEB2

L8.3 Release

New Animation Initialization Code

$FF55 - $FF83

ROM Offset: 0x7FF55 – 0x7FF83

L8.3 Release

New Animation ISR Code

$FF84 - $FFA5

ROM Offset: 0x7FF84 – 0x7FFA5

 ; C-bit clear = "Original"

FF5A: 25 07 BCS $FB88 ; If C-bit is set, skip down and do new "Corrected" ISR.

 ;

 ; We are doing "original" animation code

FF5C: 34 12 PSHS X,A ; Perform original instruction from $FB88

FF5E: 34 02 PSHS A ; Perform original instruction from $FB8A

FF60: 7E FB 8C JMP $FB8C ; Go back to $FB8C and resume original animation code

 ;

FF63: 34 06 PSHS B,A ; We are doing "corrected" animation code

FF65: 97 B5 STA $B5 ; Store medium pixel page number into $B5

FF67: 4C INCA ;

FF68: 97 B6 STA $B6 ; Store dim pixel page number into $B6

 ;

FF6A: 0D B4 TST $B4 ; If $B4 is currently 0x00 we decrement it to 0xFF

FF6C: 26 02 BNE $FF70 ; so that code flow then inits it 0x03

FF6E: 0A B4 DEC $B4 ; This lets 0x00 value get reset to 0x03, below

FF70: 86 03 LDA #$03 ;

FF72: 91 B4 CMPA $B4 ; Compare $B4 current countdown value with 0x03

FF74: 22 02 BHI $FF78 ; If $B4 >= 0x03, no branch, force it to 0x03

FF76: 97 B4 STA $B4 ; $B4 gets 0x03

 ;

FF78: CC FF 84 LDD #$FF84 ;

FF7B: DD 0A STD $0A ; Put 0xEE91 into $0A:$0B to tell ISR to call it

FF7D: 86 04 LDA #$04 ;

FF7F: B7 3F BD STA $3FBD ; Put 0x04 into $3FBD DMD driver board register

FF82: 35 86 PULS A,B,PC ;

The new animation code, above, is performed when the new Feature Adjustment is set to “corrected”.

The corrected animation initialization routine starting at $FF63, above is modeled after The Getaway

logic. Unlike The Getaway, it uses hard coded 0x03 restart value and doesn’t need to store it in a

memory location. Code will always use 0x03 as the reset value. The function resets $B4 to 0x03 only if

it is 0x00 or anything greater or equal to 0x03. Otherwise, if it is 0x02 or 0x01, the $B4 is unchanged.

This allows the initialization function to seamlessly update certain animation sequences that, for each

frame in the animation, invokes the init routine to start the next frame (“Fire at will” and extra ball

award animations).

The new animation init logic establishes new function $FF84 to handle the animation during the ISR.

The new function is located immediately after the initialization code, using the portion of ROM that

previously contained copyright message text.

FF84: 34 02 PSHS A ;

FF86: 96 B4 LDA $B4 ; A gets the countdown byte value

FF88: 4A DECA ; Decrement the countdown by 1

FF89: 27 0A BEQ $FF95 ; If decremented to 0x00 go do dim pixel work

FF8B: 81 03 CMPA #$03 ; Compare to 03 (ie subtract 03 from A, C-clr if borrow)

FF8D: 24 0F BCC $FF9E ; If C-clear then large value was put in $B4, no update

 ;

FF8F: 97 B4 STA $B4 ; Save new decremented value 01 or 02 back into $B4

FF91: 96 B5 LDA $B5 ; A gets medium pixel plane number from $B5

FF93: 20 06 BRA $FF9B ; Skip down to push medium plane number to $3FBF

 ;

FF95: 86 03 LDA $#03 ; A gets reset value 0x03

FF97: 97 B4 STA $B4 ; Save the reset value 03 back into $B4

FF99: 96 B6 LDA $B6 ; A gets dim pixel plane number from $B6

 ;

FF9B: B7 3F BF STA $3FBF ; Put selected dim/medium plane into $3FBF

FF9E: 86 04 LDA #$04 ;

FFA0: B7 3F BD STA $3FBD ; Put 0x04 into $3FBD

FFA3: 35 02 PULS A ;

FFA5: 3B RTI ;

The new animation ISR at $FF84, above, is modeled after The Getaway as described above. The $B4 is

treated as a circular counter going from 0x03 0x02 0x01 0x00 and back to 0x03, continuously. If

a value greater than 0x03 (or a 0x00 byte is found, unexpectedly) in $B4 then it is assumed that

animation code pushed such value into $B4 to cause the $EE91 function to cease updating the

medium/dim DMD page index into the DMD driver board.

With the above changes in place, the T2 L8.3 ROM will neatly display the DMD animations without the

flicker issue previously described.

With the flicker issue cleared up, there may still be other coding errors in the display of the animations

which are not due to the $FF84 routine but, instead, due to issues in the code specific to the animation

code that invokes the $FB88 animation initialization code while the “Animation Code” is set to

“Corrected’. An analysis of each of the animations has been performed and described in the next

section of this document.

The L8.3 Display Animation Analysis and Fixes
With the L8.3 fixing a specific set of display animations (as described above), a further round of analysis

was performed on each of the affected animations to ensure they are properly being displayed. Using a

smartphone to record each animation and playback at very slow speed, with a frame by frame analysis,

some additional artifacts were observed in some of the animation sequences. Each of the animations

was checked in this way and reported in the table below. Some of the additional issues are being fixed

as part of the L8.3 software patch. A visual check was done comparing the observed anomalies in the

emulator frame-by-frame analysis and videos posted online. A majority of the emulator frame-by-

frame issues mentioned below do not appear to be noticeable on real hardware and, as such, are not

being addressed in L8.3, however will be documented here for posterity.

Sequence Animation Example Observation Problem Example

1 Doors
Opening
revealing
award text
based on
value of the
B register.

End of animation
sometimes gets
bright pixels
immediately before
transitioning back
to scores. This
might be perceived
as a flicker.

Function: $4088,24 - $412B,24
This issue is noticeable on real
hardware and is addressed in L8.3
so pixels don’t go bright when
transitioning to the score display.

2 Hunter ship

This is first frame
prior to crosshairs
animation. No

Function: $41CD,24 – $42DC,24
No changes to this in L8.3.

issues as animation
changes from this
to crosshairs.

3 “Fire at will”
crosshairs

Explosion
animation when
target is hit is good.
If no trigger is
pulled or target
missed, animation
ends with partial
display of hunter
ship as it
transitions to
showing scores.

Function: $41CD,24 – $42DC,24
This is not noticeable in videos of
real hardware and not being
addressed in L8.3.

4 Pull Trigger
to shoot ball

No problems when
shown in attract
mode or prior to
“Fire at will”.

Function: $4412,24 – $44B2,24
No changes to this in L8.3.

5 Jackpot

Full image is briefly
flickered prior to
the text build-up of
the jackpot image.

Function: $783F,33 – $78C6,33
This issue was not noticed in
videos of real hardware and is not
likely to be noticeable during the
excitement of game pay. Not
being addressed in L8.3

6 Replay

Likely an
intentional
brightness change /
flicker as the replay
animation changes

Function: $7A20,33 – $7A53,33
No changes to this in L8.3.

to multi-color
image.

7 Special

Likely an
intentional
brightness change /
flicker as the
special animation
changes to multi-
color image.
Same effect when
shown as database
award or when
collected at
outlane.
Mentioned here
for completeness.

Function: $7A56,33 – $7A91,33
No changes to this in L8.3.

8 Shoot Again

No problems with
display of the
“SHOOT” and
“AGAIN”
sequences.

Function: $735F,35
No changes to this in L8.3.

9 “Boom” 1

No problems Function: $76CB,35
No changes to this in L8.3.

10 “Boom” 2

No problems Function: $76CB,35
No changes to this in L8.3.

11 Judgment
day

Animation itself is
good but the
“StaringArnold”
sequence
afterwards has
minor issue.

Prior to vertical
column reveal,
some of the
“Starring” text is
briefly shown.

Function: $7862,35
Not noticeable in videos of real
hardware. No changes to this in
L8.3.

Vertical column reveal continues

12 T2

Animation itself is
good but the
“StaringArnold”
sequence
afterwards has
minor issue.

Prior to vertical
column reveal,
some of the
“Starring” text is
briefly shown.

Function: $7892,35
Not noticeable in videos of real
hardware. No changes to this in
L8.3.

Vertical column reveal continues

13 Kickback Lit

This
function is
also used by
bonus
multiplier.

Autofire, no
problems when
awarded via
database award or
targets alike.

2X, 4X, 6X, 8X, no
problems.

Function: $798C,35
No changes to this in L8.3.

14 “I am the
future”

No problems Function: $7D82,35
No changes to this in L8.3.

15 Kickback

No problems Function: $7DD5,35
No changes to this in L8.3.

16 Arnold with
shotgun

No problems in
either of the 2
places when
displayed during
attract mode.

Function: $7E43,35
No changes to this in L8.3.

17 Elevator
doors closed

No problems Function: $7F25,35
No changes to this in L8.3.

18 T-1000
blasted

No problems.
Doors are bright
colored during
shotgun blast for
several frames as
part of the effect.

Function: $7F25,35
No changes to this in L8.3.

19 T-1000 self-
healed

Sometimes at end
of animation, the
pixels flicker bright
as the animation
transitions back to
the score display.

Function: $7F25,35
This issue is noticeable on real
hardware and is addressed in L8.3
so pixels don’t go bright when
transitioning to the score display.

Animation Fix: Security Levels
Depicted as animation #1, above, the security levels animation can cause pixels to get bright for a brief

moment during the switch back to score display. To fix this, the end of the animation code will be

updated to blank the display prior to the score display. This will prevent the flicker of pixel brightness.

The animation function is from $4088,24 through $412B,24. The final instruction of the function at

$412B,24 (ROM image offset 0x1012B) is as follows:

412B: 7E C9 52 JMP $C952 ; jump to function done

The function ending jump instruction is modified to jump to a previously unused area at the end of the

current bank (bank $24) where it will clear the display and then jump to the $C952 to end the animation.

412B: 7E 57 49 JMP $5749 ; jump to fixup code

The code now jumps to $5749,24 (ROM image offset 0x11749) where the unused ROM region is now

populated with the following code:

5749: 34 02 PSHS A ;

574B: 86 55 LDA #$55 ;

574D: 97 B4 STA $B4 ; Store 0x55 into $B4 to cease DMD update

574F: 35 02 PULS A ;

5751: BD FB AE JSR $FBAE ; Call function clear DMD page memory

5754: 7E C9 52 JMP $C952 ; jump to function done

With this change in place, the pixels do not get bright as the transition to score display takes place. A

very slow-motion playback does reveal that the bright/medium dots go away and then the dim dots go

away as screen is blanked which should be unperceivable during game play and not produce a flicker

when animation transitions back to the score display anymore.

Animation Fix: T-1000 Self-Healed/Extra Ball Award
Depicted as animation #19, above, the “T-1000 self-healed” animation (at extra ball redeem) ends with a

brief display of bright pixels as the display transitions to the score display. To fix this, the end of the

animation code will be updated to use the same method described above for “Security Levels” fix. The

animation function ends at $7FA2,35 (ROM image offset 0x57FA2) with the end of the function as

follows:

7F96: 86 05 LDA #$05 ; DMD Page selector 0x05

7F98: BD FB 88 JSR $FB88 ; Init for DMD prior to drawing to it.

7F9B: 7E 7F 9E JMP $7F9E ; <nop>

7F9E: BD 83 46 JSR $8346 ; Sleep()

7FA1: 20 ;

7FA2: 35 B6 PULS A,B,X,Y,PC ;

Analysis of the function reveals there is a JMP instruction at $7F9B which simply jumps to the very next

instruction which then performs a delay (of value 0x20, which is 1/2 second) to retain the T-1000 image

on the display for a brief moment before transitioning back to score display. To fix the bright-pixels

issue, the code will be re-arranged so that we can perform a JSR instruction to new code that clears the

display in a way similar to the fix for Security Levels display issue (described previously).

7F96: 86 05 LDA #$05 ; DMD Page selector 0x05

7F98: BD FB 88 JSR $FB88 ; Init for DMD prior to drawing to it.

7F9B: BD 83 46 JSR $8346 ; Sleep()

7F9E: 20 ;

7F9F: BD 7E DC JSR $7EDC ; Call display-clear fixup function

7FA2: 35 B6 PULS A,B,X,Y,PC ;

As depicted in the new code, the JMP instruction was removed and a JSR instruction was inserted prior

to the function ending. The new JSR instruction jumps to code at $7EDC,35 (the same bank as running

code, $35) which corresponds to ROM image offset 0x57EDC.

The fixup routine at $7EDC,35 is added to ROM region immediately prior to this T-1000 Self-Healed

function. At this region of ROM is the function for displaying the T2 Fan-Club message. Since L8.3

removes the calls to this function completely from the ROM, this now represents an unused region in

the ROM which can be repurposed. A survey of the L8.3 ROM was done to confirm there are no calls to

the fan-club function however out of an abundance of safety, the first instruction in the repurposed

function is an RTS so that any attempts to invoke the fan-club function at its original address $7EDB,35

will simply return without performing any work. To neatly repurpose the function, the now-unused

bytes are also being set to 0xFF to more easily highlight the fact that the ROM space is now unused.

The new content of the ROM region for fan-club at $7EDB,35 (ROM image offset 0x57EDB) is as follows:

7EDB: 39 RTS ; Fan-club entry point now just returns

7EDC: 34 02 PSHS A ; Start of display-clear fixup routine

7EDE: 86 55 LDA #$55 ;

7EE0: 97 B4 STA $B4 ; Store 0x55 into $B4 to cease DMD update

7EE2: 35 02 PULS A ;

7EE4: BD FB AE JSR $FBAE ; Call function clear DMD page memory

7EE7: 39 RTS ; Done

 ;

7EE8: FF FF FF FF ; <unused ROM region>

7EEC: FF FF FF FF ; <unused ROM region>

7EF0: FF FF FF FF ; <unused ROM region>

7EF4: FF FF FF FF ; <unused ROM region>

7EF8: FF FF FF FF ; <unused ROM region>

7EFC: FF FF FF FF ; <unused ROM region>

7F00: FF FF FF FF ; <unused ROM region>

7F04: FF FF FF FF ; <unused ROM region>

7F08: FF FF FF FF ; <unused ROM region>

7F0C: FF FF FF FF ; <unused ROM region>

7F10: FF FF FF FF ; <unused ROM region>

7F14: FF FF FF FF ; <unused ROM region>

7F18: FF FF FF FF ; <unused ROM region>

7F1C: FF FF FF FF ; <unused ROM region>

7F20: FF FF FF FF ; <unused ROM region>

7F24: FF ; <unused ROM region>

With this fix in place, instead of a momentary flicker of bright pixels, the extra-ball redeem animation

neatly blanks prior to display of the game scores.

The L8.3 Custom Message support in the ROM

As part of the L8.3 image a special function is added in to allow T2 owners and hobbyists to customize

their ROM with an attract mode message that is part of the ROM image and, as such, becomes a

permanent part of the attract mode sequence. This provides some functionality exceeding what the

WPC “custom message” allows. The standard WPC “custom message” feature is still present and part of

L8.3.

The L8.3 ROM support of custom message support has the following characteristics:

 Only a single frame may be created using this feature

 Up to 3 lines may be entered, up to 32 characters on each line

 Can specify any of the available fonts

 Can specify where on the DMD each line is shown

 Can specify an optional sound call that is played at the time of the custom message

 Can specify a wipe-pattern how the message is revealed, or instant-on display

 Can specify how much time the message is shown before attract mode proceeds to next item

The idea is that some trial and error would need to take place when crafting a custom message in the

ROM especially since some fonts might end up causing wrap of characters on the display. Selecting the

coordinates of where to place each line might also take some time to dial in.

This enhancement provides the ability to have a sound call added with the display of the message. Any

of the existing sound calls can be specified. There is support to play a sound without any custom

message if the desire is to have a periodic sound call during attract mode without any custom text on

the display.

By default, the custom message is empty, nothing is shown. If any of the 3 lines contain text then the

default characteristics are to use font and vertical line placement similar to the WPC “custom message”

feature and default is to have instant-on display of the message without any wipe-mode effect to reveal

the message.

Each line needs to end with a 0x00 or 0xFF byte to indicate end of the line. When first byte is 0x00 or

0xFF it means nothing should be printed for that line. Code enforces a limit of 32 characters per line and

there are 32 bytes of ROM space set aside for each line. Ending 0x00 or 0xFF is not used if all 32 bytes

are used. If font is too large and/or if too many characters are used on a line, the text may wrap.

To prevent the “U6 Cksum Error” test report, the checksum for the image must be recalculated and

updated in the ROM image. Details on generating a valid checksum are outside the scope of this

document. Check online resources to help generate a valid checksum. The 2nd byte of the checksum

needs to be 0x08 for proper operation and in order to not trigger a factory settings reset when changing

from an existing L-8, L8.1 or L8.2 ROM image.

The L8.3 Custom Message Assembly Code

The following code is inserted into the L8.3 ROM image toward the end of bank $3D at WPC address

$7F65,3D (ROM image offset 0x77F65). Some of the user adjustable values are directly in this function

while the actual text strings are located in unused ROM region prior to this function.
---;---

 ;

7F65: 34 16 PSHS X,B,A ;

 ;

7F67: 86 00 LDA #$00 ; Sound call number to play (pre-reveal)

7F69: 8D 5A BSR $7FC5 ; Call routine to play sound if attract-sounds are on

 ;

7F6B: 8E 7F 00 LDX #$7F00 ; Address of string #1. Each string is 0x20 bytes

7F6E: 8D 48 BSR $7FB8 ; Call subroutine to set B if there is a msg

7F70: 5D TSTB ;

7F71: 27 35 BEQ $7FA8 ; If B=0x00 there is no msg to show, skip to the end

 ;

 ; At this point we are committed to play a message.

7F73: 34 02 PSHS A ; Save the pre-reveal sound index onto stack

 ;

7F75: 8D 5B BSR $7FD2 ; Call subroutine to clear DMD ram/display

 ;

7F77: 8D 31 BSR $7FAA ; Routine to copy string from X to $0386 and X+=0x20

7F79: BD D7 99 JSR $D799 ; Write string from $0386 to display ram

7F7C: 00 00 ;

7F7E: 01 ; Font index 0x01 = 7 high single stroke

7F7F: 40 07 ; Center horizontally, bottom starts at line 7

 ;

7F81: 8D 27 BSR $7FAA ; Routine to copy string from X to $0386 and X+=0x20

7F83: BD D7 99 JSR $D799 ; Write string from $0386 to display ram

7F86: 00 00 ;

7F88: 01 ; Font index 0x01 = 7 high single stroke

7F89: 40 11 ; Center horizontally, bottom starts at line 17

 ;

7F8B: 8D 1D BSR $7FAA ; Routine to copy string from X to $0386 and X+=0x20

7F8D: BD D7 99 JSR $D799 ; Write string from $0386 to display ram

7F90: 00 00 ;

7F92: 01 ; Font index 0x01 = 7 high single stroke

7F93: 40 1C ; Center horizontally, bottom starts at line 28

 ;

 ; The next 6 bytes adjust the reveal/wipe pattern

 ; ---

7F95: BD E2 74 JSR $E274 ; BD E2 74 12 12 12 == instant-full frame display

7F98: 12 12 12 ; BD 88 F5 7F 57 33 == Center-out vertical split reveal

 ; BD 88 F5 7C F5 33 == Alternating vertical columns

 ;

7F9B: 35 02 PULS A ; Load the pre-reveal sound from stack back into A

7F9D: 4D TSTA ; If pre-reveal sound was non-zero then we skip over

7F9E: 26 04 BNE $7FA4 ; the post-reveal sound to avoid 2x sound call attempts

 ;

7FA0: 86 00 LDA #$00 ; Sound call number to play (post-reveal)

7FA2: 8D 21 BSR $7FC5 ; Call routine to play sound if attract-sounds are on

 ;

7FA4: BD 83 46 JSR $8346 ; Sleep() to keep message on display

7FA7: C0 ; Adjust 0xC0 to desired period.

7FA8: 35 96 PULS A,B,X,PC ;

 ;

---;---

Some additional new helper functions are not depicted and left as an exercise for the reader.

The L8.3 Custom Message Adjustable Values Table

 Bank $3D

Addr

ROM Image

Addr

Default Value Info

Line 1 Text 0x7F00 –

0x7F1F

0x77F00 –

0x77F1F

0xFF .. 0xFF

(no text)

Up to 32

characters

Line 1 Font 0x7F7E 0x77F7E 0x01 See below for

valid font

values

Line 1 X-position 0x7F7F 0x77F7F 0x40 0x40 =

centered

Line 1 Y-position 0x7F80 0x77F80 0x07 Bottom pixel

row of line

Line 2 Text 0x7F20 –

0x7F3F

0x77F20 –

0x77F3F

0xFF .. 0xFF

(no text)

Up to 32

characters

Line 2 Font 0x7F88 0x77F88 0x01 See below for

valid font

values

Line 2 X-position 0x7F89 0x77F89 0x40 0x40 =

centered

Line 2 Y-position 0x7F8A 0x77F8A 0x11 Bottom pixel

row of line

Line 3 Text 0x7F40 –

0x7F5F

0x77F40 –

0x77F5F

0xFF .. 0xFF

(no text)

Up to 32

characters

Line 3 Font 0x7F92 0x77F92 0x01 See below for

valid font

values

Line 3 X-position 0x7F93 0x77F93 0x40 0x40 =

centered

Line 3 Y-position 0x7F94 0x77F94 0x1C Bottom pixel

row of line

Sound Call

Pre-Reveal

0x7F68 0x77F68 0x00 Sound index

number

Reveal/Wipe

Pattern

0x7F95 –

0x7F9A

0x77F95 –

0x77F9A

0xBD 0xE2 0x74

0x12 0x12 0x12

6 bytes wipe/

reveal mode

Sound Call

Post-Reveal

0x7FA1 0x77FA1 0x00 Sound index

number

Display Period 0x7FA7 0x77FA7 0xC0 0x00 – 0xFF

display period

The L8.3 Custom Message Adjustable Values Info

Additional details for each of the adjustable items are provided below. In some cases it is an exercise of

trial and error to see how the modifications result in the updated custom message on the display. It is

suggested that a WPC emulation environment is first used to test changes.

Line Text

As mentioned, up to 32 characters are allowed for each line. As in most cases when there are less than

32 characters on a line, the line text should end in 0xFF or 0x00. The code specifically looks for 0xFF or

0x00 as the line ending. If the line contains the maximum 32 characters then it must not be ended with

0xFF or 0x00 byte since code will automatically end the line at 32 characters. There are fixed locations

in the ROM image for each line:

Text for… ROM Image offset

Line 1 0x77F00 – 0x77F1F

Line 2 0x77F20 – 0x77F3F

Line 3 0x77F40 – 0x77F5F

Any or all of the 3 lines may be used. When choosing larger fonts it may be necessary to only use 2 lines

or a single line to get the characters to display properly. The default font and placement uses a 7-high

font which allows for all 3 lines to contain text without having to adjust the default font or x/y

placement for each line.

An example modification to each of the 3 lines in a hex editor might look like the following:

In the example, above, each line was ended with the 0xFF byte. The single byte after each line text

could also have ended with 0x00 byte for those who like to follow more common programming syntax.

This example message, when using the default values for the line position and font, will appear on the

display as follows:

As can be observed with this example, the default font uses a font with fixed width characters and also

allows for lower-case letters and punctuation characters. When using lower case letters it is important

to consider how some characters contain descenders that show pixel data lower than the rest of the line.

Not all fonts allow for lower-case letters or punctuation. Later section of this document will explore the

various fonts that could be used.

Line Font

There are various fonts used in the game. Fonts vary in how tall they are and their stroke width. Fonts

may also vary in which characters they will allow. Some fonts, for example, only display number digits

and some fonts are upper-case letters only. There are also special symbols supported in some fonts.

The game also supports some game animation sequence images in the form of font characters although

selecting such things are not the intent of this custom message feature of L8.3.

Refer to the fonts section later in this document for a depiction of the fonts that are supported and their

byte value that needs to be modified in the custom message code for font selection for each line.

Remember that in addition to selecting a font, the line X/Y position values may need to be updated so

the different sized font will display in a desirable way.

The default fault is 0x01 for each of the 3 lines and highlighted in red in the hex-editor view, below.

The font byte for each line can be changed to the desired font byte value.

Line X-Position

The X-Position specifies where on the display, horizontally, the line of text will appear. By default the

value 0x40 (decimal 64) is used which centers the line on the 132-wide pixel display. Some amount of

care is needed to choose values other than 0x40 to adjust the message to the left or to the right. Since

the value specifies the ‘center’ of the text, a value must be chosen that doesn’t cause the line to wrap if

the center point pushes the side of the message around the screen to the other side.

Continuing the example, we will center the first line at 0x20 (decimal 32), keep the second line centered

at 0x40 (decimal 64) and have the third line centered at 0x60 (decimal 96) as noted in the red

highlighted bytes in the hex editor:

The resulting message on the display using these X-Position values is as follows:

Some experimentation reveals the valid values for the X-Position byte are 0x00 through 0x7F (127

decimal) to pick where on the X-axis the text is centered on the 128-wide pixel display.

Line Y-Position

The Y-Position byte for each line indicates where, vertically, on the display the line should be printed.

This refers to the bottom of the line of text. In the examples shown, above, using default font and Y-

Position values, the first line has value 0x07, second line has 0x11 (decimal 17) and the third line uses

0x1C (decimal 28). Since the default font is 7 pixels high it makes sense the first line uses Y-position

value of 0x07 so the line of text fits at the top region of the display. The next line starting at 0x11

(decimal 17) using the 7-high font means there would be 3 pixel row gap between the bottom of the

first line and top of second line. The third line having Y-position 0x1C (decimal 28) would mean there 4

pixel gap between the bottom of the second line and top of the third.

Hacker’s Tip: You

can change the

line print functions

from $D799 to

$D77D and the line

x-position specifies

absolute x-position

instead of center

point!

Some experimentation has shown that the Y-Position values are 0-based which means valid values

would be 0x00 through 0x1F (31 decimal). This means the first line showing a 7-high pixel font with Y-

position value 0x07 would display the line with a single row of unlit pixels on the top-most row of the

display.

Continuing the example using some different Y-values to move the vertical position of the example lines

of text:

As shown in the red highlighted byte values, the Y-Position values for the three lines of text are changed

to 0x17 (23 decimal), 0x1B (27 decimal), and 0x1F (31 decimal), respectively. This means the 3rd line will

be on the bottom-most line on the 32-line display. The bottom of the 2nd line is at row 28 (of 32 rows)

and the bottom of the 1st line is at row 24 (of 32 rows). The result of this continued example is as

follows:

In this case we can display each 7-high font line with overlapping Y-position values since we’ve

previously adjusted the X-position to ensure they are located in different horizontal positions on each

line.

Sound Call

The L8.3 custom message feature also supports the ability for a sound to be played in conjunction with

the display of the custom message.

A sound index can be specified during the reveal of the message or after the reveal of the message. This

allows some fine tuning of when the sound plays especially when a wipe/reveal pattern is used to

display the message over a perceivable period of time. It might be preferred to have the sound play

during or play after the reveal pattern is complete. Code will only allow for a single sound to be used. If

a sound call is specified in both positions, only the first, pre-reveal, sound call will be used.

By default the sound call value is 0x00 which means no sound call will be attempted. When a value

other than 0x00 is used then the sound-call will be sent to the sound board if “Attract Sounds” is

configured to “on”. If the attract sounds are not enabled, then there will be no sound played with the

message. In the case where no text is defined to be shown (All 3 lines start with 0x00 or 0xFF byte) only

the pre-reveal sound will be supported to play a sound without displaying any custom message on the

display. This allows flexibility of having a selected sound play periodically during attract mode but not

with an accompanying custom message on the display (it will play the pre-reveal sound while showing

whatever is next in the attract mode sequence).

The single byte sound number that is specified is passed into a function that the game uses to play the

desired sound number. Sound numbers that may be specified are listed in the table below:

Sound Number Sound Effect

0x00 Disabled, no sound

0x01 <none>

0x02 <none>

0x03 Missile flyby

0x04 Waszhwawawawu

0x05 Laser shot

0x06 Engine rev-up (doesn’t stop!)

0x07 Tingtingtingting

0x08 Dwoh (database award sound)

0x09 Dwang (database award sound)

0x0A Twing (database award sound)

0x0B Da do do woo

0x0C Dit dit da doot doot doo

0x0D Fwizzzzzp

0x0E Fwzip fwzip

0x0F Space ship up with drumbeat

0x10 Splat

0x11 Zip dip dip

0x12 Klew

0x13 Blew

0x14 Zap zap whap whap

0x15 Space ship up away

0x16 Blip (skill shot?)

0x17 Zeeeee phweeee

0x18 Zee fwa fwa fwa fwa

0x19 Zee wahm zee zorm

0x1A Zee wohm zee zohm

0x1B Zee wohm zee wohm

0x1C Zee wohm mee wohm

0x1D Space email notification

0x1E Space doorbell

0x1F Zippzeooo

0x20 Bzeweww

0x21 Spaceship takeup

0x22 Scwooph

0x23 Bzeww weooo

0x24 Game show prize award

0x25 Computery doowhip

0x26 Computery bangy

0x27 Computery sudden

0x28 Computery alarmy noise

0x29 Computery ramp-up blongy award

0x2A Computer gun load

0x2B Spacey computer whirz

0x2C Spacey drill whir

0x2D Bluzz

0x2E Quuz

0x2F Wfuz

0x30 Pfz

0x31 Pfuz

0x32 Pfaz

0x33 Pfiz

0x34 Wraaa

0x35 Low-pitch dramatic standoff music (music plays)

0x36 Computer wizzzz

0x37 Computer acute fare

0x38 Computer blipnoise

0x39 Computer ban fribblezee

0x3A Computer bang fribble

0x3B Spooky warble

0x3C Do do dat dwoo

0x3D Computer flsmish

0x3E Computer smoozmle

0x3F Computer flashzm

0x40 Computer smashzle

0x41 Computer sizzle

0x42 Computer sizzle

0x43 Computer scramble

0x44 Downward low zip

0x45 Downward foreboding

0x46 Bonus foreboding

0x47 Computer splaws

0x48 Computer kblawz

0x49 Computer splat

0x4A Twilight zoney

0x4B Boom (during match?)

0x4C Spacey twang down

0x4D Spacey engine

0x4E Spacey vlarble

0x4F Spacey vle vle vle

0x50 Vu-vilp

0x51 Twangz

0x52 Door slam

0x53 Helicopter buzz by

0x54 Crack

0x55 Whack

0x56 Kabash

0x57 Patter patter patter patter

0x58 Shot

0x59 Shatter

0x5A Blast

0x5B Drop smash

0x5C Slam

0x5D Engine revving

0x5E Motorcycle

0x5F Swoosh

0x60 Crash

0x61 Smash

0x62 Gunshot

0x63 Punch/smack

0x64 Collision

0x65 “Take your best shot”

0x66 “Fire at will”

0x67 “You missed”

0x68 “Direct hit”

0x69 “Great shot”

0x6A “Lock sequence initiated”

0x6B “Get the extra ball”

0x6C <none>

0x6D “Extra ball”

0x6E Bang sound higher pitched (?)

0x6F Bang sound lower pitched (?)

0x70 “I’ll be back”

0x71 “It’s payback time”

0x72 “Get the jackpot”

0x73 “Jackpot”

0x74 “Checkpoint 1 secured”

0x75 “Passcode secured”

0x76 “Silent alarm deactivated”

0x77 “Vault key secured”

0x78 “Get the CPU”

0x79 “Hurry up”

0x7A “Autofire”

0x7B “Video mode”

0x7C “Load the cannon”

0x7D “Shoot again”

0x7E “Get out”

0x7F “Well done”

0x80 “Awesome”

0x81 “Nice shot”

0x82 “Judgment day”

0x83 “Let’s go”

0x84 “Go!”

0x85 “Run”

0x86 “I am the future”

0x87 “You are superior”

0x88 “Get the super jackpot!”

0x89 “Big Points“

0x8A “Autofire Deactivated“

0x8B “Way to go“

0x8C “No“

0x8D “Hasta la vista, baby“

0x8E “Chill out“

0x8F “Excellent”

0x90 “Get down”

0x91 “He’ll live”

0x92 FUA (Sound board needs profanity ROM U14)

0x93 “Woopdadidoo”

0x94 Boom (attract mode)

0x95 “Deactivated”

0x96 “Activated”

0x97 “Time to go”

0x98 “Right now”

0x99 “Don’t move”

0x9A “They’re here”

0x9B “Out of the way”

0x9C “Look out”

0x9D “I am a Cyberdyne Systems series 800 terminator”

The sound effect names in the table, above, were derived using a pinball emulator and modified ROM

image to manually trigger each sound. The names of each sound were quickly derived based on what

was heard from the emulated sound board. Sounds were sampled with the L-8 sound ROM set and also

with the sound ROM U14 replaced with the “profanity” sound ROM. The only observed difference was

the sound 0x92 would play the FUA quote with profanity U14 ROM while it would play nothing with the

regular U14 ROM.

An example of having sound modification at ROM offset 0x77F68 changing the 0x00 byte to “Chill out”

we change the pre-reveal sound byte value to 0x8E as shown by the red highlighted byte below:

0x9E “Reloaded”

0x9F “Destroy everything”

0xA0 “Terminated”

0xA1 “You’re targeted for termination”

0xA2 “Get behind me if you want to live”

0xA3 “No way, Jose”

0xA4 “No problemo"

0xA5 “I am a cybernetic organism”

0xA6 “You missed everything”

0xA7 Crash

0xA8 Lengthy award

0xA9 Motorcycle rev and drive by

0xAA Motorcycle shifting gears

0xAB “Video mode activated”

0xAC “Hurryup activated”

0xAD Pzwee

0xAE Gunshot

0xAF Fizzle wizzle

0xB0 Balink

0xB1 Short trouble wrabble

0xB2 Elevating wrabble

0xB3 Dat dat dat do woo

0xB4 Elevating wribble

0xB5 Laser fizzle

0xB6 Smashey

0xB7 Punchy

0xB8 Boulder rumble

0xB9 “Destroy everything”

0xBA “Well done”

0xBB “Extra ball”

0xBC Short smack

0xBD – 0xFF <none>

If a reveal/wipe pattern is selected (described in next section) and the desire is to have the sound play

after the reveal is complete then the sound byte at 0x77FA1 should contain the desired sound byte

value and the byte at 0x77F68 should be 0x00 so that the post-reveal sound is played.

The hex-editor example below shows the post-reveal sound-call byte at 0x77FA1 set to 0x8E to play

“Chill out” after the reveal of the message is complete. The following also depicts the pre-reveal sound

at 0x77F68 set to 0x00.

Reveal/Wipe

When the custom message is displayed there are a few ways in which the custom message may be

revealed (or “wiped”) onto the display. There are 6 contiguous bytes that are used to select the desired

reveal pattern, as shown in the table below.

ROM Offset Data Bytes Reveal / Wipe mode

0x77F95 0xBD 0xE2 0x74 0x12 0x12 0x12 Instant-on display

0x77F95 0xBD 0x88 0xF5 0x7F 0x57 0x33 Center-out vertical split reveal

0x77F95 0xBD 0x88 0xF5 0x7C 0xF5 0x33 Alternating vertical columns up/down reveal

At ROM offset 0x77F95 is the start of the 6-byte pattern. By default, the Instant-on display is used. The

way in which the custom ROM message feature for L8.3 is designed, the display will be blank prior to the

reveal of the custom message.

For all reveal/wipe modes, after the full message is shown, the post-reveal sound is played, if specified,

and the delay period is observed before the attract mode proceeds to the next sequence.

Instant-on display

The instant-on display simply displays the message instantly without any fancy pattern or effect. This is

the default method used to display the custom ROM message in L8.3. The default reveal/wipe mode is

specified by the 6 bytes starting at ROM offset 0x77F95, as shown in red, below:

Center-out vertical split reveal

The center-out vertical split reveal is used by a few attract mode messages and can be enabled for the

custom message. Example hex-editor output selecting this reveal pattern is depicted below.

Using this reveal mode to display the example message is depicted below. Starting with blank display,

the message starts to appear from the center of the display, exposing the message outwardly exposing

each column of pixels of text in a smooth reveal, despite the screen shots, below, depicting the reveal

more coarsely.

Alternating vertical columns up/down reveal

The alternating vertical columns up/down reveal is also used by a few attract mode messages and can

be enabled for the custom ROM message feature. Example hex-editor output selecting this reveal

pattern is depicted below.

Using this reveal mode to display the example message is depicted below. Starting with blank display,

the message starts to appear from the top and bottom of the display in alternating columns. The

columns are revealed exposing each vertical column of the message in a smooth reveal, despite the

screen shots, below, depicting the reveal more coarsely.

Display Period

The custom ROM message feature also allows the delay period to be specified which controls how long

the message stays on the display prior to proceeding to the next normal attract mode sequence.

The byte at ROM offset 0x77FA7, by default is set to 0xC0 to provide a decent delay. This byte can be

modified larger or smaller within the range of 0x00..0xFF to make the message appear for a shorter or

longer period, respectively. Value 0x40 corresponds to 1 second. Value 0xC0 is 3 seconds.

For example, below, the message is set to appear for 1 second by making the value 0x40.

Fonts
Some characters are shown, below, for each of the supported fonts. Some fonts support various special

characters and punctuation characters and some fonts also support lower case letters. Not all

characters are shown, below, for each font.

Font is specified on a per-line basis. It is important that the X/Y location bytes are also adjusted to

ensure the display of the font character doesn’t cause wrap on the display. A valid combination of font

and X/Y location must be used so that it appears on the display in a pleasing way.

The font selector byte for each line is summarized as the following:

Font for… ROM Image offset

Line 1 0x77F7E

Line 2 0x77F88

Line 3 0x77F92

The default value for L8.3 is font selection 0x01 which provides a 7-high single-stroke font. A summary

of all fonts in the T2-L8 font table is as follows. For completeness, all font table info is listed. The fonts

that are used for graphics/animations are listed and grayed out. Ranges of supported characters are

shown in < > brackets such as <0-9> to indicate support for digits 0 through 9 (where it shows <=> it is

depicting support for the 3 characters ‘<’, ‘=’, and ‘>’). Spacebar character support is denoted with “< >”

Font Description Support Character Support

0x00 7-high, single stroke Full character support < >!”#$%&‟()*+,-./<0-9>:;<=>?@<A-Z>[\]^_`<a-z>{|}~

0x01 7-high, single stroke Full character support < >!”#$%&‟()*+,-./<0-9>:;<=>?@<A-Z>[\]^_`<a-z>{|}~

0x02 5-high, single stroke Upper-case alpha, number, symbol < > ”#$% ‟()*+,-./<0-9>: = ? <A-Z>[\]

0x03 7-high, single stroke Comma, period, digits (scoring) , . <0-9>

0x04 7-high, single stroke Comma, period, digits (scoring) , . <0-9>

0x05 7-high, single stroke Comma, Period, digits (scoring) < >) , . <0-9>

0x06 13-high double stroke Comma, Period, digits (scoring) , . <0-9>

0x07 13-high double stroke Comma, Period, digits (scoring) , . <0-9>

0x08 13-high double stroke Comma, Period, digits (scoring) , . <0-9>

0x09 10-high double stroke Misc, Upper-case letters, digits !” „) -./<0-9>; = <A-Z>

0x0A 15-high outlined Misc, Upper-case letters, digits < >!” -./<0-9> ? <A-Z>

0x0B 22-high outlined Misc, Upper-case letters, digits ? -. <0-9> ? <A-Z>

0x0C 26-high triple-stroke Misc, Alpha, digits < > . <0-9>: <A-Z> <a-z>

0x0D Graphics Terminator Robot 0x01 – 0x0C

0x0E Graphics Shiny Pinball 0x01 – 0x0B

0x0F 7-high single stroke Full character support < >!”#$%&‟()*+,-./<0-9>:;<=>?@<A-Z>[\]^_`<a-z>{|}~

0x10 15-high triple stroke Misc, Upper-case letters, digits < >!”) ,-. <0-9> = ? <A-Z>

0x11 27-high wide stroke Comma, period, digits (scoring) , . <0-9>

0x12 32-high wide stroke Digits only <0-9>

0x13 25-high wide stroke Digits only <0-9>

0x14 20-high wide stroke Digits only <0-9>

0x15 13-high wide stroke Digits only <0-9>

0x16 8-high wide stroke Digits only <0-9>

0x17 4-high tiny Misc, Upper-case letters, digits < > , <0-9> <A-Z>

0x18 5-high tiny Misc, Upper-case letters, digits < > , . <0-9> <A-Z>

0x19 13-high double stroke Misc, Upper-case letters, digits < > , . <0-9> <A-Z>

0x1A 26-high wide stroke Digits only <0-9>

0x1B Graphics Large spinning digits and „X‟ 0x01 – 0x2D

0x1C Graphics Large spinning plank 0x01 – 0x06

0x1D Graphics Used in Pull Trigger animation 0x01 – 0x16

0x1E Graphics Used in Match animation 0x01 – 0x1F

0x1F Graphics Circular shape 0x01 – 0x04

0x20 Graphics Super Jackpot 0x01, 0x02

0x21 Graphics Terminator Robot (same as 0x0D) 0x01 – 0x0C

0x22 Graphics Circular shape (same as 0x1F) 0x01 – 0x04

0x23 Graphics Motorcycle left 0x01 – 0x04

0x24 Graphics Motorcycle left (same as 0x23) 0x01 – 0x04

0x25 Graphics Motorcycle wheelie 0x01 – 0x0A

0x26 Graphics Explosion 0x01 – 0x06

0x27 Graphics Explosion 0x01 – 0x03

0x28 Graphics Explosion 0x01 – 0x05

0x29 Graphics Fire at will 0x01 – 0x02

0x2A Graphics Fire at will (same as 0x29) 0x01 – 0x02

0x2B Graphics Video mode 0x01 – 0x08

0x2C Graphics Video mode 0x01 – 0x08

Font 0x00

Font 0x00 is a 7-high pixel, single-stroke font with lower-case letters.

Font 0x01

Font 0x01 appears to be identical to font 0x00, the internal code likely points to the same font data.

0x2D Graphics Video mode 0x01 – 0x0B

0x2E Graphics Video mode 0x01 – 0x08

0x2F Graphics Video mode 0x01 – 0x08

0x30 Graphics Video mode 0x01 – 0x06

0x31 Graphics Video mode 0x01 – 0x06

0x32 Graphics Video mode 0x01 – 0x0B

0x33 Graphics Video mode 0x01 – 0x08

0x34 Graphics Hunter ship 0x01 – 0x02

0x35 Graphics EB Award 0x01 – 0x02

0x36 Graphics Terminator 0x01 – 0x02

0x37 Graphics Hunter ship 0x01 – 0x02

Font 0x02

Font 0x02 is a 5-high font supporting only numbers, letters and some symbols.

Font 0x03

Font 0x03 is a 7-high scoring font (only supporting digits, comma, period).

Font 0x04

Font 0x04 is also a 7-high scoring font. This font is slightly wider than previous font.

Font 0x05

Font 0x05 is another 7-high scoring font, slightly wider than previous font.

Font 0x06

Font 0x06 is a 13-high double-stroke scoring font.

Font 0x07

Font 0x07 is another 13-high scoring font, slightly larger than the previous.

Font 0x08

Font 0x08 is another 13-high scoring font, slightly larger than the previous.

Font 0x09

Font 0x09 is a 10-high double-stroke font with numbers and upper-case letters.

Font 0x0A

Font 0x0A is a 15-high outlined font with numbers and upper-case letters.

Font 0x0B

Font 0x0B is a 22-high outlined font with numbers and upper-case letters.

Font 0x0C

Font 0x0C is a 26-high triple-stroke font with numbers and upper-case letters. This font also has lower-

case letters of varying heights. Only a small sample is depicted below.

Font 0x0F

Font 0x0F is a 7-high font containing upper and lower case letters and numbers.

Font 0x10

Font 0x10 is a 15-high triple-stroke font with numbers and upper-case letters.

Font 0x11

Font 0x11 is a 27-high thick-stroke scoring font.

Font 0x12

Font 0x12 is a huge 32-high number-only font.

Font 0x13

Font 0x13 is a large 25-high number-only font.

Font 0x14

Font x014 is a large 20-high number-only font.

Font 0x15

Font 0x15 is a medium 13-high number-only font.

Font 0x16

Font 0x16 is a smaller 8-high number-only font.

Font 0x17

Font 0x17 is a tiny 4-high font with numbers and upper-case letters.

Font 0x18

Font 0x18 is a tiny 5-high font with numbers and upper-case letters.

Font 0x19

Font 0x19 is a 13-high double-stroke font with numbers and upper-case letters.

Font 0x1A

Font 0x1A is a 26-high scoring font.

The L8.3 Feature Adjustments Additions
Originally, the L8.3 was going to re-purpose the “Fan Club” adjustment to allow various selections to

pick attract mode and profanity (FUA) mode. As additional enhancements were added to select

Animation Code and Lamp Driver, it became apparent that adding new “Feature Adjustments”

selections would be a superior solution over a repurposed “Fan Club” adjustment.

The L-8 code was analyzed to get a better understanding of how the existing Feature Adjustments are

designed and how they are stored into static (battery-backed) RAM. This analysis determined that the L-

8 code is designed to accommodate 10 new Feature Adjustments without much trouble. Six of these

new Feature Adjustments were utilized in L8.3, leaving room for 4 new adjustments in the future. While

surveying the code, it also appears that, if needed, additional adjustments are also possible by altering

the adjustment code to take advantage of the fact that 2 bytes are used for each adjustment even if the

adjustment only actually uses one byte to store the adjustment setting. For future WPC ROM

modifications coding technique may be exercised to store 2 adjustments in the space of one, if not

enough spare/unused adjustments are available.

The following sections describe how the number of available adjustments were determined along with

the necessary changes to 4 data tables that are necessary in order to add new adjustments:

 Feature Adjustments Metadata Table

 Feature Adjustments String Table, English

 Feature Adjustments String Table, German

 Feature Adjustments String Table, French

Determining Total Number of Adjustments
Part of determining whether L-8 has ‘spare’ Feature Adjustments involves determining how many

adjustments the L-8 code currently accommodates. There is a code startup function that is called which

establishes the memory address of the starting point in SRAM for Feature Adjustments and it also

checks the total number of adjustments against a fixed limit. This function is shown below:

;--;---

9388: 34 36 PSHS Y,X,B,A ;

938A: 8E 81 EC LDX #$81EC ; X gets Pointer to StandardAdjustmentsTable[]

938D: BD AC 38 JSR $AC38 ; GetTableXEntryCountIntoY()

9390: 1F 20 TFR Y,D ; D has number of standard adjustments

9392: 86 02 LDA #$02 ; A gets 2 since each adjustment is 2-bytes in ram

9394: 3D MUL ; D now has number of SRAM bytes of non-feature adjstmts

9395: 8E 1B 1D LDX #$1B1D ; X gets start of RAM for Standard Adjustments: $1B1D

9398: 30 8B LEAX D,X ; Advance X by number bytes of non-feature adjstmts

939A: BF 03 39 STX $0339 ; Result into $0339. SRAM start of Feature Adjustments

939D: 1F 20 TFR Y,D ; Reload D with number of standard adjustments

939F: 8E 81 EF LDX #$81EF ; X gets Pointer to FeatureAdjustmentsTable[]

93A2: BD AC 38 JSR $AC38 ; GetTableXEntryCountIntoY()

93A5: 31 AB LEAY D,Y ; Advance Y by D. Y has # of Std <and> Feature adjstmts

93A7: 10 8C 00 6E CMPY #$006E ; Compare Y with 0x006E, sanity check that there are no

 ; more than 0x006E (110) total adjustments:

 ; Standard Adjustments: 0x4E, 78 table entries

 ; Feature Adjustments : 0x16, 22 table entries

 ; Unused 16-bit RAMs : 10

93AB: 23 04 BLS $93B1 ; If Y is lower or same as 0x006E (110), good return

93AD: BD 82 98 JSR $8298 ; Otherwise, call this error handler function

93B0: 6C ; with error code 0x6C to indicate adjustment error

93B1: 35 B6 ;

;--;---

The highlighted instruction, above, reveals that code is designed for a total of 110 adjustments. Further

surveys into the other parts of the code reveals that the first part of adjustments consists of 78

adjustments while the second part accommodates 32 (22 Feature Adjustments and, apparently, room

for 10 additional adjustments). The L-8 code was exhaustively investigated to ensure that these,

presumed, 10 additional adjustments are not actually used by anything in L-8. This investigation results

in the determination that the additional 10 adjustments are, indeed, unused in L-8. The code does not

refer to the memory associated with the 10 additional adjustments, nor does run-time check of L-8

reveal any access to these additional 10 adjustments memory other than when code reads the entire

block of adjustments memory when determining adjustment checksum. Checksum is used by the code

to help determine if memory corruption has taken place.

The L-8 Adjustments Memory Map
Although the code shown above refers to “Standard Adjustments” and “Feature Adjustments”, the

game further divides the area that are referred to as “Standard Adjustments” into:

 Standard Adjustments

 HTSD Adjustments

 Pricing Adjustments

 Printer Adjustments

The WPC code utilizes various functions to fetch an adjustment value and return its setting in a 16-bit or

8-bit result register. The various functions are designed to accept an input index that is known by the

caller to such function to refer to the desired adjustment index that is known by both the caller and the

function. A detailed analysis of such lookup functions is left as an exercise for the reader.

The table, below, was gathered from the investigation into the L-8 Adjustments:

Overall
Index

SRAM Bytes Table-and-Index WPC Menu Name WPC Lookup
Index

0x00 (0) $1B1D:$1B1E StandardAdjustment000 NULL/Placeholder 0x00

0x01 (1) $1B1F:$1B20 StandardAdjustment001 Balls per game 0x01

0x02 (2) $1B21:$1B22 StandardAdjustment002 Tilt warnings 0x02

0x03 (3) $1B23:$1B24 StandardAdjustment003 Max E.B. Count 0x03

0x04 (4) $1B25:$1B26 StandardAdjustment004 Max E.B per B.I.P. 0x04

0x05 (5) $1B27:$1B28 StandardAdjustment005 Replay System 0x05

0x06 (6) $1B29:$1B2A StandardAdjustment006 Replay Percent 0x06

0x07 (7) $1B2B:$1B2C StandardAdjustment007 Replay Start 0x07

0x08 (8) $1B2D:$1B2E StandardAdjustment008 Replay Levels 0x08

0x09 (9) $1B2F:$1B30 StandardAdjustment009 Replay Level 1 0x09

0x0A (10) $1B31:$1B32 StandardAdjustment010 Replay Level 2 0x0A

0x0B (11) $1B33:$1B34 StandardAdjustment011 Replay Level 3 0x0B

0x0C (12) $1B35:$1B36 StandardAdjustment012 Replay Level 4 0x0C

0x0D (13) $1B37:$1B38 StandardAdjustment013 Replay Boost 0x0D

0x0E (14) $1B39:$1B3A StandardAdjustment014 Replay Award 0x0E

0x0F (15) $1B3B:$1B3C StandardAdjustment015 Special Award 0x0F

0x10 (16) $1B3D:$1B3E StandardAdjustment016 Match Award 0x10

0x11 (17) $1B3F:$1B40 StandardAdjustment017 Ex. Ball Ticket 0x11

0x12 (18) $1B41:$1B42 StandardAdjustment018 Max. Ticket/Player 0x12

0x13 (19) $1B43:$1B44 StandardAdjustment019 Match Feature 0x13

0x14 (20) $1B45:$1B46 StandardAdjustment020 Custom Message 0x14

0x15 (21) $1B47:$1B48 StandardAdjustment021 Language 0x15

0x16 (22) $1B49:$1B4A StandardAdjustment022 Clock Style 0x16

0x17 (23) $1B4B:$1B4C StandardAdjustment023 Date Style 0x17

0x18 (24) $1B4D:$1B4E StandardAdjustment024 Show Date + Time 0x18

0x19 (25) $1B4F:$1B50 StandardAdjustment025 Allow Dim Illum. 0x19

0x1A (26) $1B51:$1B52 StandardAdjustment026 Tournament Play 0x1A

0x1B (27) $1B53:$1B54 StandardAdjustment027 Euro. Scr. Format 0x1B

0x1C (28) $1B55:$1B56 StandardAdjustment028 Min. Vol. Override 0x1C

0x1D (29) $1B57:$1B58 StandardAdjustment029 GI Power Saver 0x1D

0x1E (30) $1B59:$1B5A StandardAdjustment030 Power Save Level 0x1E

0x1F (31) $1B5B:$1B5C StandardAdjustment031 Ticket Exp. Board 0x1F

0x20 (32) $1B5D:$1B5E StandardAdjustment032 No Bonus Flips 0x20

0x21 (33) $1B5F:$1B60 StandardAdjustment033 Game Re-start 0x21

0x22 (34) $1B61:$1B62 HtsdAdjustment001 Highest Scores 0x22

0x23 (35) $1B63:$1B64 HtsdAdjustment002 HTSD Award 0x23

0x24 (36) $1B65:$1B66 HtsdAdjustment003 Champion Htsd 0x24

0x25 (37) $1B67:$1B68 HtsdAdjustment004 Champion Credits 0x24

0x26 (38) $1B69:$1B6A HtsdAdjustment005 HTSD 1 Credits 0x26

0x27 (39) $1B6B:$1B6C HtsdAdjustment006 HTSD 2 Credits 0x27

0x28 (40) $1B6D:$1B6E HtsdAdjustment007 HTSD 3 Credits 0x28

0x29 (41) $1B6F:$1B70 HtsdAdjustment008 HTSD 4 Credits 0x29

0x2A (42) $1B71:$1B72 HtsdAdjustment009 HS Reset Every 0x2A

0x2B (43) $1B73:$1B74 HtsdAdjustment010 Backup Champion 0x2B

0x2C (44) $1B75:$1B76 HtsdAdjustment011 Backup HTSD 1 0x2C

0x2D (45) $1B77:$1B78 HtsdAdjustment012 Backup HTSD 2 0x2D

0x2E (46) $1B79:$1B7A HtsdAdjustment013 Backup HTSD 3 0x2E

0x2F (47) $1B7B:$1B7C HtsdAdjustment014 Backup HTSD 4 0x2F

0x30 (48) $1B7D:$1B7E PricingAdjustment001 Game Pricing 0x30

0x31 (49) $1B7F:$1B80 PricingAdjustment002 Left Units 0x31

0x32 (50) $1B81:$1B82 PricingAdjustment003 Center Units 0x32

0x33 (51) $1B83:$1B84 PricingAdjustment004 Right Units 0x33

0x34 (52) $1B85:$1B86 PricingAdjustment005 4th Slot Units 0x34

0x35 (53) $1B87:$1B88 PricingAdjustment006 Units/Credit 0x35

0x36 (54) $1B89:$1B8A PricingAdjustment007 Units/Bonus 0x36

0x37 (55) $1B8B:$1B8C PricingAdjustment008 Bonus Credits 0x37

0x38 (56) $1B8D:$1B8E PricingAdjustment009 Minimum Units 0x38

0x39 (57) $1B8F:$1B90 PricingAdjustment010 Coin Door Type 0x39

0x3A (58) $1B91:$1B92 PricingAdjustment011 Collection Text 0x3A

0x3B (59) $1B93:$1B94 PricingAdjustment012 Left Slot Value 0x3B

0x3C (60) $1B95:$1B96 PricingAdjustment013 Centr Slot Value 0x3C

0x3D (61) $1B97:$1B98 PricingAdjustment014 Right Slot Value 0x3D

0x3E (62) $1B99:$1B9A PricingAdjustment015 4th Slot Value 0x3E

0x3F (63) $1B9B:$1B9C PricingAdjustment016 Maximum Credits 0x3F

0x40 (64) $1B9D:$1B9E PricingAdjustment017 Free Play 0x40

0x41 (65) $1B9F:$1BA0 PricingAdjustment018 Hide Coin Audits 0x41

0x42 (66) $1BA1:$1BA2 PricingAdjustment019 1-Coin Buy-in 0x42

0x43 (67) $1BA3:$1BA4 PricingAdjustment020 Base Coin Size 0x43

0x44 (68) $1BA5:$1BA6 PricingAdjustment021 Coin Meter Units 0x44

0x45 (69) $1BA7:$1BA8 PricingAdjustment022 Dollar Bill Slot 0x45

0x46 (70) $1BA9:$1BAA PricingAdjustment023 Min. Coin Msec. 0x46

0x47 (71) $1BAB:$1BAC PricingAdjustment024 Slamtilt Penalty 0x47

0x48 (72) $1BAD:$1BAE PrinterAdjustment001 Column Width 0x48

0x49 (73) $1BAF:$1BB0 PrinterAdjustment002 Lines Per Page 0x49

0x4A (74) $1BB1:$1BB2 PrinterAdjustment003 Pause Every Page 0x4A

0x4B (75) $1BB3:$1BB4 PrinterAdjustment004 Printer Type 0x4B

0x4C (76) $1BB5:$1BB6 PrinterAdjustment005 Serial Baud Rate 0x4C

0x4D (77) $1BB7:$1BB8 PrinterAdjustment006 Serial DTR 0x4D

0x4E (78) $1BB9:$1BBA FeatureAdjustment000 NULL/Placeholder 0x00

0x4F (79) $1BBB:$1BBC FeatureAdjustment001 Special Percent 0x01

0x50 (80) $1BBD:$1BBE FeatureAdjustment002 Extraball Percnt 0x02

0x51 (81) $1BBF:$1BC0 FeatureAdjustment003 Extraball Memory 0x03

0x52 (82) $1BC1:$1BC2 FeatureAdjustment004 Consolation Ball 0x04

0x53 (83) $1BC3:$1BC4 FeatureAdjustment005 Drop Targt Count 0x05

0x54 (84) $1BC5:$1BC6 FeatureAdjustment006 Three Bank Count 0x06

0x55 (85) $1BC7:$1BC8 FeatureAdjustment007 Kickback Setting 0x07

0x56 (86) $1BC9:$1BCA FeatureAdjustment008 Skill Shot Timer 0x08

0x57 (87) $1BCB:$1BCC FeatureAdjustment009 Drop Targt Timer 0x09

0x58 (88) $1BCD:$1BCE FeatureAdjustment010 Three Bank Timer 0x0A

0x59 (89) $1BCF:$1BD0 FeatureAdjustment011 Hurry Up Timer 0x0B

0x5A (90) $1BD1:$1BD2 FeatureAdjustment012 Payback Timer 0x0C

0x5B (91) $1BD3:$1BD4 FeatureAdjustment013 Jackpot Timer 0x0D

0x5C (92) $1BD5:$1BD6 FeatureAdjustment014 Millions Plus 0x0E

0x5D (93) $1BD7:$1BD8 FeatureAdjustment015 Timed Plunger 0x0F

0x5E (94) $1BD9:$1BDA FeatureAdjustment016 Attract Sounds 0x10

0x5F (95) $1BDB:$1BDC FeatureAdjustment017 Drt Tgt Autofire 0x11

0x60 (96) $1BDD:$1BDE FeatureAdjustment018 T2 Fan Club 0x12

0x61 (97) $1BDF:$1BE0 FeatureAdjustment019 Flipper Trigger 0x13

0x62 (98) $1BE1:$1BE2 FeatureAdjustment020 Drop Trgt. Broken 0x14

0x63 (99) $1BE3:$1BE4 FeatureAdjustment021 DrpTrgt Dwn Mlti 0x15

0x64 (100) $1BE5:$1BE6 FeatureAdjustment022 *Profanity 0x16

0x65 (101) $1BE7:$1BE8 FeatureAdjustment023 *Attract Mode 0x17

0x66 (102) $1BE9:$1BEA FeatureAdjustment024 *Animation Code 0x18

0x67 (103) $1BEB:$1BEC FeatureAdjustment025 *Lamp Driver 0x19

0x68 (104) $1BED:$1BEE FeatureAdjustment026 *Mb Start Dt Actn 0x1A

0x69 (105) $1BEF:$1BF0 FeatureAdjustment027 *Timed 3Bank Lamp 0x1B

0x6A (106) $1BF1:$1BF2 FeatureAdjustment028 <unused> 0x1C

0x6B (107) $1BF3:$1BF4 FeatureAdjustment029 <unused> 0x1D

0x6D (108) $1BF5:$1BF6 FeatureAdjustment030 <unused> 0x1E

0x6E (109) $1BF7:$1BF8 FeatureAdjustment031 <unused> 0x1F

N/A $1BF9:$1BFA <Adjustments Checksum>

* New adjustments in L8.3 shown for reference. Profanity was also used in the original “Profanity ROM”.

The above describes how it was determined that SRAM can accommodate the extra 10 Feature

Adjustments. The underlying set of functions for accessing game adjustments has been analyzed and

appears to access the 10 unused elements as if they were Feature Adjustments and, as such, the 10

SRAM locations are not treated as any other type of element.

In order to utilize these 10 slots as actual game adjustments, several other areas of ROM data need to

be updated to allow for the game to present the new adjustments to the user in the game adjustments

menu. Such areas of ROM are further described below.

Feature Adjustments Metadata Table
The various game-adjustment functions for Feature Adjustments all cite a common data table in the

ROM which contains data about each adjustment. This is being referred to as the Feature Adjustments

Metadata Table (where ‘metadata’ meaning that it is data that contains information about other data).

This table contains a number of elements that are consistent with the number of available Feature

Adjustments. This means the table is made to be larger to accommodate the new adjustments. Since

the table is located in ROM with other meaningful bytes immediately afterwards, for L8.3 the table is

moved to an unused region of ROM where it can be made larger. The table below summarizes the

details of the moved table:

Feature Adjustments Metadata Table:
 Item

Feature Adjustments Metadata Table:
 Old Value

Feature Adjustments Metadata Table:
New Value

Address of Table Pointer ROM: 0x781EF, WPC: $81EF <unchanged>

Table Pointer Value (table location) ROM: 0x75680, WPC: $5680,3D ROM: 0x77680, WPC: $7000,3D

Table Entries 0x0016 (22) 0x001C (28)

Table Entry Size 0x0C (12 bytes each) <unchanged>

The new Feature Adjustments Metadata Table is shown below. The first 22 rows are identical as the

original L-8 table content, however the additional items starting at the 23rd entry are new in L8.3.

;---;--

7000: 00 1C ; Table entries is 1C (28 entries)

7002: 0C ; Bytes per table entry is 0C (12 bytes)

7003: 00 00 00 00 00 00 00 01 00 8E BC FF ; Default value entry

700F: 00 03 00 00 00 0A 00 01 00 71 E8 3A ; Feature Adjustments, A2.01, Special Percent,

701B: 00 0A 00 00 00 23 00 01 00 71 E8 3A ; Feature Adjustments, A2.02, Extraball Percnt

7027: 00 01 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.03, Extraball Memory

7033: 00 01 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.04, Consolation Ball

703F: 00 01 00 00 00 03 00 01 00 72 79 3A ; Feature Adjustments, A2.05, Drop Trgt Count

704B: 00 02 00 00 00 04 00 01 00 72 79 3A ; Feature Adjustments, A2.06, Three Bank Count

7057: 00 02 00 00 00 04 71 E7 31 72 70 3A ; Feature Adjustments, A2.07, Kickback Setting

7063: 00 02 00 00 00 04 71 E7 31 72 70 3A ; Feature Adjustments, A2.08, Skill Shot Timer

706F: 00 0B 00 05 00 63 00 01 00 71 B2 31 ; Feature Adjustments, A2.09, Drop Targt Timer

707B: 00 0F 00 05 00 63 00 01 00 71 B2 31 ; Feature Adjustments, A2.10, Three Bank Timer

7087: 00 0F 00 07 00 63 00 01 00 71 B2 31 ; Feature Adjustments, A2.11, Hurry Up Timer

7093: 00 14 00 0A 00 63 00 01 00 71 B2 31 ; Feature Adjustments, A2.12, Payback Timer

709F: 00 0C 00 08 00 63 00 01 00 71 B2 31 ; Feature Adjustments, A2.13, Jackpot Timer

70AB: 00 01 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.14, Millions Plus

70B7: 00 00 00 00 00 78 00 01 00 71 C7 31 ; Feature Adjustments, A2.15, Timed Plunger

70C3: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.16, Attract Sounds

70CF: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.17, Drp Trg Autofire

70DB: 00 01 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.18, T2 FAN CLUB

70E7: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.19, Flipper Trigger

70F3: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.20, Drop Trgt. Broken

70FF: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.21, Drptrgt Dwn Mlti

 ; NEW ADJUSTMENT METADATA BELOW

710B: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.22, Profanity

7117: 00 02 00 00 00 02 00 01 00 65 7C 3D ; Feature Adjustments, A2.23, Attract Mode

7123: 00 01 00 00 00 01 00 01 00 65 C5 3D ; Feature Adjustments, A2.24, Animation Code

712F: 00 00 00 00 00 01 00 01 00 65 F3 3D ; Feature Adjustments, A2.25, Lamp Driver

713B: 00 00 00 00 00 05 00 01 00 66 54 3D ; Feature Adjustments, A2.26, MB Start DT Action

7147: 00 00 00 00 00 01 00 01 00 65 3D 3D ; Feature Adjustments, A2.27, Timed 3Bank Lamp

7153: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.28, <placeholder>

715F: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.29, <placeholder>

716B: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.30, <placeholder>

7177: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.31, <placeholder>

;---;--

As shown in the new metadata table, above, the table first 2 bytes report that it has 28 entries however

the actual content of the table has placeholders for 4 additional entries at the end. This makes it easier

to add additional adjustments in the future as the first 2 bytes in the table indicating number of entries

would need increased and the “<placeholder>” row data would need updated for the new adjustments.

Each 12-byte metadata table entry contains information for each adjustment. A breakdown of the 12

bytes is as follows:

Adjustment Metadata Table Entry Bytes [0..11] Description

Bytes [0..1], making a 16-bit value Default Adjustment value used by factory reset and compared
during menu display so the “factory setting” indicator can be
reported.

Bytes [2..3], making a 16-bit value Minimum Adjustment Value

Bytes [4..5], making a 16-bit value Maximum Adjustment Value

Bytes [6, 7, 8] Adjustment value selector metadata Value depends on the next 3 bytes. When next 3 bytes is a string
look up function ($7270,3A in L-8) these 3 bytes contain WPC

address of a table containing string index number for each of the
possible adjustment values.
In other cases, these 3 bytes contain the increment value when
plus/minus are used.

Bytes [9, 10, 11] making a WPC Address which is the
Adjustment value selector function

Address of function that gets called to handle the display of the
current adjustment value. The previous 3 bytes are used in
conjunction with this address.

Below is a summary of each of the new adjustments. The information below helps illustrate how the

adjustments metadata 12-byte entry is used.

Feature Adjustment: Profanity

This adjustment data is modeled after the metadata for this adjustment used in the original “Profanity

ROM”. The 12-byte metadata table for this new adjustment is as follows:

Adjustment Metadata Table Entry Bytes [0..11] Value / Description

00 00 Default Adjustment value 0

00 00 Minimum Adjustment value 0

00 01 Maximum Adjustment value 1

74 13 3A Address of String table used by the $7270,3A string selector.

72 70 3A Common String Selector Function

For “Profanity” adjustment, the table shows 2 possible values 0, and 1. Displayed strings for each of

these numeric values is derived by a common selector function $7270,3A which will cite table at

$7413,3A. Shown below is the content of the string table (at ROM offset 0x6B413):

---;--

7413: 80 F2 ; String index corresponding to "OFF"

7415: 80 F3 ; String index corresponding to "ON"

---;--

The bytes at $7413,3A contain string index numbers that correspond to the “OFF” and “ON” string,

respectively. The $7270,3A function will only access one of these 2 strings based on the fact that the

other metadata table content defines possible values of 0 and 1. The common WPC string lookup

functions in L-8 will convert the 0x80F2 and 0x80F3 into an appropriate lookup into a string table where

“OFF” and “ON” are stored. Such string lookup logic is outside the scope of this analysis but it is worth

noting that the high bit is an indicator of which table to cite, and the remaining bits are the index into

such table.

Feature Adjustment: Attract Mode

This adjustment data is defined to show the possible values for “Attract Mode” adjustment.

Adjustment Metadata Table Entry Bytes [0..11] Value / Description

00 02 Default Adjustment value 2 (corresponding to L8.3)

00 00 Minimum Adjustment value 0 (L8.1)

00 02 Maximum Adjustment value 2 (L8.3)

00 01 00 Value used for metadata when custom Selector function is used.

65 7C 3D Custom String Selector Function for “Attract Mode”

The value 00 01 00 is used in conjunction with the $657C,3D Custom String Selector function. Current

understanding is that this ensures numeric values are incremented and decremented by 1 when values

are cycled and such numeric value is compared against min/max and such value is passed into the

custom string selector function. Further code analysis is needed for added certainty.

The $657C,3D function (ROM offset 0x7657C) is shown below for reference and guidance on how a

custom adjustment string selector function can be defined. Its helper function at $6571,3D is also

shown.

--------------------------------;---

 ;

 ; AdjustmentWriteASCIIValueCclear()

6571: C1 02 CMPB #$02 ;

6573: 26 04 BNE $6579 ;

6575: 1C FE ANDCC #$FE ;

6577: 20 02 BRA $657B ;

6579: 1A 01 ORCC #$01 ;

657B: 39 RTS ;

 ;

--------------------------------;---

--------------------------------;---

 ;

 ; "Attract Mode" adjustment selection text function

 ;

 ; A has adjustment index

 ; B has code. 02 = write the adj value ASCII string at pointer Y

 ; U has the current value

 ; Y has address of where to put ASCII string (when B is 02)

 ;

657C: 8D F3 BSR $6571 ; AdjustmentWriteASCIIValueCclear() // helper function

657E: 24 01 BCC $6581 ; If C-bit is clear, need to wring ASCII string into Y

6580: 39 RTS ; If C-bit is set, RTS now. Do not write ASCII string to Y.

6581: 34 50 PSHS U,X ;

6583: 8D 05 BSR $658A ; Checks U and returns with X set to desired string addr

6585: BD B9 51 JSR $B951 ; CopyASCIIStringFromXtoYandVerifyLength()

658A: 35 D0 PULS X,U,PC ;

 ;

--------------------------------;---

 ;

 ;

658A: 8E 65 AB LDX #$65AB ; Load default/error string

658D: 11 83 00 00 CMPU #$0000 ; Check if at "L8.1"

6591: 26 04 BNE $6597 ;

6593: 8E 65 B6 LDX #$65B6 ;

6596: 39 RTS ;

6597: 11 83 00 01 CMPU #$0001 ; Check if at "L8.2"

659B: 26 04 BNE $65A1 ;

659D: 8E 65 BB LDX #$65BB ;

65A0: 39 RTS ;

65A1: 11 83 00 02 CMPU #$0002 ; Check if at "L8.3"

65A5: 26 03 BNE $65AA ;

65A7: 8E 65 C0 LDX #$65C0 ;

65AA: 39 RTS ;

 ;

--------------------------------;---

 ;

65AB: 4D 45 4E 55 20 45 52 52 4F 52 00 ; "MENU ERROR"

65B6: 4C 38 2E 31 00 ; "L8.1"

65BB: 4C 38 2E 32 00 ; "L8.2"

65C0: 4C 38 2E 33 00 ; "L8.3"

 ;

--------------------------------;---

The string selector function for “Attract mode”, above, is fairly straightforward, writing the ASCII string

corresponding to the current index number into address pointed to by Y. This new function directly

contains the new strings “L8.1”, “L8.2”, etc so that the standard WPC string table doesn’t need to be

modified to provide a desired string for a given (new) string index value.

Feature Adjustment: Remaining New Adjustments

The remainder of the new adjustments for “Animation Code”, “Lamp Driver”, MB Start DT Action” and

“Timed 3Bank Lamp” are constructed similar to the “Attract Mode” adjustment, described above. Each

of these new adjustments have their own string selector function which has similar logic to that shown

above. For reference, the address of these string selectors is listed below. A disassembly of each of

these functions is left as an exercise for the reader.

New Adjustment Custom String Selector Function

Animation Code WPC: $65C5,3D ROM: 0x765C5

Lamp Driver WPC: $65F3,3D ROM: 0x765F3

MB Start DT Action WPC: $6654,3D ROM: 0x76654

Timed 3Bank Lamp WPC: $653D,3D ROM: 0x7653D

Feature Adjustments String Tables
The previous text described how the Feature Adjustments Metadata Table needs to be increased in size

to accommodate new feature adjustments. In order for the remainder of the WPC code to operate

properly with the added adjustments, there are 3 additional tables that need similar treatment,

increasing their total entry count by the number of new adjustments. For L8.3 these tables were

increased from 0x0016 (22) to 0x001C (28) entries.

The three additional tables are as follows:

 Feature Adjustments String Table, English

 Feature Adjustments String Table, German

 Feature Adjustments String Table, French

These string tables are used when the new feature adjustment is shown during the adjustments menu.

For each of the 3 possible language selections, the appropriate table is used to display the adjustment

string in the desired language. In coding the term “string” generally refers to a series of displayable

character bytes followed by 0x00 byte to signify the end of the string.

Similar to the Metadata table, in order to add new entries to these tables, the old table is relocated to

unused region of ROM so that new data can be added to the end of each table. The table, below,

summarizes the addresses and information about each of these tables.

Table: Item Old Value New Value

Address of Table Pointer: English ROM: 0x78261, WPC: $8261 <unchanged>

Address of Table Pointer: German ROM: 0x78264, WPC: $8264 <unchanged>

Address of Table Pointer: French ROM: 0x78267, WPC: $8267 <unchanged>

Table Pointer Value: English ROM: 0x400D5, WPC: $40D5,30 ROM: 0x76700, WPC: $6700,3D

Table Pointer Value: German ROM: 0x404AB, WPC: $44AB,30 ROM: 0x76A00, WPC: $6A00,3D

Table Pointer Value: French ROM: 0x407EA, WPC: $47EA,30 ROM: 0x76D00, WPC: $6D00,3D

Table Entries: English 0x0016 (22) 0x001C (28)

Table Entries: German 0x0016 (22) 0x001C (28)

Table Entries: French 0x0016 (22) 0x001C (28)

Table Entry Size: English 0x02 (2 bytes each) <unchanged>

Table Entry Size: German 0x02 (2 bytes each) <unchanged>

Table Entry Size: French 0x02 (2 bytes each) <unchanged>

As indicated, the string tables contain a 2-byte entry for each entry. The 2 bytes for each entry are a

WPC address corresponding to the first character/byte of the indexed string. Every WPC address in the

table corresponds to the location of the string located in the same bank as the table itself. This concept

applies to a large number of string tables in WPC software.

Since the string table contains a list of WPC addresses to strings in the same bank, and since the string

tables were moved from bank $30 to bank $3D, this necessarily means that all of the actual strings for

English, German, and French Feature Adjustments were also moved along with these three tables. It

was necessary to move these tables from bank $30 to bank $3D due to lack of unused ROM bytes in the

$30 bank.

Since the table and the WPC addresses of the strings were moved to a new bank, all of the data in the

new table is subject to change due to the new addresses where the strings were placed in the new bank.

Depicted below is the new English strings table and the new location of its strings. Similar treatment to

the German and French string tables for Feature Adjustments was also performed. Disassembly of

German and French tables is left as an exercise to the reader.

--------------------------------;---

6700: 00 1C ; Number of entries in this table is 0x1B, or 27

6702: 02 ; Each table entry is 2-bytes. See below.

 ;

6703: 67 43 ; Feature Adjustments, English, String000, "NULL"

6705: 67 48 ; Feature Adjustments, English, String001, "SPECIAL PERCENT"

6707: 67 58 ; Feature Adjustments, English, String002, "EXTRABALL PERCNT"

6709: 67 69 ; Feature Adjustments, English, String003, "EXTRABALL MEMORY"

670B: 67 7A ; Feature Adjustments, English, String004, "CONSOLATION BALL" (*)

670D: 67 8B ; Feature Adjustments, English, String005, "DROP TARGT COUNT"

670F: 67 9C ; Feature Adjustments, English, String006, "THREE BANK COUNT"

6711: 67 AD ; Feature Adjustments, English, String007, "KICKBACK SETTING"

6713: 67 BE ; Feature Adjustments, English, String008, "SKILL SHOT TIMER"

6715: 67 CF ; Feature Adjustments, English, String009, "DROP TARGT TIMER"

6717: 67 E0 ; Feature Adjustments, English, String010, "THREE BANK TIMER"

6719: 67 F1 ; Feature Adjustments, English, String011, "HURRY UP TIMER"

671B: 68 00 ; Feature Adjustments, English, String012, "PAYBACK TIMER"

671D: 68 0E ; Feature Adjustments, English, String013, "JACKPOT TIMER"

671F: 68 1C ; Feature Adjustments, English, String014, "MILLIONS PLUS" (*)

6721: 68 2A ; Feature Adjustments, English, String015, "TIMED PLUNGER"

6723: 68 38 ; Feature Adjustments, English, String016, "ATTRACT SOUNDS"

6725: 68 47 ; Feature Adjustments, English, String017, "DRP TGT AUTOFIRE" (*)

6727: 68 58 ; Feature Adjustments, English, String018, "T2 FAN CLUB" (*)

6729: 68 64 ; Feature Adjustments, English, String019, "FLIPPER TRIGGER" (*)

672B: 68 74 ; Feature Adjustments, English, String020, "DROP TRGT. BROKEN"(*)

672D: 68 86 ; Feature Adjustments, English, String021, "DRPTRGT DWN MLTI" (*)

672F: 68 97 ; Feature Adjustments, English, String022, "PROFANITY"

6731: 68 A1 ; Feature Adjustments, English, String023, "ATTRACT MODE"

6733: 68 AE ; Feature Adjustments, English, String024, "ANIMATION CODE"

6735: 68 BD ; Feature Adjustments, English, String025, "LAMP DRIVER"

6737: 68 C9 ; Feature Adjustments, English, String026, "MB START DT ACTN"

6739: 68 DA ; Feature Adjustments, English, String027, "TIMED 3BANK LAMP"

673B: 67 43 ; Feature Adjustments, English, String028, <placeholder>

673D: 67 43 ; Feature Adjustments, English, String029, <placeholder>

673F: 67 43 ; Feature Adjustments, English, String02A, <placeholder>

6741: 67 43 ; Feature Adjustments, English, String02B, <placeholder>

 ;

6743: 4E 55 4C 4C 00 ; Feature Adjustments, English, String001, "NULL"

6748: 53 50 45 43 49 41 4C 20 ; Feature Adjustments, English, String001, "SPECIAL PERCENT"

6750: 50 45 52 43 45 4E 54 00 ;

6758: 45 58 54 52 41 42 41 4C ; Feature Adjustments, English, String002, "EXTRABALL PERCNT"

6760: 4C 20 50 45 52 43 4E 54 ;

6768: 00 ;

6769: 45 58 54 52 41 42 41 4C ; Feature Adjustments, English, String003, "EXTRABALL MEMORY"

6771: 4C 20 4D 45 4D 4F 52 59 ;

6779: 00 ;

677A: 43 4F 4E 53 4F 4C 41 54 ; Feature Adjustments, English, String004, "CONSOLATION BALL"

6782: 49 4F 4E 20 42 41 4C 4C ;

678A: 00 ;

678B: 44 52 4F 50 20 54 41 52 ; Feature Adjustments, English, String005, "DROP TARGT COUNT"

6793: 47 54 20 43 4F 55 4E 54 ;

679B: 00 ;

679C: 54 48 52 45 45 20 42 41 ; Feature Adjustments, English, String006, "THREE BANK COUNT"

67A4: 4E 4B 20 43 4F 55 4E 54 ;

67AC: 00 ;

67AD: 4B 49 43 4B 42 41 43 4B ; Feature Adjustments, English, String007, "KICKBACK SETTING"

67B5: 20 53 45 54 54 49 4E 47 ;

67BD: 00 ;

67BE: 53 4B 49 4C 4C 20 53 48 ; Feature Adjustments, English, String008, "SKILL SHOT TIMER"

67C6: 4F 54 20 54 49 4D 45 52 ;

67CE: 00 ;

67CF: 44 52 4F 50 20 54 41 52 ; Feature Adjustments, English, String009, "DROP TARGT TIMER"

67D7: 47 54 20 54 49 4D 45 52 ;

67DF: 00 ;

67E0: 54 48 52 45 45 20 42 41 ; Feature Adjustments, English, String010, "THREE BANK TIMER"

67E8: 4E 4B 20 54 49 4D 45 52 ;

67F0: 00 ;

67F1: 48 55 52 52 59 20 55 50 ; Feature Adjustments, English, String011, "HURRY UP TIMER"

67F9: 20 54 49 4D 45 52 00 ;

6800: 50 41 59 42 41 43 4B 20 ; Feature Adjustments, English, String012, "PAYBACK TIMER"

6808: 54 49 4D 45 52 00 ;

680E: 4A 41 43 4B 50 4F 54 20 ; Feature Adjustments, English, String013, "JACKPOT TIMER"

6816: 54 49 4D 45 52 00 ;

681C: 4D 49 4C 4C 49 4F 4E 53 ; Feature Adjustments, English, String014, "MILLIONS PLUS"

6824: 20 50 4C 55 53 00 ;

682A: 54 49 4D 45 44 20 50 4C ; Feature Adjustments, English, String015, "TIMED PLUNGER"

6832: 55 4E 47 45 52 00 ;

6838: 41 54 54 52 41 43 54 20 ; Feature Adjustments, English, String016, "ATTRACT SOUNDS"

6840: 53 4F 55 4E 44 53 00 ;

6847: 44 52 50 20 54 47 54 20 ; Feature Adjustments, English, String017, "DRP TGT AUTOFIRE"

684F: 41 55 54 4F 46 49 52 45 ;

6857: 00 ;

6858: 54 32 20 46 41 4E 20 43 ; Feature Adjustments, English, String018, "T2 FAN CLUB"

6860: 4C 55 42 00 ;

6864: 46 4C 49 50 50 45 52 20 ; Feature Adjustments, English, String019, "FLIPPER TRIGGER"

686C: 54 52 49 47 47 45 52 00 ;

6874: 44 52 4F 50 20 54 52 47 ; Feature Adjustments, English, String020, "DROP TRGT. BROKEN"

687C: 54 2E 20 42 52 4F 4B 45 ;

6884: 4E 00 ;

6886: 44 52 50 54 52 47 54 20 ; Feature Adjustments, English, String021, "DRPTRGT DWN MLTI"

688E: 44 57 4E 20 4D 4C 54 49 ;

6896: 00 ;

6897: 50 52 4F 46 41 4E 49 54 ; Feature Adjustments, English, String022, "PROFANITY"

689F: 59 00 ;

68A1: 41 54 54 52 41 43 54 20 ; Feature Adjustments, English, String023, "ATTRACT MODE"

68A9: 4D 4F 44 45 00 ;

68AE: 41 4E 49 4D 41 54 49 4F ; Feature Adjustments, English, String024, "ANIMATION CODE"

68B6: 4E 20 43 4F 44 45 00 ;

68BD: 4C 41 4D 50 20 44 52 49 ; Feature Adjustments, English, String025, "LAMP DRIVER"

68C5: 56 45 52 00 ;

68C9: 4D 42 20 53 54 41 52 54 ; Feature Adjustments, English, String026, "MB START DT ACTN"

68D1: 20 44 54 20 41 43 54 4E ;

68D9: 00 ;

68DA: 54 49 4D 45 44 20 33 42 ; Feature Adjustments, English, String027, "TIMED 3BANK LAMP"

68E2: 41 4E 4B 20 4C 41 4D 50 ;

68EA: 00 ;

--------------------------------;---

(*)Note that this table, above, contains some entries marked with (*). These entries correspond to

strings that were found to be cited by other tables in the original $30 bank. For example, the

“Consolidation Ball” string is also used by the “Audits” string table in bank $30. Other strings are, for

example, shared by the German and French tables. In the original location of this table, bank $30,

although the table of 2-byte addresses can be moved (and removed), the strings themselves need to be

retained in their original location in ROM since they are referenced by other tables in bank $30. This

means it is important, in general, to closely examine the ROM and/or retain all old strings in the event

that their WPC address is cited in other string tables in the same bank. For T2 L-8 the entire bank $30

was disassembled in order to determine how strings are shared between different tables.

Referencing the table, above, it is evident how string lookup is performed. Consider the example where

the string for “TIMED 3BANK LAMP” is needed. A lookup is performed on index 0x001B (27) from which

the table returns the 2-byte entry at $6739 containing the 2 bytes 0x68 0xDA. These 2 bytes form the

WPC address $68DA which is where the starting byte of the string is found, above. The string is read

until the ending 0x00 byte is reached.

The table also includes extra placeholders for the 4 unused Feature Adjustments. If new adjustments

are enabled, then the first 2 bytes of the table are increased and these extra placeholder bytes are

updated to contain the WPC addresses of the new strings containing the names of the new Feature

Adjustments located in the same bank as the table.

The L8.3 Text String Corrections
In L8.3 a large focus on the German text strings was performed. Correction to German text strings was

extensively performed to improve the game play experience for T2 owners operating their machine with

the language adjustment set to German.

As mentioned earlier, in coding “string” generally refers to a series of displayable character bytes with a

0x00 byte signifying the end of the string.

There are two types of string corrections:

 The new string consists of same or fewer number of characters as the old string, and

 The new string consists of more characters as the old string.

In cases where same or fewer characters are in the new string, it is fairly evident to most observers that

the old string simply needs to be overwritten with the new string in the ROM. After the last character,

the 0x00 byte is appended to indicate the end of the string.

In cases where more characters are needed to accommodate the new string, the new string needs to be

placed in unused region in the same ROM bank as the old string and the pointer to the old string needs

to be updated to the address of the new string. Refer to the previous section describing the Feature

Adjustments string table for a depiction of a string table and description of how the table contains

addresses to the first character of the string located in same bank as the string table itself.

For these string changes there is only a single pointer that cites each string. When making changes to

string pointers consideration needs to be done to see if multiple pointers need updated. For example,

referring to Feature Adjustments string table, if “Consolidation Ball” string was changed to something

larger, then the English Feature Adjustments string table pointer would need updated and also the

English Audits string table would need to have its pointer updated as well since, as mentioned, that same

string is cited by multiple tables.

Below is a summary of text corrections in L8.3 with indicators of new string addresses, in cases where

new string was made larger than the old string it replaces.

Old String New String Old String
Address

String Move Info

“ZIET” “ZEIT” 0x40576, $4576,30 <not moved>

“CHEK POINT” “CHECKPOINT” 0x41A9E, $5A9E,30 <not moved>

“FREIS SPIEL” “FREISPIEL” 0x62CD9, $6CD9,38 <not moved>

“NETHERLND” “HOLLAND” 0x70CA7, $4CA7,3C <not moved>

“MITWOCH” “MITTWOCH” 0x71D1C, $5D1C,3C 0x73F9B, $7F9B,3C new location of string
0x7192A, $592A,3C was 5D 1C, now 7F 9B

“SANTAG” “SAMSTAG” 0x71D37, $5D37,3C 0x73FA4, $7FA4,3C new location of string
0x71930, $5930,3C was 5D 37, now 7F A4

“GELDESCHT” "GELOESCHT” 0x71D85, $5D85,3C <not moved>

"HAUPT MENUE” "HAUPTMENUE” 0x71E79, $5E79,3C <not moved>

"MEUE " "NEUE " 0x721A1, $61A1,3C <not moved>

"PUNCTE” "PUNKTE” 0x72285, $6285,3C <not moved>

"HAUPTE MENUE” "HAUPTMENUE” 0x7229F, $629F,3C <not moved>

"HILPE” "HILFE” 0x722D7, $62D7,3C <not moved>

"DEUTSCE " "DEUTSCH " 0x7248B, $648B,3C <not moved>

"FREIS SPIEL” "FREISPIEL” 0x72500, $6500,3C <not moved>

"Ziehe” "Zielen Und Den" 0x41AEE, $5AEE,30 0x41B4F, $5B4F,30 new location of string
0x41864, $5864,30 was 5A EE, now 5B 4F

"Vor Abschuss” "Abzug Ziehen" 0x41AF4, $5AF4,30 0x400F0, $40F0,30 new location of string
0x41866, $5866,30 was 5A F4, now 40 F0

"START DRUCKEN” "DRUECKE START” 0x41C00, $5C00,30 <not moved>

"KITBACK BEL." "KICKBACK BEL." 0x41B36, $5B36,30 <not moved>

"KITBACK BE" "KICKBACK B" 0x41B43, $5B43,30 0x41B44, $5B44,30 new location of string
0x4187E, $587E,30 was 5B 43, now 5B 44

"KITBACK " "KICKBAC" 0x41B4E, $5B4E,30 0x41103, $5103,30 new location of string
0x41880, $5880,30 was 5B 4E

"KITBA" "KICKBA" 0x41B58, $5B58,30 0x4110B, $510B,30 new location of string
0x41882, $5882,30 was 5B 58

"KITB" "KICKB" 0x41B5E, $5B5E,30 0x41112, $5112,30 new location of string
0x41884, $5884,30 was 5B 5E

"KIT" "KICK" 0x41B63, $5B63,30 0x41118, $5118,30 new location of string
0x41886, $5886,30 was 5B 63

"KI” "KIC" 0x41B67, $5B67,30 0x4111D, $511D,30 new location of string
0x41888, $5888,30 was 5B 67

"K" "K" 0x4166A, $566A,30 <no change, shown here for completeness>

"MIT FLIPPER TASTEN” "MIT FLIPPERTASTERN” 0x41DB7, $5DB7,30 <not moved>

"BILD WECHSELN” "DAS VISIER BEWEGEN" 0x41DCA, $5DCA,30 0x41AEE, $5AEE,30 new location of string
0x41952, $5952,30 was 5D CA

A careful examination of the ROM changes for text corrections will reveal that in some cases, the old

location of moved strings is being reused as the new location for other moved strings. This

demonstrates the flexibility of using the WPC string pointer tables.

It should also be noted that in cases where strings are being made longer, careful examination of the

longer strings during game play (or attract mode) should be made to ensure the longer string will display

properly. If the longer string doesn’t appear properly it is then possible to alter the font that the code

uses for displaying the string or alter the placement of the string on the display. For L8.3 all new strings

have been tested for proper display and such modifications are not needed and, therefore, such ROM

modification is not depicted here.

The L8.3 Sound Test Updates
During the L8.3 development, some attention was given to the WPC “Sound Test”. ROM changes

related to the sound test are described below.

Sound Test Update: Sound 05 Playing Unexpectedly
Initially a problem was reported with a 3rd party sound board and with how the “Running” sound test

behaves as it cycles past sound “05 Database Backgr.” On some 3rd party sound boards, the sound from

05 continues to play, unexpectedly, as the “running” test cycles to sound 06, and 07, etc. The correct

behavior is that sound 05 stops as the test cycles to sound 06 (100K Award sound).

It was found that the 3rd party sound package classified the sound for “05 Database Backgr.” As a “jingle”

and not “music” which may be the reason that the sound behaves this way during the WPC Sound Test.

Sound 05 Classification

The L-8 ROM content was examined for possible reasons for the 05 sound behaving differently on 3rd

party boards. An oddity in the sound test table was found. The sound test table is shown below:

---;---

490D: 00 0B ; Entries

490F: 03 ; Entry size

 ;

4910: 00 00 00 ; Null

4913: 03 00 00 ; 0x03 == Main play

4916: 04 00 00 ; 0x04 == Get jackpot tune

4919: 07 00 00 ; 0x07 == M.Ball lit tune

491C: 14 00 00 ; 0x14 == Video mode tune

491F: B2 00 60 ; 0xB2 == Database Backgr.

4922: BF 00 60 ; 0xBF == 100K Award

4925: C6 00 60 ; 0xC6 == Alarm Sound

4928: 25 01 60 ; 0x25 == "Get the cpu"

492B: 27 01 60 ; 0x27 == "Autofire"

492E: 28 01 60 ; 0x28 == "Video mode"

---;---

As shown, the sound test table contains an entry for each of the sounds that are played during the

“Sound Test” mode. Each table entry consists of 3 bytes which, in summary, are shown below.

Sound Test Table Byte Description

Byte[0] Sound byte value used in the sound call command to sound board.

Byte[1] Flag byte indicating whether sound is a voice callout. When non-zero, the
sound call command includes a 0x7A byte prior to the sound index byte.

Byte[2] Timer value used during sound test.

 During “repeat” mode:
o Non-zero value defines how long the sound is allowed to play

before being re-queued (0x60 is 1.5 seconds).

o Value 0x00, sound plays indefinitely (such as for music).

 During “running” mode:
o Non-zero value is used as the period the sound is allowed to

play before advancing to next sound (0x60 is 1.5 seconds).
o Value 0x00 causes a time period of 0xB4 (just under 3 seconds)

to be used before next sound is played.

For completeness, below are the sound-call commands sent to the sound board when the sound test

wishes to play the current sound:

Sound Test Sound Table Byte Command Sent to Sound Board

Main Play 0x03 0x7E 0x7D 0x7F 0x03

Get Jackpot Tune 0x04 0x7E 0x7D 0x7F 0x04

M.Ball Lit Tune 0x07 0x7E 0x7D 0x7F 0x07

Video Mode Tune 0x14 0x7E 0x7D 0x7F 0x14

Database Backgr. 0xB2 0x7E 0x7D 0x7F 0xB2

100K Awark 0xBF 0x7E 0x7D 0x7F 0xBF

Alarm Sound 0xC6 0x7E 0x7D 0x7F 0xC6

“Get the CPU” 0x25 0x7E 0x7D 0x7F 0x7A 0x25

“Autofire” 0x27 0x7E 0x7D 0x7F 0x7A 0x27

“Video mode” 0x28 0x7E 0x7D 0x7F 0x7A 0x28

With focus on the sound 05, another look at the Sound Table entry for sound 05 is in order:

---;---

491F: B2 00 60 ; 0xB2 == Database Backgr.

---;---

During L8.3 this 3-byte entry for sound 05 came to be in question. The 3rd byte having value 0x60, as

mentioned, means that:

 During “running” test, the test will advance to next sound after 0x60 (1.5 seconds), and

 During “repeat” test, the sound will be re-queued to the sound board every 1.5 seconds.

o It may be unnoticeable that on L-8 that this sound is restarted every 1.5 seconds during

“repeat” test mode, depending on the sound board in use.

It may be the original T2 software design specifically determined this behavior however for L8.3 a

change was made as part of effort to help resolve the behavior of the sound test on 3rd party sound

boards. The sound test table entry was changed to have the following contents:

---;---

491F: B2 00 00 ; 0xB2 == Database Backgr.

---;---

Note: The sound test table gets relocated in L8.3, refer to “Relocated Sound Test Table”, later

in this document for actual address where the above change to this sound table entry is made.

Using value 0x00 as the 3rd byte changes the behavior so that:

 During “running” test, the test will advance to next sound after 3 seconds (period of 0xB4), and

 During “repeat” test, the sound will not be re-queued every 1.5 seconds.

Sound 05 Explicit Stop

During the development of L8.3, as part of investigation efforts into the nature of sound 05 on 3rd party

sound boards, a change was put in place for beta testing which altered the command sent to the sound

board when the sound test advances from sound 05 to sound 06. This modification added an extra

“stop” command to help ensure the sound 05 is no longer playing when sound transitions to 06. This is

the same “stop” command used when sound test is exited.

As it turns out, this change to sound test code ended up remaining in final L8.3 image although it was

originally expected to not be part of L8.3. This minor oversight is being documented here for

completeness, transparency and to give some information for hobbyists to do further experiments and,

possibly, remove this code if needed. Any future T2 ROM revision may be subject to having this code

removed.

For this code change, consider this function that sound test code calls whenever advancing to the next

sound (regardless of whether from ‘running’ test mode or ‘plus’ coin-door button).

---;---

 ;

 ; AdvanceNextSoundIndex()

 ; Either via plus button or during 'running'

6D87: 34 02 PSHS A ;

6D89: 8D 24 BSR $6DAF ; SoundTestTableEntryCountGetIntoA()

6D8B: 6C 41 INC $0001,U ; Increment sound test index

6D8D: A1 41 CMPA $0001,U ;

6D8F: 22 04 BHI $6D95 ;

6D91: 86 01 LDA #$01 ; Reset index to #1

6D93: A7 41 STA $0001,U ;

6D95: BD 6D F3 JSR $6DF3 ; StopCurrentSound()

6D98: 81 02 CMPA #$02 ;

6D9A: 35 82 PULS A,PC ;

 ;

---;---

This code, above, checks if the sound index needs to wrap back to 1 (in case where the sound advances

past the last sound test (“Video mode”) and then calls a function that is intended to stop the current

sound. As the problem with 05 (on some 3rd party sound boards) is that the sound 05 doesn’t actually

stop, the function was augmented to call a different ‘stop’ when the sound is advancing from 05 to 06.

---;---

 ;

 ; AdvanceNextSoundIndex()

 ; Either via plus button or during 'running'

6D87: 34 02 PSHS A ;

6D89: 8D 24 BSR $6DAF ; SoundTestTableEntryCountGetIntoA()

6D8B: 6C 41 INC $0001,U ; Increment sound test index

6D8D: A1 41 CMPA $0001,U ;

6D8F: 22 04 BHI $6D95 ;

6D91: 86 01 LDA #$01 ; Reset index to #1

6D93: A7 41 STA $0001,U ;

6D95: BD 7A 0B JSR $7A0B ; StopCurrentSound_BugFix()

6D98: 81 02 CMPA #$02 ;

6D9A: 35 82 PULS A,PC ;

 ;

---;---

As highlighted, a new function is being called in place of the $6DF3. The new function is added at

$7A0B,3A which has the content shown below.

---;---

 ;

 ; StopCurrentSound_BugFix()

7A0B: 34 02 PSHS A ;

7A0D: BD 6D F3 JSR $6DF3 ; StopCurrentSound(), Call original „Stop‟ routine

7A10: A6 41 LDA $0001,U ; Get new/current sound test index

7A12: 81 02 CMPA #$06 ; Check if advanced to sound 06

7A14: 26 03 BNE $7A19 ; If not, then done.

7A16: BD C0 A5 JSR $C0A5 ; If so, Call Sound text exit (escape button pressed)

7A19: 35 82 PULS A,PC ;

---;---

The new function, above, first calls the original “StopCurrentSound()” to retain original logic and then an

added check is performed to see if the new sound index is 06. If new sound index is 06 it means the

sound test has advanced from 05 to 06 and, therefore, subject to having the problem on 3rd party sound

boards where the sound 05 may still be playing. If sound index is 06 then an existing function at $C0A5

is called which is same function that the escape-button handler function also calls. It was found that

calling $C0A5 is what the escape-button handler does when it wants to ensure sound board is ‘off’.

The above changes appear to be harmless and found to address the issue of 05 play continuance. In the

event that this change needs to be undone, the simplest fix is to:

 Leave the function at $7A0B,3A (ROM Offset 0x6BA0B) unaltered, and

 Restore original function, at $6D95,3A (ROM Offset 0x6AD95) change BD 7A 0B back to BD 6D F3

To further document the sound commands that are involved with sound test, and to show the

commands sent to the sound board as part of the sound test, the table below summarizes all of the

commands sent to the sound board during “Sound Test” mode. For completeness, this table includes

the commands previously listed in a table above so all commands are available in this single table.

Function Command Sent to Sound Board

Play: Main Play 0x7E 0x7D 0x7F 0x03

Play: Get Jackpot Tune 0x7E 0x7D 0x7F 0x04

Play: M.Ball Lit Tune 0x7E 0x7D 0x7F 0x07

Play: Video Mode Tune 0x7E 0x7D 0x7F 0x14

Play: Database Backgr. 0x7E 0x7D 0x7F 0xB2

Play: 100K Awark 0x7E 0x7D 0x7F 0xBF

Play: Alarm Sound 0x7E 0x7D 0x7F 0xC6

Play: “Get the CPU” 0x7E 0x7D 0x7F 0x7A 0x25

Play: “Autofire” 0x7E 0x7D 0x7F 0x7A 0x27

Play: “Video mode” 0x7E 0x7D 0x7F 0x7A 0x28

Stop Current Sound (sent between ‘Play’ commands) 0x7E 0x7D 0x7F

Escape-Sound (coind-door escape button pushed) 0x7F 0x58

Minus-Sound (coin-door minus button pushed) 0x7F 0x50

Plus-Sound (coin-door plus button pushed) 0x7F 0x51

Enter-Sound (coin-door enter button pushed) 0x7F 0x57

End All Sounds (when escape button is pushed) 0x00

Observing the above sequences and confirming with commands that an emulator reveals, some

observations can be made.

 The sequence of “0x7E 0x7D 0x7F” is sent 2 times between sounds. Once for when the logic

specifically wants to turn off the current sound and again as part of the command to play the

next sound.

 In the case of 3rd party sound board not stopping sound 05 when transitioning to 06, the

problem can be described as follows:

o When sound board gets command to play 05 “0x7E 0x7D 0x7F 0xB2” to play sound, and

o When sound board subsequently gets command “0x7E 0x7D 0x7F” to stop such sound

o Sound board doesn’t stop playing the sound 05.

 The L8.3 code adds the command “0x00” after the “0x7E 0x7D 0x7F” as an added effort to have

the sound board stop playing the sound 05. Immediately after this 0x00, sound board then

receives command to play 06 “0x7E 0x7D 0x7F 0xBF” which appears to then correctly play.

FUA Inclusion Into Sound Test
As an added bonus to L8.3 and to serve as an Easter Egg and a coding exercise, the L8.3 includes

updated Sound Test where the FUA (Profanity) sound call is added into the sound test but only when the

“Profanity” adjustment is set to “On”.

Relocated Sound Test Table

In order to add a new sound to the test, the “Sound Test Table” which was previously shown, needed to

be made larger to accommodate an extra row. As mentioned for other such table expansions, the table

is moved to an unused region of ROM where the extra row can be safely added. When any table is

moved, all references to such table need to be updated so they read the new table at its new location.

These things are described below.

The original L-8 Sound Test Table is located at $490D,3D (ROM Offset 0x7490D). The relocated table is

moved to unused region of the same bank $3D at $7183,3D (ROM Offset 0x77183).

---;---

7183: 00 0C ; Entries

7185: 03 ; Entry size

 ;

Note: Future ROM update will re-analyze whether explicit stop at sound 05 can be removed.

7186: 00 00 00 ; Null

7189: 03 00 00 ; 0x03 == Main play

718C: 04 00 00 ; 0x04 == Get jackpot tune

718F: 07 00 00 ; 0x07 == M.Ball lit tune

7192: 14 00 00 ; 0x14 == Video mode tune

7195: B2 00 00 ; 0xB2 == Database Backgr.

7198: BF 00 60 ; 0xBF == 100K Award

719B: C6 00 60 ; 0xC6 == Alarm Sound

719E: 25 01 60 ; 0x25 == "Get the cpu"

71A1: 27 01 60 ; 0x27 == "Autofire"

71A4: 28 01 60 ; 0x28 == "Video mode"

 ;

71A7: 3F 01 C0 ; 0x3F == "FUA"

---;---

Note: This moved table also contains the changed byte for “Database Backgr.” As described earlier.

This new table entry contains these attributes:

 0x3F, Sound command for FUA callout

 0x01, Indicating this is a voice callout, causing 0x7A byte in the sound board command

 0xC0, Time period for this sound call is 0xC0 corresponding to 3 seconds

As this call-out is lengthier than the others, the time period is increased to 0xC0 so that the sound call is

not prematurely interrupted during the sound test. Given that 0x40 is 1 second, value 0xC0 corresponds

to 3 seconds. The resulting sound board command for this new entry is: 0x7E 0x7D 0x7F 0x7A 0x3F.

With the relocated sound table, next step is to updated references to the old table so they now look at

the new table. An examination of the L-8 code reveals there are two places during sound test where the

sound table is referenced, such as the following in a function that is responsible for determining the

total number of sounds for the test (so that code knows when to reset the sound test index back to 1

after playing the last sound in the test).

---;---

 ;

 ; SoundTestTableEntryCountGetIntoA()

6DAF: 34 34 PSHS Y,X,B ;

6DB1: 8E 81 FB LDX #$81FB ; SoundTestTable[] pointer

6DB4: BD AC 38 JSR $AC38 ; GetTableXEntryCountIntoY()

6DB7: 1F 20 TFR Y,D ; Put SoundTestTable[] entry count into D

6DB9: 1F 98 TFR B,A ; Move 8-bit SoundTestTable[] entry count into A

6DBB: 35 B4 PULS B,X,Y,PC ;

 ;

---;---

Note: The content of this function is altered as part of the FUA Easter Egg, described later

The function, above, shows how the code gets the address of the SoundTestTable[] from a pointer

stored at $81FB. This address $81FB corresponds to non-banked ROM region where various table

pointers are kept. This is at ROM offset 0x781FB which contains the 3 bytes: 49 0D 3D corresponding to

WPC address $490D,3D which is where the original SoundTestTable is located (as depicted earlier). To

have the sound test code use the new location of the SoundTestTable, the bytes at $81FB are changed

from 49 0D 3D to 71 83 3D so code reads the sound test table from $7183,3D.

Updated Sound Test Logic for FUA

With the relocated and expanded sound table, alone, the sound test will include the FUA call-out as an

ordinary part of its sound test. The goal is to only have this last entry of the sound test only appear

when “Profanity” adjustment is “On”, so additional work is needed to accomplish this.

As shown, above, the Sound Test code utilizes a common function to simply obtain the total number of

sounds in the test. In order to have the last row appear only when “Profanity” is enabled, the function

logic is updated so that:

 It returns total number of rows in the new Sound Test Table when “Profanity” is “On”, and

 It returns total number of rows minus 1 when “Profanity” is “Off”

By implementing the new logic, above, the sound test will behave as if there are 11 rows in the table

when “Profanity” is “Off” and will provide all 12 rows in the table when “Profanity” is “On”, thus giving

the effect that the FUA call hidden until the “Profanity” adjustment is set to “On”.

---;---

 ;

 ; SoundTestTableEntryCountGetIntoA()

6DAF: 34 34 PSHS Y,X,B ;

6DB1: 8E 81 FB LDX #$81FB ; SoundTestTable[] pointer

6DB4: BD 79 FE JSR $79FE ; GetTableXEntryCountIntoY_AdjustedForProfanity()

6DB7: 1F 20 TFR Y,D ; Put SoundTestTable[] entry count into D

6DB9: 1F 98 TFR B,A ; Move 8-bit SoundTestTable[] entry count into A

6DBB: 35 B4 PULS B,X,Y,PC ;

 ;

---;---

As highlighted above, the function is altered so that instead calling a common function that simply

returns the first 2 bytes of the table (which is the number of table entries in such table), the code is

updated to call a new function at $79FE which will provide the number of table entries adjusted based

on the value of “Profanity” adjustment.

This new function at $79FE is called within same bank, $3A. This is a new function added to unused

ROM bytes near the end of bank $3A, corresponding to ROM offset 0x6B9FE.

---;---

 ;

 ; GetTableXEntryCountIntoY_AdjustedForProfanity()

 ;

79FE: BD AC 38 JSR $AC38 ; GetTableXEntryCountIntoY()

7A01: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

7A04: 16 00 ; 0x16, $1BE5:$1BE6 FeatureAdjustment022, Profanity

7A06: 25 02 BCS $7A0A ; If C-set then Profanity is ON, return full table size

7A08: 31 3F LEAY $FFFF,Y ; Profanity is OFF, decrement table size by 1, no FUA

7A0A: 39 RTS ;

---;---

The new function, above, retrieves the total number of Sound Test Table entries, and then calls a

common WPC function that retrieves the current value of an adjustment (0x16 Profanity in this case)

and compares its value to a value (0x00 in this case), returning C-bit set when non-equal. The

subsequent code then returns the full number of table entries (including the FUA row) when C-bit is set

since the “Profanity” adjustment is not equal to 0x00 (since 0x00 is “Off” and 0x01 is “On). When the C-

bit is clear (or “not set”), the “Profanity” adjustment is equal to 0x00 (“Off”) so the code will use the

LEAY $FFFF,Y instruction to cause the value in Y to decrement by 1, thus artificially reducing the size of

the sound test table to exclude the FUA callout.

With all of the above code changes in place, the desired effect of FUA call-out only when “Profanity” is

“On” takes effect.

The L8.3 Multiball Bug-Fixes
During L8.3 development, it was mentioned that a bug exists in L-8 regarding multiball. The bug was

described as the game effectively forgetting that multiball is taking place. There are multiple balls on

the playfield however game play proceeds as if the multiball is over. This can be especially troubling

when a video mode is started or a “fire at will” cannon shot is initiated while multiple balls are playing

on the playfield in ordinary play mode.

Investigation proceeded whereby several issues were observed regarding multiball.

 “Forgotten Multiball” can happen in various scenarios.

o When hunter ship is hit, during its explosion animation if ball is immediately locked.

o When hunter ship is hit, during its explosion animation if ball is immediately drained.

 Locking a ball causes display to report “Jackpot Multiplied 0x=0”.

o When 2 balls remaining and each are locked in database and top lock simultaneously.

o After this message, both balls are ejected back onto playfield in multiball.

o Expected behavior is one locked and other in play with “Load the Gun” on the display.

 Missing ‘Load The Gun” period can happen in some scenarios at multiball end.

o When 2 balls remaining and one ball is locked and other is drained simultaneously.

There were multiple parts of the code involved for fixing all of these issues. They can be boiled down to

the following:

 Multiball startup code needing corrections.

 Multiball maintenance/continuation loop code needing corrections.

 Switch-handler code for lock shots needing corrections (left lock, top lock, ball-popper).

 Switch-handler code for outhole needing corrections.

There were various timing problems that were identified and corrected. In software development these

are sometimes referred to as a ‘race conditions’ where multiple pieces of code are designed to run

asynchronous from each other and, depending on order in which the functions each are allowed to run,

there may be situations when unexpected behaviors if not fully coded to account for all conditions.

Some of the fixed code is to specifically cure the issues and some of the fixed code is to improve design

based on theoretical problems that are observed in code but not necessarily able to encounter on the

running code.

WPC Scheduled Functions and Function IDs
Several of the bug fixes described below make reference to things like “scheduled functions” and

“function ID” values. An entire document can be devoted to the concepts but to get an understanding

of these things, a brief overview is mentioned here.

Scheduling a Function

Any running function can schedule the startup of another function. Such scheduled startup will include:

 The WPC Address of where the function starts

 The 16-bit (2-byte) ID value of the function

The game code will then call the scheduled function at the next chance it gets. This is when the

currently running code performs a “Sleep()” function call or when the currently running function run to

‘completion’ meaning it no longer needs to be part of the set of running functions.

The set of running functions is tracked in RAM as a linked list (actually multiple linked lists). A linked list

is simply a list of objects located in memory whereby a fixed starting point is used to find the first list

entry, then the address of the next list entry is contained in the list entry itself. This repeats until the

‘next’ pointer contains indicator that it is at the end of the list (usually all zeros).

A running function has its location in the linked list represented by a block of memory (i.e. a linked-list

record) which contains various attributes about the running function such as its ID value and current

execution point. In the case of a function having performed a “Sleep()” this execution point is important

so the function can resume when the sleep period is over.

Tracing through WPC code in an emulator it can become evident how the scheduler works as the linked

list traversal takes place and a function’s execution begins.

Scheduled Function ID

As mentioned, the scheduled function is associated with a particular ID. The ID is a 16-bit (2-byte value)

that other code can use to determine if a particular function exists in the linked-list (i.e. scheduled to run

at next available opportunity). For example, the multiball maintenance function runs with ID 0086 and

bug-fix functions can call a function to simply query whether function ID 0086 is running as a way to

determine if multiball is currently active.

Some functions can alter the ID of the currently running function. For example, switch-matrix function

for lock switches are first scheduled with function ID 0004 and then as the handler runs, it re-assigns it

ID to give indicator of the switch and its state so that other functions can use a bitwise operation to

determine if a group of functions are running that match the pattern of the new ID.

Multiball Logic Overview
As part of understanding the multiball logic, some overview of the design is in order. When multiball is

triggered during game play there are two main parts:

 Multiball Startup Code

 Multiball Maintenance/Loop Code

There is a lot of extra detail that is not depicted below (such as scheduling music and display animation).

Shown below is a very high level overview and details may not be 100% accurate to the code flow,

however the concepts being depicted serve the purpose of understanding the nature of the multiball

bug fixes that are described in this section of this document.

Start:

Multiball Startup

Schedule startup of:

 Multiball Maintenance/Loop

Schedule startup of:

 Ball Trough Evacuation

Done

Start: Multiball

Maintenance/Loop

Done

no

yes

Start: Ball Trough

Evacuation

Ball Trough

Evacuated?

Eject a ball

from ball

trough and

shooter lane

Done

yes

no

Start: Ball Trough

Switch Handler

Update accounting for

number of balls in play

at ram $BF.

Done

Are any of these conditions met to keep multiball running?

1. Balls-in-play at ram $BF greater than 1?, or

2. Ball Trough Evacuation function currently running?, or

3. First multiball 7-second ball-save period in progress?, or

4. Is a “Load the Gun” period currently in progress?

Start: Lock

Switch Handlers

Update accounting for

number of balls in play

at ram $BF.

Done

Multiball Startup Balls-In-Play Timing Problem
One of the issues was caused by a timing problem related to multiball prematurely ending when the

number of balls on the playfield hasn’t yet been increased to a number greater than one. The sequence

of events when such trouble happens is as follows:

 Multiball startup code is entered, which:

o Schedules the multiball maintenance loop, and

o Schedules the ball-trough evacuation

 Multiball maintenance loop is entered, which checks conditions for keeping multiball in-progress:

o Balls-In-Play count at ram $BF needs to be greater than 1, but in this case it is still 1

o Checks other conditions for multiball in-progress, none of which are met

 Ball-trough evacuation routine is not currently running, and

 First Multiball 7-second ball-save timer period is not active, and

 A “Load the gun” period is not active

o Due to the above logic, multiball maintenance loop exits, multiball ends.

 The Balls-in-play count at $BF is still 1 due to:

o Ball-trough evacuation function hasn’t yet started, or

o Ball-trough evacuation function finished its job but the switch-handler hasn’t yet

engaged to increment $BF to a value greater than 1.

 As depicted in the logic flow, the ball trough evacuation necessarily leads to ball-

trough switch state changes which are then detected by the interrupt routine

switch-matrix scanning which then leads to the scheduled function handler for

the ball-trough switches, which is where the $BF value gets updated.

For this code change, the intent was to help retain the original logic related to $BF accounting and

multiball start and multiball retention, namely:

 The multiball maintenance loop is designed to check that $BF was non-zero and

 The initial increment of $BF to a value greater than 1 has been sure to have been taken place

There are two changes to the code to ensure that the multiball loop doesn’t inadvertently enter at a

moment where $BF is still at value 1 (and none of the other multiball conditions are currently met):

 The multiball startup code waits until the $BF is greater than 1 prior to completing, and

 The multiball maintenance loop includes in its conditions for multiball in-progress a new rule:

o If the multiball startup function is still running, MB is not declared as done.

Each of the above two code changes are described in the following two sections.

Multiball Startup Balls-In-Play Timing Fix: Startup waits for balls-in-play greater than 1

The L-8 Multiball startup function, partially annotated is shown below for reference. Area of interest for

this code change is near the end of the function and will be described in more detail, below.

---;---

 ;

 ; Multiball Start!

 ; ID 00B8 == Multiball start

 ;

6C4E: BD F7 59 JSR $F759 ; Checks state variables $86, $87, $88, $1793.

 ; All 0x00 means okay to proceed.

6C51: 7E 6C 54 JMP $6C54 ; <nop>

6C54: 10 26 00 82 LBNE $6CDA ;

6C58: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

6C5B: 00 86 ; Schedule 0x0086, multiball loop, runs until MB done

6C5D: 6D 0C 31 ; $6D0C,31 multiballLoop()

 ;

6C60: 86 02 LDA #$02 ; SolenoidTableEntry02, 0A=Top Lock, 20

6C62: BD 88 F5 JSR $88F5 ; EnergizeSolenoidTableEntryIfNeeded()

6C65: 6E 6B 3B ;

6C68: 86 03 LDA #$03 ; SolenoidTableEntry03, 10=Left Lock, 20

6C6A: BD 88 F5 JSR $88F5 ; EnergizeSolenoidTableEntryIfNeeded()

6C6D: 6E 6B 3B ;

 ;

6C70: BD 48 8D JSR $488D ; LeftVaultStateSet()

6C73: BD 48 9E JSR $489E ; Lock2StateSet()

6C76: 86 04 LDA #$04 ; 0x04 == SolenoidTableEntry04, 04=Trough, 40

6C78: C6 01 LDB #$01 ;

6C7A: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

6C7D: 6E 5A 3B ;

 ;

6C80: BD F7 59 JSR $F759 ; Checks state variables $86, $87, $88, $1793.

 ; All 0x00 means okay to proceed.

6C83: 7E 6C 86 JMP $6C86 ; <nop> ;

6C86: 26 52 BNE $6CDA ;

 ;

6C88: 8E 06 03 LDX #$0603 ; #$0603 is Hunter ship hits remaining for multiball

6C8B: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6C8E: 7E 6C 91 JMP $6C91 ; <nop>

6C91: 6F 84 CLR ,X ; Starting MB so ensure # of hunter ship hits=0

 ;

6C93: BD 88 D5 JSR $88D5 ; Call5253,39WithXParameterBytes()

6C96: 00 1B ;

6C98: 8E 05 C9 LDX #$05C9 ; $05C9, Base Addr of #-of-multiballs per player/game

6C9B: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6C9E: 7E 6C A1 JMP $6CA1 ; <nop> JSR to new function here JSR to $FB8C

6CA1: 6C 84 INC ,X ; Increment multiballs achieved counter for cur player

6CA3: BD 71 A3 JSR $71A3 ; Increment05BDbyPlayerIndexNumber()

6CA6: BD 71 A3 JSR $71A3 ; Increment05BDbyPlayerIndexNumber()

6CA9: BD 71 A3 JSR $71A3 ; Increment05BDbyPlayerIndexNumber()

 ;

6CAC: 8D 2F BSR $6CDD ; <-- function can incur a sleep which yields to others

6CAE: C6 01 LDB #$01 ;

6CB0: BD 6D E9 JSR $6DE9 ;

6CB3: 0D C0 TST $C0 ;

6CB5: 27 09 BEQ $6CC0 ;

 ;

6CB7: 86 06 LDA #$06 ; 0x06 == multiball theme music

6CB9: BD C0 BC JSR $C0BC ; PlayMusicRegisterA()

6CBC: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte()

6CBF: 27 ;

 ;

6CC0: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback()

6CC3: 00 82 ; 0082 must be running for the MB to keep running

6CC5: 6F 0D 31 ; BallTroughEvacuate()

 ;

6CC8: BD 83 46 JSR $8346 ; Sleep()

6CCB: 60 ; 0x60 = 1.5 seconds

 ;

6CCC: BD 83 46 JSR $8346 ; -\ Sleep()

6CCF: 02 ; |

6CD0: BD 8B C3 JSR $8BC3 ; | ScheduleFunctionCallback()

6CD3: 00 82 ; | ID 0082

6CD5: 6F 0D 31 ; | BallTroughEvacuate ()

6CD8: 27 F2 BEQ $6CCC ; -/

 ;

6CDA: 7E 99 A2 JMP $99A2 ;

 ;

---;---

Notable elements of the multiball startup function, above, have been highlighted.

 At $6CAC a function ($6CDD) is called where logic can eventually reach a “Sleep()” function. This

means other scheduled work is allowed to proceed. In the event that such sleep takes place,

the multiball maintenance loop may be allowed to run which would be a case where the

multiball maintenance could discover that $BF is still 1, and the ball-trough evacuation is not

running. This could be a case where MB fails to start when it should. Detailed analysis of what

$6CDD does is outside scope of this discussion and left as an exercise to the reader.

 Starting at $6CC0, the BallTroughEvacuate() function is scheduled, followed by a 1.5 second

sleep and a small loop that ensures BallTroughEvacuate() is running. Detailed analysis of why

this is done in this way as opposed to simply have a single call into BallTroughEvacuate() has not

been performed. In the event the first BallTroughEvacuate() didn’t result in the

BallTroughEvacuate() function running, the 1.5 second sleep opens another window where the

multiball maintenance could discover $BF is still 1 and causing multiball to prematurely end.

To improve the overall logic in this area, the multiball startup code is improved in L8.3 so that the

startup function doesn’t complete until the $BF is greater than 1. The changed logic starts near the end

of the multiball startup function with the following.

...

 ;

6CB7: 86 06 LDA #$06 ; 0x06 == multiball theme music

6CB9: BD C0 BC JSR $C0BC ; PlayMusicRegisterA()

6CBC: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte()

6CBF: 27 ;

 ;

6CC0: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback()

6CC3: 00 82 ; 0082 must be running for the MB to keep running

6CC5: 6F 0D 31 ; BallTroughEvacuate()

 ;

6CC8: BD 83 46 JSR $8346 ; Sleep()

6CCB: 60 ; 0x60 = 1.5 seconds

 ;

6CCC: BD 83 46 JSR $8346 ; -\ Sleep()

6CCF: 02 ; |

6CD0: BD 8B C3 JSR $8BC3 ; | ScheduleFunctionCallback()

6CD3: 00 82 ; | ID 0082

6CD5: 6F 0D 31 ; | BallTroughEvacuate ()

6CD8: 27 F2 BEQ $6CCC ; -/

 ;

6CCC: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

6CCF: 79 35 3B ; BugfixFunction_DelayedMBInit()

6CD2: 20 06 BRA $6CDA ;

6CD4: 12 12 12 NOPx3 ;

6CD7: 12 12 12 NOPx3 ;

 ;

6CDA: 7E 99 A2 JMP $99A2 ;

 ;

---;---

As shown, above, the loop that previously checked called function to schedule BallTroughEvacuate() has

been replaced with a single call to a new function at $7935,3B. To fill in the remaining bytes in ROM, six

NOP instructions (no-operation, dummy instruction) are in place to allow code to flow smoothly to the

end.

Next is the content of this new function at $7935,3B (ROM offset 0x6F935).

---;---

7935: 34 06 PSHS B,A ;

 ;

 ; Perform original loop for BallTroughEvacuate()

 ; This is code copied from MB-init at $6CCC,31

 ;

7937: BD 83 46 JSR $8346 ; -\ Sleep()

793A: 02 ; |

793B: BD 8B C3 JSR $8BC3 ; | ScheduleFunctionCallback()

793E: 00 82 ; | ID 0082

7940: 6F 0D 31 ; | BallTroughEvacuate()

7943: 27 F2 BEQ $7937 ; -/

 ;

 ; Now perform bugfix, checking for $BF > 01 or

 ; wait for timeout before giving up.

 ;

7945: 86 55 LDA #$55 ; Wait up to the sleep period multiplied by this counter

 ;

7947: D6 BF LDB $BF ; -\ Get number of balls on the playfied from $BF

7949: C1 01 CMPB #$01 ; | Branches if $BF is higher than 1

794B: 22 17 BHI $7964 ; |

 ; |

794D: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

7950: 00 82 ; | 0082, BallTroughEvacuate()

7952: 24 07 BCC $795B ; | Function is running, goto keep_waiting

 ; |

7954: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

7957: 00 B2 ; | 00B2, shooter-lane-kick-and-check-switch

7959: 25 09 BCS $7964 ; | Function is not running, goto end, all done

 ; |

 ; | keep_waiting:

 ; |

795B: 4A DECA ; | Decrement the timeout counter

795C: 27 06 BEQ $7965 ; | If decremented to zero, then done.

795E: BD 83 46 JSR $8346 ; | Sleep()

7961: 06 ; |

7962: 20 E3 BRA $7947 ; -/ Keep checking

 ;

7964: 35 86 PULS A,B,PC ; Either the ball trough and shooter lane are empty

 ; or gave up waiting

---;---

The new function, above first performs the original loop that was removed from $6CCC,31 and replaced

with call to this fixup function. After that, a wait-loop is performed where the code will repeatedly

check for ‘done’ condition or after a period before giving up waiting.

The loop, starting at $7947, will cycle up to 0x55 times, with a sleep of value 06 each time. Total sleeps

will be 0x55 (decimal 85) multiplied by 6 which is 510. Given that 0x40 (decimal 64) is 1 second, this

equates to a timeout of about 8 seconds before the code gives up waiting for the conditions for be met.

It is not expected that this timeout will ever be hit but this prevents code from looping forever in the

event of unexpected playfield conditions.

The loop is checking for the following conditions:

 If $BF is discovered to be greater than 1 then loop exits, otherwise

 If the BallTroughEvacuate() function is still running, keep looping, otherwise

 If the “shooter-lane-kick-and-check-switch” code is running, keep looping, otherwise

 The loop exits

This logic mentions this “shooter-lane-kick-and-check-switch” which is a secondary function that is

scheduled by the BallTroughEvacuate() function and not mentioned in earlier descriptions. For absolute

completeness in the above loop, it made sense that the code loops until the BallTroughEvacuate() is

done <and> this subsequent function is also done. In most situations, the $BF value being greater than

1 is the cause of the loop exit.

Once the above loop exits, code returns back to the Multiball Startup function which then exits, thus

ensuring that the Multiball Startup function only finishes after the $BF has incremented past 1 (or

BallTroughEvacuate() is completely done with all of its work, or timeout condition was hit if code gave

up waiting for conditions to be met).

Multiball Startup Balls-In-Play Timing Fix: Maintenance function checks if startup is running

As mentioned, the Multiball Startup function can potentially hit a Sleep() when, at $6CAC, function

$6CDD is called. If that were to happen, then the Multiball Maintenance function could start up (due to

have been scheduled earlier in the multiball startup code) and immediately declare end of multiball due

to all conditions not being met to retain multiball.

To show the code fix for this issue, the L-8 multiball maintenance code, partially annotated, is shown

below. This function was scheduled, as depicted above, during the multiball startup routine, and it

starts at $6D0C,31 (ROM offset 0x44D0C).

---;---

 ;

 ; ID 0086

 ;

 ; Called at multiball start

 ; This is the main loop of multiball

 ;

6D0C: BD 87 15 JSR $8715 ;

6D0F: 10 40 ;

6D11: BD 87 15 JSR $8715 ;

6D14: 0E 40 ;

6D16: BD 84 8F JSR $848F ; ClearMemoryFlag()

6D19: 48 ;

6D1A: BD 84 8F JSR $848F ; ClearMemoryFlag()

6D1D: 42 ;

6D1E: BD 84 8F JSR $848F ; ClearMemoryFlag()

6D21: 43 ;

6D22: BD 86 9E JSR $869E ; CancelScheduledCallbackFunction()

6D25: 00 EC ;

6D27: BD 84 8F JSR $848F ; ClearMemoryFlag()

6D2A: 45 ;

6D2B: BD 87 3C JSR $873C ;

6D2E: 2F 40 ;

6D30: 25 04 BCS $6D36 ;

6D32: BD 84 80 JSR $8480 ; SetMemoryFlag()

6D35: 45 ;

6D36: BD 87 22 JSR $8722 ;

6D39: 2F 40 ;

6D3B: BD 84 8F JSR $848F ; ClearMemoryFlag()

6D3E: 46 ;

6D3F: BD 84 49 JSR $8449 ;

6D42: 1A ;

6D43: 25 04 BCS $6D49 ;

6D45: BD 84 80 JSR $8480 ; SetMemoryFlag()

6D48: 46 ;

6D49: BD 84 2B JSR $842B ;

6D4C: 1A ;

6D4D: BD 84 8F JSR $848F ; ClearMemoryFlag()

6D50: 47 ;

6D51: BD 84 49 JSR $8449 ;

6D54: 0C ;

6D55: 25 04 BCS $6D5B ;

6D57: BD 84 80 JSR $8480 ; SetMemoryFlag()

6D5A: 47 ;

6D5B: BD 84 2B JSR $842B ; ClearSingleLampParameterByte()

6D5E: 0C ;

6D5F: BD 83 46 JSR $8346 ; Sleep()

6D62: 40 ; 0x40 = 1 second

 ;

 ; Keep multiball going as long as:

 ; - More than 1 ball on playfield ($BF value), or

 ; - 0082 is running, BallTroughEvacuate(), or

 ; - 0083 is running, 7-second ball-saver, or

 ; - 00A9 is running, Load-the-gun period, or

 ; - MemoryFlag 48 is set ("LOAD THE GUN" w/1-ball left)

 ;

6D63: BD 83 46 JSR $8346 ; -\ Sleep()

6D66: 06 ; |

6D67: 96 BF LDA $BF ; | $BF is number of balls on playfield

6D69: 81 01 CMPA #$01 ; | As long as there are more than 1 ball, keep looping.

6D6B: 22 F6 BHI $6D63 ; |

6D6D: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

6D70: 00 82 ; | ID 0082 == BallTroughEvacuate()

6D72: 24 EF BCC $6D63 ; |

6D74: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

6D77: 00 83 ; | ID 0083 == 7 second first multiball ball-save timer

6D79: 24 E8 BCC $6D63 ; |

6D7B: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

6D7E: 00 A9 ; | ID 00A9 == "LOAD THE GUN" period is running

6D80: 24 E1 BCC $6D63 ; |

6D82: BD 84 AD JSR $84AD ; | GetMemoryFlag() // C-bit clear when flag set

6D85: 48 ; | 0x48 flag is "LOAD THE GUN" period

6D86: 24 DB BCC $6D63 ; -/

 ;

 ; Out-of-Loop -- Multiball is done, now cleanup

 ;

6D88: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

6D8B: 42 ;

6D8C: 24 1B BCC $6DA9 ;

 ;

 ; Keep cleanup loop going as long as:

 ; 00AA is running <or>

 ; 00AB is running <or>

 ; 0084 is running

 ;

 ;

 ; Loop below cleanup at end of multiball?

6D8E: BD 86 90 JSR $8690 ; -\ SearchLinkedListForId() // c-bit clear = ID found

6D91: 00 AA ; | ID 00AA Ball-In-Popper

6D93: 24 0E BCC $6DA3 ; |

6D95: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

6D98: 00 AB ; | ID 00AB Ball-in-gun function is running

6D9A: 24 07 BCC $6DA3 ; |

6D9C: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

6D9F: 00 84 ; | ID 0084 Ball-gun-to-Target-Period function

6DA1: 25 06 BCS $6DA9 ; |

6DA3: BD 83 46 JSR $8346 ; | Sleep()

6DA6: 04 ; |

6DA7: 20 E5 BRA $6D8E ; -/

 ;

6DA9: BD 68 08 JSR $6808 ; ScheduleDropTargetUp()

6DAC: BD 87 22 JSR $8722 ;

6DAF: 10 40 ;

6DB1: BD 87 22 JSR $8722 ;

6DB4: 0D 40 ;

6DB6: BD 87 22 JSR $8722 ;

6DB9: 0E 40 ;

6DBB: BD 84 80 JSR $8480 ; SetMemoryFlag()

6DBE: D2 ;

6DBF: BD 84 AD JSR $84AD ; GetMemoryFlag()

6DC2: 45 ;

6DC3: 25 03 BCS $6DC8 ;

6DC5: BD 68 82 JSR $6882 ;

6DC8: BD 84 AD JSR $84AD ; GetMemoryFlag()

6DCB: 46 ;

6DCC: 25 04 BCS $6DD2 ;

6DCE: BD 84 1C JSR $841C ;

6DD1: 1A ;

6DD2: BD 84 AD JSR $84AD ; GetMemoryFlag()

6DD5: 47 ;

6DD6: 25 04 BCS $6DDC ;

6DD8: BD 84 1C JSR $841C ;

6DDB: 0C ;

6DDC: 10 8E 00 8B LDY #$008B ;

6DE0: BD 9B 83 JSR $9B83 ;

6DE3: BD 56 9C JSR $569C ;

6DE6: 7E 99 A2 JMP $99A2 ;

 ;

---;---

The important/applicable section starts at the highlighted comment corresponding to code beginning at

$6D63. As shown, the multiball loop repeatedly checks for 4 items in order to keep multiball in progress.

Once the loop is exited then multiball is considered done and multiball cleanup code ensues. The four

conditions that code checks are as follows:

 $BF, Balls in play value is greater than 1, or

 $0082 function, BallTroughEvacuate() function is running, or

 $0083 function, 7-second ball-saver timeout at first multiball is active, or

 $00A9 function, “Load the ball” mode is active, or

 0x48 flag is set meaning “Load the ball” is active

As previously described and depicted, the above logic can prematurely end multiball if the multiball

startup code calls a “Sleep()” function prior to its first call of BallTroughEvacuate(). To address this, the

loop is augmented to include extra criteria to keep multiball running. The code is altered as shown

below:

...

 ;

6D63: BD 83 46 JSR $8346 ; -\ Sleep()

6D66: 06 ; |

6D67: 96 BF LDA $BF ; | $BF is number of balls on playfield

6D69: 81 01 CMPA #$01 ; | As long as there are more than 1 ball, keep looping.

6D6B: 22 F6 BHI $6D63 ; |

6D6D: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

6D70: 00 82 ; | ID 0082 == BallTroughEvacuate()

6D72: 24 EF BCC $6D63 ; |

6D74: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

6D77: 00 83 ; | ID 0083 == 7 second first multiball ball-save timer

6D79: 24 E8 BCC $6D63 ; |

 ; |

6D7B: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

6D7E: 00 A9 ; | ID 00A9 == "LOAD THE GUN" period is running

6D80: 24 E1 BCC $6D63 ; |

6D82: BD 84 AD JSR $84AD ; | GetMemoryFlag() // C-bit clear when flag set

6D85: 48 ; | 0x48 flag is "LOAD THE GUN" period

6D86: 24 DB BCC $6D63 ; -/

 ; |

6D7B: BD 88 F5 JSR $88F5 ; | CallBankedFunction_Param_WPCAddr()

6D7E: 79 22 3B ; | <new code in bank $3B>

6D81: 24 E0 BCC $6D63 ; -/

 ;

6D83: 7E 6D 88 JMP $6D88 ; all done

6D86: 12 12 NOP x2 ; all done

 ;

 ; Out-of-Loop -- Multiball is done, now cleanup

 ;

6D88: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

6D8B: 42 ;

6D8C: 24 1B BCC $6DA9 ;

...

As highlighted above, the multiball loop code that previously checked 2 conditions related to “Load the

gun” were replaced with a single call to a new function located at $7922,3B. The returned C-bit is used

to determine whether to keep multiball-loop running or to exit. The new code is smaller than the old

code so some dummy instructions are added to get code to $6D88 when the multiball-loop is exited.

The new function at $7922,3B (ROM offset 0x6F922) is depicted below:

---;---

 ;

 ; Function called from $6D7B,31 during multiball loop to

 ; add additional check for multiball-init still running

 ; as criteria to keep multiball running.

 ;

7922: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7925: 00 A9 ; ID 00A9 == "LOAD THE GUN" period at end of multiball

7927: 24 0B BCC $7934 ;

7929: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

792C: 00 B8 ; MultiballStart function at $6C4E,31

792E: 24 04 BCC $7934 ;

7930: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

7933: 48 ; 0x48 flag is (?)

7934: 39 RTS ;

 ;

---;---

The new function, above, contains the same elements as what the original code had plus a single new

element added for keeping the multiball running. The new element is the check for function ID 00B8

which is the Multiball Startup function. This simple check ensures the multiball loop will not

prematurely end multiball if the multiball startup function is still running. This ensures that any “Sleep()”

performed during the multiball startup (prior to its scheduling of BallTroughEvacuate()) will not result in

early running of the Multiball Maintenance function to falsely declare end of multiball since it will now

discover that multiball startup is still in progress and, therefore, will keep multiball active.

Multiball Startup Balls-In-Play Timing Fix: Corrected Multiball Logic

The fixes depicted, thus far, represent the following yellow highlighted changes to the original multiball

logic flow that was previously depicted.

Start:

Multiball Startup

Schedule startup of:

 Multiball Maintenance/Loop

Schedule startup of:

 Ball Trough Evacuation

Done

Start: Multiball

Maintenance/Loop

Done

no

yes

Start: Ball Trough

Evacuation

Ball Trough

Evacuated?

Eject a ball

from ball

trough and

shooter lane

Done

yes

no

Start: Ball Trough

Switch Handler

Update accounting for

number of balls in play

at ram $BF.

Are any of these conditions met to keep multiball running?

1. Balls-in-play at ram $BF greater than 1?, or

2. Ball Trough Evacuation function currently running?, or

3. First multiball 7-second ball-save period in progress?, or

4. Is a “Load the Gun” period currently in progress?, or

5. Multiball Startup function currently running?

Is ball trough evacuation

completely done, or is Balls-

in-Play ram $BF > 1, or have

been checking for 8 seconds?

yes

no

Start: Lock

Switch Handlers

Update accounting for

number of balls in play

at ram $BF.

Done

Done

Multiball Switch Handler Logic Updates
The switch handler code was found to need some updated logic in order to prevent the various multiball

troubles from taking place. This section will describe the code changes that were made in order to

resolve issues with multiball when ball-lock or outhole switches are hit simultaneously or too hit early

during multiball startup.

Switch Handling, A brief overview

The layers of code involved in handling a switch can be quite extensive and warrant an entire document

in itself. A brief summary of the switch handling will be given here with further research being deferred

to other documents and research.

 The Motorola 68B09, the Interrupt Service Routine (ISR) address is at $FFF8

 This is ROM offset 0x7FFF8. In T2 L-8 this contains D9 C0 for $D9C0 (ROM Offset $7D9C0)

 The ISR starts at $D9C0, performing various tasks, including switch-matrix scanning.

 Switches are read starting at $DCF1 (coin-door switches)

 Switch-matrix read starting at $DD12, starting at column 1 through column 7.

 The game “main loop” code starts at $975F, performing various low-level system handling.

 At $977C it calls function $9D4E which ends up leading to switch-matrix memory reading

 The $9D4E function, at $9D88, calls $9417 which ends up leading to switch-matrix memory read

 The $9417 function, at $94C0, calls $9614 which ends up leading to switch-matrix memory read

 The $9614 function, at $9641, calls $983D which is a function that schedules the switch-matrix

handler function for a hit switch. Function ID is in register Y, Function address in X, bank B.

The sequence, above, could further be researched to understand more details but suffice it to say, when

a switch is closed, the above logic (if the tracing, above, is correct for all cases), will result in a function

being called that is responsible for handling the switch.

The address of the function is derived from the Playfield Switch Table. This table contains an 11-byte

entry for each switch with various metadata including the address of the function that gets called when

the switch is hit. In L-8, the address of the table is stored at $81C5 (ROM offset 0x781C5) and it contains

the value 49 31 3D for $4931,3D (ROM offset 0x74931). The switch table is partially annotated and

shown in full, below, for completeness:

---;---

 ;

;

; PlayfieldSwitchTable[]

;

;

; This is loaded for switch indexes 0x01-0x41

;

; Each 11-byte entry for each switch below has the following format:

; --

; 01 02 03 04 05 06 07 08 09 0A 0B

;

;

; 01 02

; 03 04 05 ; $XXYY,ZZ Address in ROM

; 06 07

; 08 ; This is a flag byte with the following bit-flag definitions for this switch

; ; 11111111

; ; ||||||||

; ; |||||||\-- 0x01 bit.

; ; ||||||\--- 0x02 bit.

; ; |||||\---- 0x04 bit.

; ; ||||\----- 0x08 bit.

; ; |||\------ 0x10 bit.

; ; ||\------- 0x20 bit. When set, switch is NOT included 90-ball switch error report

; ; |\-------- 0x40 bit. (above comment based on findings from other WPC study)

; ; \--------- 0x80 bit.

; ;

; ;

; 09

; 0A 0B ; $0A0B is ID used for the callback function when it get scheduled

;

;

;

;

;

4931: 00 41 ; Table has entries for up to switch index value 0x41

4933: 0B ; Each entry is 0x0B in length

 ;

 ;

4934: 04 04 ; SwitchTableEntry00, 0, Invalid Switch Index/Reference

4936: 99 A2 FF ; $99A2,FF

4939: 3C 00 20 ;

493C: 00 00 00 ;

 ;

 ;

493F: 00 09 ; SwitchTableEntry01, 1, Invalid Switch Index/Reference

4941: 99 A2 FF ; $99A2,FF

4944: 3C 00 20 ;

4947: 00 00 04 ;

 ;

 ;

494A: 00 09 ; SwitchTableEntry02, 2, Invalid Switch Index/Reference

494C: 99 A2 FF ; $99A2,FF

494F: 3C 00 20 ;

4952: 00 00 04 ;

 ;

 ;

4955: 00 09 ; SwitchTableEntry03, 3, Invalid Switch Index/Reference

4957: 99 A2 FF ; $99A2,FF

495A: 3C 00 20 ;

495D: 00 00 04 ;

 ;

 ;

4960: 00 09 ; SwitchTableEntry04, 4, Invalid Switch Index/Reference

4962: 99 A2 FF ; $99A2,FF

4965: 3C 00 20 ;

4968: 00 00 04 ;

 ;

 ;

496B: 00 02 ; SwitchTableEntry05, 5, coin-door: service credit

496D: 5E A6 39 ; $5EA6,39

4970: 3C 00 20 ;

4973: 78 00 04 ;

 ;

 ;

4976: 00 02 ; SwitchTableEntry06, 6, coin-door: volume down

4978: 47 99 3D ; $4799,3D

497B: 3C 00 20 ;

497E: 78 00 04 ;

 ;

 ;

4981: 00 02 ; SwitchTableEntry07, 7, coin-door: volume up

4983: 47 7D 3D ; $477D,3D

4986: 3C 00 20 ;

4989: 78 00 04 ;

 ;

 ;

498C: 00 02 ; SwitchTableEntry08, 8, coin-door: test/menu

498E: 8E 7D FF ; $8E7D,FF

4991: 3C 00 20 ;

4992: 78 00 04 ;

 ;

 ;

4997: 00 02 ; SwitchTableEntry09, 11, Right Flipper

4999: 5C CA 31 ; $5CCA,31

499C: 3C 00 00 ;

499F: 40 00 04 ;

 ;

 ;

49A2: 00 02 ; SwitchTableEntry0A, 12, Left Flipper

49A4: 5C 17 31 ; $5C17,31

49A7: 3C 00 00 ;

49AA: 40 00 04 ;

 ;

 ;

49AD: 00 02 ; SwitchTableEntry0B, 13, Start Button

49AF: 45 40 38 ;

49B2: 3C 00 00 ;

49B5: 78 00 04 ;

 ;

49B8: 00 02 ; SwitchTableEntry0C, 14, Plumb Bob Tilt

49BA: 58 A7 39 ;

49BD: 3C 00 20 ;

49C0: E8 00 04 ;

 ;

49C3: 10 0C ; SwitchTableEntry0D, 15, Trough Left

49C5: 70 CC 3B ; SwitchMatrixHdlr_TroughLeftCenterRight()

49C8: 3C 00 00 ;

49CB: F8 00 04 ;

 ;

49CE: 10 0C ; SwitchTableEntry0E, 16, Trough Center

49D0: 70 CC 3B ;

49D3: 3C 00 00 ;

49D6: F8 00 04 ;

 ;

49D9: 10 0C ; SwitchTableEntry0F, 17, Trough Right

49DB: 70 CC 3B ;

49DE: 3C 00 00 ;

49E1: F8 00 04 ;

 ;

49E4: 10 0C ; SwitchTableEntry10, 18, Outhole

49E6: 44 B1 31 ; SwitchMatrixHdlr_Outhole()

49E9: 3C 00 00 ;

49EC: 78 78 0D ;

 ;

49EF: 00 02 ; SwitchTableEntry11, 21, Slam Tilt

49F1: 5F 96 39 ;

49F4: 3C 00 20 ;

49F7: 78 5F 96 ;

 ;

49F9: 00 02 ; SwitchTableEntry12, 22, Coin Door Closed

49FC: 60 0F 39 ;

49FF: 3C 00 20 ;

49A2: F8 00 04 ;

 ;

4A05: 00 02 ; SwitchTableEntry13, 23, Ticket Dispenser

4A07: 99 A2 FF ;

4A0A: 3C 00 20 ;

4A0D: 40 00 04 ;

 ;

4A10: 00 02 ; SwitchTableEntry14, 24, Always Closed

4A12: 99 A2 FF ;

4A15: 3C 00 30 ;

4A18: 00 00 04 ;

 ;

4A1B: 00 04 ; SwitchTableEntry15, 25, Left Outlane

4A1D: 49 35 31 ;

4A20: 3C 00 80 ;

4A23: C0 00 04 ;

 ;

4A26: 00 04 ; SwitchTableEntry16, 26, Left Return Lane

4A28: 63 09 31 ;

4A2B: 3C 00 80 ;

4A2E: 40 00 04 ;

 ;

4A31: 00 04 ; SwitchTableEntry17, 27, Right Return Lane

4A33: 65 10 31 ;

4A36: 3C 00 80 ;

4A39: 40 00 04 ;

 ;

4A3C: 00 04 ; SwitchTableEntry18, 28, Right Outlane

4A3E: 49 D4 31 ;

4A41: 3C 00 80 ;

4A44: 40 00 04 ;

 ;

4A47: 0C 0C ; SwitchTableEntry19, 31, Gun Loaded

4A49: 72 44 3B ;

4A4C: 3C 05 80 ;

4A4F: F8 00 04 ;

 ;

4A52: 00 02 ; SwitchTableEntry1A, 32, Gun Mark

4A54: 65 A8 31 ;

4A57: 3C 00 00 ;

4A5A: B8 00 04 ;

 ;

4A5D: 00 02 ; SwitchTableEntry1B, 33, Gun Home

4A5F: 65 E2 31 ;

4A62: 3C 00 00 ;

4A65: F8 00 04 ;

 ;

4A68: 00 02 ; SwitchTableEntry1C, 34, Grip Trigger

4A6A: 5D 0A 31 ;

4A6D: 3C 00 00 ;

4A70: 40 00 04 ;

 ;

4A73: 00 02 ; SwitchTableEntry1D, 35, Not Used

4A75: 99 A2 FF ;

4A78: 3C 00 20 ;

4A7B: 40 00 04 ;

 ;

4A7E: 00 08 ; SwitchTableEntry1E, 36, Mid-Left Standup Target

4A80: 4F B5 31 ;

4A83: 3C 16 80 ;

4A86: 40 00 04 ;

 ;

4A89: 00 08 ; SwitchTableEntry1F, 37, Mid-Center Standup Target

4A8B: 4F B5 31 ;

4A8E: 3C 17 80 ;

4891: 40 00 04 ;

 ;

4A94: 00 08 ; SwitchTableEntry20, 38, Mid-Right Standup Target

4A96: 4F B5 31 ;

4A99: 3C 18 80 ;

4A9C: 40 00 04 ;

 ;

4A9F: 00 02 ; SwitchTableEntry21, 41, Left Jet

4AA1: 62 74 31 ;

4AA4: 3C 00 80 ;

4AA7: 40 00 04 ;

 ;

4AAA: 00 02 ; SwitchTableEntry22, 42, Right Jet

4AAC: 62 78 31 ;

4AAF: 3C 00 80 ;

4AB2: 40 00 04 ;

 ;

4AB5: 00 02 ; SwitchTableEntry23, 43, Bottom Jet

4AB7: 62 7C 31 ;

4ABA: 3C 00 80 ;

4ABD: 40 00 04 ;

 ;

4AC0: 00 02 ; SwitchTableEntry24, 44, Left Sling

4AC2: 62 E9 31 ;

4AC5: 3C 00 80 ;

4AC8: 40 00 04 ;

 ;

4ACB: 00 02 ; SwitchTableEntry25, 45, Right Sling

4ACD: 62 ED 31 ;

4AD0: 3C 00 80 ;

4AD3: 40 00 04 ;

 ;

4AD6: 00 08 ; SwitchTableEntry26, 46, Top Right Stand-up Target

4AD8: 5A 45 31 ;

4ADB: 3C 36 80 ;

4ADE: 40 00 04 ;

 ;

4AE1: 00 08 ; SwitchTableEntry27, 47, Mid Right Stand-up Target

4AE3: 5A 45 31 ;

4AE6: 3C 37 80 ;

4AE9: 40 00 04 ;

 ;

4AEC: 00 08 ; SwitchTableEntry28, 48, Bot Right Stand-up Target

4AEE: 5A 45 31 ;

4AF1: 3C 38 80 ;

4AF4: 40 00 04 ;

 ;

 ;

4AF7: 0C 0C ; SwixtchTableEntry29, 51, Left Lock

4AF9: 72 44 3B ; $7244,3B

4AFC: 3C 02 80 ;

4AFF: F8 00 04 ;

 ;

 ;

4B02: 00 08 ; SwitchTableEntry2A, 52, Not Used

4B04: 99 A2 FF ;

4B07: 3C 00 20 ;

4B0A: 40 00 04 ;

 ;

4B0D: 00 04 ; SwitchTableEntry2B, 53, Low Escape Route

4B0F: 4A 12 31 ;

4B12: 3C 00 80 ;

4B15: 40 00 04 ;

 ;

4B18: 00 04 ; SwitchTableEntry2C, 54, High Escape Route

4B1A: 4A 12 31 ;

4B1D: 3C 00 80 ;

4B20: 40 00 04 ;

 ;

4B23: 0C 0C ; SwitchTableEntry2D, 55, Top Lock

4B25: 72 44 3B ;

4B28: 3C 03 80 ;

4B2B: F8 00 04 ;

 ;

4B2E: 00 04 ; SwitchTableEntry2E, 56, Top Lane Left

4B30: 5A F9 31 ;

4B33: 3C 3E 80 ;

4B36: 40 00 04 ;

 ;

4B39: 00 04 ; SwitchTableEntry2F, 57, Top Lane Center

4B3B: 5A F9 31 ;

4B3E: 3C 3F 80 ;

4B41: 40 00 04 ;

 ;

4B44: 00 04 ; SwitchTableEntry30, 58, Top Lane Right

4B46: 5A F9 31 ;

4B49: 3C 40 80 ;

4B4C: 40 00 04 ;

 ;

4B4F: 00 04 ; SwitchTableEntry31, 61, Left Ramp Entry

4B51: 65 5A 31 ;

4B54: 3C 00 80 ;

4B57: 40 00 04 ;

 ;

4B5A: 00 04 ; SwitchTableEntry32, 62, Left Ramp Made

4B5C: 5D 44 31 ;

4B5F: 3C 00 80 ;

4B62: 40 00 04 ;

 ;

4B65: 00 04 ; SwitchTableEntry33, 63, Right Ramp Entry

4B67: 65 7D 31 ;

4B6A: 3C 00 80 ;

4B6D: 40 00 04 ;

 ;

4B70: 00 04 ; SwitchTableEntry34, 64, Right Ramp Made

4B72: 5F F5 31 ;

4B75: 3C 00 80 ;

4B78: 40 00 04 ;

 ;

4B7B: 00 04 ; SwitchTableEntry35, 65, Low Chase Loop

4B7D: 4A 1D 31 ;

4B80: 3C 00 80 ;

4B83: 40 00 04 ;

 ;

4B86: 00 04 ; SwitchTableEntry36, 66, High Chase Loop

4B88: 4A 1D 31 ;

4B8B: 3C 00 80 ;

4B8E: 40 00 04 ;

 ;

4B91: 00 02 ; SwitchTableEntry37, 67, Not Used

4B93: 99 A2 FF ;

4B96: 3C 00 20 ;

4B99: 40 00 04 ;

 ;

4B9C: 00 02 ; SwitchTableEntry38, 68, Not Used

4B9E: 99 A2 FF ;

4BA1: 3C 00 20 ;

4BA4: 40 00 04 ;

 ;

4BA7: 00 08 ; SwitchTableEntry39, 71, Target 1 High

4BA9: 4B 93 31 ; SwitchMatrixHdlr_Target1High()

4BAC: 3C 11 80 ;

4BAF: 40 00 04 ;

 ;

4BB2: 00 08 ; SwitchTableEntry3A, 72, Target 2

4BB4: 4B 95 31 ; SwitchMatrixHdlr_Target2()

4BB7: 3C 12 80 ;

4BBA: 40 00 04 ;

 ;

4BBD: 00 08 ; SwitchTableEntry3B, 73, Target 3

4BBF: 4B 97 31 ; SwitchMatrixHdlr_Target3()

4BC2: 3C 13 80 ;

4BC5: 40 00 04 ;

 ;

4BC8: 00 08 ; SwitchTableEntry3C, 74, Target 4

4BCA: 4B 99 31 ; SwitchMatrixHdlr_Target4()

4BCD: 3C 14 80 ;

4BD0: 40 00 04 ;

 ;

4BD3: 00 08 ; SwitchTableEntry3D, 75, Target 5 Low

4BD5: 4B 9B 31 ; SwitchMatrixHdlr_Target5Low()

4BD8: 3C 15 80 ;

4BDB: 40 00 04 ;

 ;

4BDE: 0C 0C ; SwitchTableEntry3E, 76, Ball Popper

4BE0: 72 44 3B ;

4BE3: 3C 04 80 ;

4BE6: F8 00 04 ;

 ;

4BE9: 00 02 ; SwitchTableEntry3F, 77, Drop Target

4BEB: 67 0C 31 ;

4BEE: 3C 00 80 ;

4BF1: 40 00 04 ;

 ;

4BF4: 10 00 ; SwitchTableEntry40, 78, Shooter

4BF6: 45 5A 31 ; SwitchMatrixHdlr_Shooter()

4B49: 3C 00 00 ;

4BFC: F8 00 04 ;

 ;

---;---

For the multiball fixes, the highlighted switch handlers are updated. As can be seen, several of the

switches share the same callback handler function address. Switch handlers are called with an indicator

of the switch index that caused the code to be called and an indicator if the switch was closed or opened.

The switch handlers can also perform a follow-up function call to check switch states.

The green highlighted switch handlers share common switch handler at $7244,3B (ROM offset 0x6F244)

 Gun Loaded

 Left Lock

 Top Lock

 Ball Popper

The blue highlighted switch handler at $44B1,31 (ROM offset 0x444B1) is only used by:

 Outhole

Switch Handling, Ball Lock Switch Handler

This section covers bug fixes for the switches highlighted in green, in the switch-matrix table, above.

The common switch handler at $7244,3B (ROM offset 0x6F244) is used for all 4 switches where the ball

might come to a rest on the playfield. As listed above, this refers to the lock shots, ball-popper and the

“gun loaded” switch.

Shown below is this common switch handler with partial annotation. Some of the annotation is

speculation or commentary on what the code might be doing.

---;---

 ; Switch-Matrix Handler for:

 ; SwitchTableEntry19, 31, Gun Loaded

 ; SwitchTableEntry29, 51, Left Lock

 ; SwitchTableEntry2D, 55, Top Lock

 ; SwitchTableEntry3E, 76, Ball Popper

 ;

 ; B has index of switch

 ; A has 0x04 for when switch is closed (ball on switch)

 ; A has 0x05 for when switch is opened (ball off switch)

 ;

7244: 34 06 PSHS B,A ;

7246: BD FE 0D JSR $FE0D ; Returns with C-clear and Z-set when switch is closed

 ; Returns with C-set and Z-clear when switch is opened

7249: 24 45 BCC $7290 ;

 ;

 ;--------------------------------------

 ; Switch is open

 ;--------------------------------------

 ;

 ;---

724B: BD 6F 0F JSR $6F0F ; UpdateCurrentRunningScheduledFnWithSwOpenClosedID()

 ; If sw is open, calls $99A2 & returns from sw handling

 ;---

724E: BD 70 9D JSR $709D ;

7251: E6 23 LDB $0003,Y ;

7253: C4 FE ANDB #$FE ;

7255: E7 23 STB $0003,Y ;

7257: E6 22 LDB $0002,Y ;

7259: 27 2F BEQ $728A ; Goes to SystemModeCheck(0x04) which launches 00AA

725B: 86 0A LDA #$0A ; callback in bank $31, prior to multiball

725D: E6 61 LDB $0001,S ;

725F: BD 83 46 JSR $8346 ; Sleep()

7262: 06 ;

7263: BD FE 0D ;

7266: 24 19 BCC $7281 ;

7268: 4A DECA ;

7269: 26 F4 BNE $725F ;

726B: A6 E4 LDA ,S ;

726D: BD 6E E9 JSR $6EE9 ;

7270: 6D 22 TST $0002,Y ;

7272: 27 06 BEQ $727A ;

7274: BD 82 B6 JSR $82B6 ; ErrorHandler()

7277: 4D ;

7278: 6F 22 CLR $0002,Y ;

727A: BD FD FC JSR $FDFC ; SystemModeCheck()

727D: 05 ;

727E: 7E 72 D4 JMP $72D4 ; Jump to the end, no more work

7281: A6 E4 LDA ,S ;

7283: BD FD FC JSR $FDFC ; SystemModeCheck()

7286: 06 ;

7287: 7E 72 D4 JMP $72D4 ; Jump to the end, no more work

 ;

728A: BD FD FC JSR $FDFC ; SystemModeCheck()

728D: 04 ; 0x04 causes call to $6F4D,31 to evaluate A.

 ; If A==0x0A then 00AA scheduled function callback

 ; is started which caues sleep() at multiball start

728E: 20 44 BRA $72D4 ; Jump to the end, no more work

 ;

 ;--------------------------------------

 ; Switch is closed

 ;--------------------------------------

 ;

7290: BD 6F 0F JSR $6F0F ; UpdateCurrentRunningScheduledFnWithSwOpenClosedID()

 ; If switch is closed returns here and code proceeds

 ;

7293: BD FD FC JSR $FDFC ; SystemModeCheck() // Calls $70B4,3B with 0x07 in B

7296: 07 ;

7297: BD 70 9D JSR $709D ;

729A: 6D 21 TST $0001,Y ;

729C: 26 07 BNE $72A5 ;

 ;

729E: 5F CLRB ;

729F: BD 6E CB JSR $6ECB ;

72A2: 7E 72 D4 JMP $72D4 ; Jump to the end. In game play, no award yet

 ;

72A5: 6D 22 TST $0002,Y ;

72A7: 27 06 BEQ $72AF ;

72A9: BD 82 B6 JSR $82B6 ; ErrorHandler()

72AC: 4C INCA ;

72AD: 20 25 BRA $72D4 ;

72AF: E6 61 LDB $0001,S ;

 ;

72B1: 86 06 LDA #$06 ;

72B3: BD FE 0D JSR $FE0D ; -\ Called when processing switches, B has switch index

72B6: 25 16 BCS $72CE ; |

72B8: BD 83 46 JSR $8346 ; | Sleep()

72BB: 06 ; |

72BC: 6D 21 TST $0001,Y ; |

72BE: 27 DE BEQ $729E ; |

 ; |

72C0: 4A DECA ; |

72C1: 26 F0 BNE $72B3 ; -/

 ;

72C3: A6 E4 LDA ,S ;

72C5: BD 6E DD JSR $6EDD ;

72C8: BD FD FC JSR $FDFC ; SystemModeCheck()

72CB: 08 ;

72CC: 20 06 BRA $72D4 ;

72CE: A6 E4 LDA ,S ;

72D0: BD FD FC JSR $FDFC ; SystemModeCheck()

72D3: 09 ;

72D4: 7E 6F AB JMP $6FAB ; End Of Switch Processing

---;---

The highlighted code at $7290 is where a new function is inserted to aid in the timing problems and bug

fixes. At $7290 is where the switch handler has determined that the switch is closed, meaning the ball is

resting on the switch, and game state handling is about to take place. Since this code is used by four

different switches, by fixing this one function, several ways in which problems manifest are going to be

fixed. The updated code at $7290 is as follows.

...

 ;

 ;--------------------------------------

 ; Switch is closed

 ;--------------------------------------

 ;

7290: BD 6F 0F JSR $6F0F ; UpdateCurrentRunningScheduledFnWithSwOpenClosedID()

 ; If switch is closed returns here and code proceeds

 ;

7290: BD 79 F9 JSR $79F9 ; BallRestSwitch_BugFixRoutine()

 ; ;

7293: BD FD FC JSR $FDFC ; SystemModeCheck() // Calls $70B4,3B with 0x07 in B

7296: 07 ;

7297: BD 70 9D JSR $709D ;

729A: 6D 21 TST $0001,Y ;

729C: 26 07 BNE $72A5 ;

 ;

...

As shown, the jump to $6F0F routine was replaced to a jump to $79F9 routine. Expectation is that the

$79F9 routine will end up returning so that normal code flow at $7293 can proceed. Below is the new

function at $79F9,3B (ROM offset 0x6F9F9).

---;---

 ; BallRestSwitch_BugFixRoutine()

 ;---

 ; Forgot-multiball fix where lock shots will call

 ; this code to wait until MB init is completely done and

 ; multiball-loop is running.

 ;---

79F9: BD 7A 06 JSR $7A06 ; Sleep if MB is imminent or MB-init is running

79FC: BD 7A 30 JSR $7A30 ; Sleep if "LOAD THE GUN" is imminent-ball just drained

79FF: BD 7A 61 JSR $7A61 ; Sleeps if other lock sw is being handled during mball

7A02: BD 6F 0F JSR $6F0F ; Call original code replaced with JSR to this fn.

7A05: 39 RTS ; Now resume switch hdlr

---;---

As indicated in the new function, above, three new functions are called, then the original $6F0F function

which was replaced with the JSR to $79F9 is then called and code returns, resuming normal switch

handler code flow. The three functions are:

 $7A06,3B, sleep if it appears multiball is imminent, waits until MB maintenance loop is running

 $7A30,3B, sleep if “Load the Gun” is imminent, if a ball has just drained but not fully handled yet

 $7A61,3B, sleep if another lock switch is being handled but not fully handled yet during multiball

Effectively, the three functions will cause the code to wait until the other short-lived functions are fully

handled. This will effectively cause the current switch handler to yield until the other code is finished

running, whether it is multiball startup code, outhole handler code or other lock switch handler code.

This allows sequential handling of these switches and prevents the trouble that was ensuing when the

handlers would be ran simultaneously (whenever one function runs a Sleep() function, the other function

is allowed to run until it sleeps or returns).

Switch Handler Fixup Routine: Sleep when multiball is imminent

Shown below is the first fixup function at $7A06,3B (ROM offset 0x6FA06).

---;---

7A06: 34 06 PSHS B,A ;

7A08: 86 55 LDA #$55 ; At sleep(6), 0x55 is about 8 seconds of wait

 ;

 ;---

 ; Check inserted below for $BF being greater than 1 and,

 ; if so, stop waiting and return. The purpose of

 ; this bug fix is to yield to trough-sw handling so that

 ; $BF can be properly calculated to keep MB running.

 ; If $BF is already greater than 1 then good, done.

 ;---

7A0A: D6 BF LDB $BF ; Get number of balls on the playfield from $BF

7A0C: C1 01 CMPB #$01 ;

7A0E: 22 1E BHI $7A2E ; Branches to the end if $BF is higher than 1

 ;

7A10: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7A13: 00 84 ; 0084, ball-to-gun-target-period function

7A15: 24 0E BCC $7A25 ; ball-to-gun-target-period is running, keep_waiting

 ;

7A17: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7A1A: 00 E1 ; 00E1, huntership-hit callback

7A1C: 24 07 BCC $7A25 ; Huntership-hit callback is running, keep_waiting

 ;

7A1E: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7A21: 00 B8 ; 00B8, multiball-init, if running, keep waiting

7A23: 25 09 BCS $7A2E ; not running, we're done

 ;

 ; keep_waiting:

 ;

7A25: 4A DECA ; Decrement counter

7A26: 27 06 BEQ $7A2E ; If decremented to zero, then done.

7A28: BD 83 46 JSR $8346 ; Sleep()

7A2B: 06 ;

7A2C: 20 DC BRA $7A0A ; Keep checking

7A2E: 35 86 PULS A,B,PC ; MB not imminent, or MB-loop is running, or timed out

---;---

The purpose of this function, above, is to wait when any of the short-lived functions leading up to

multiball maintenance loop are running. Careful survey of the code was done in order to determine the

cascade of functions that occur when a multiball is about to be started:

 Function ID 00B4 function runs when gun-trigger is pulled and hunter-ship is about to be hit.

 Function ID 00E1 function runs when huntership has been hit, determines if MB should start.

 Function ID 00B8 function is the multiball startup function, described earlier.

The idea is that if any of functions are running which could possibly be leading up to multiball

maintenance loop are running, this lock switch handler will sleep until the multiball actually starts

(multiball maintenance loop is running) or the multiball is no longer imminent (such as if hunter ship was

missed or more shots are remaining). This logic will also stop if balls-in-play $BF value is found to be

greater than 1 since the reason for this logic is to fix problems where $BF was being stuck at 1 when a

ball is locked immediately at multiball start as the ball-trough is being evacuated. If $BF is greater than 1

then it can be reasonably assumed the ‘forgotten multiball’ problem is not going to take place.

Below is the logic flowchart for this function, shown for reference.

Start: $7A06,3B

Fixup Routine

Is Balls-in-Play $BF value greater

than 1?

Is ball-to-hunter-ship period active?

Is hunter-ship ‘hit’ function

scheduled/running?

Is multiball setup function

scheduled/running?

Done

yes

no

yes

no

no

yes

no

Been checking for 8 seconds?

yes

no

yes

Switch Handler Fixup Routine: Sleep when “Load the gun” is imminent

Shown below is the second fixup function at $7A30,3B (ROM offset 0x6FA30).

---;---

 ; Fix for lock-shot happening at same time as ball drain

 ; which can cause lost "LOAD THE GUN" period.

 ;

7A30: 34 06 PSHS B,A ;

7A32: 86 35 LDA #$35 ; At sleep(6), 0x35 is about 5 seconds of wait

 ;

7A34: D6 BF LDB $BF ; Get number of balls on the playfield from $BF

7A36: C1 02 CMPB #$02 ; If balls in play is not 2 then the problem of

7A38: 26 25 BNE $7A5F ; lost "LOAD THE GUN" period is not imminent. Done.

 ;

7A3A: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7A3D: 00 86 ; 0086, multiball-loop is running

7A3F: 25 1E BCS $7A5F ; Multiball maintenance loop is not running, we‟re done

 ;

 ; If either 00E0 or 780F are running it means the ball

 ; trough was recently loaded with fresh ball. Since

 ; $BF is 02 then "LOAD THE BALL" period should not

 ; be currently running but check for it anyway out

 ; of completeness. If running then no need to

 ; worry about having a lost "LOAD THE BALL" period.

 ;

7A41: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7A44: 00 A9 ; 00A9, "LOAD THE GUN" monitoring function

7A46: 24 17 BCC $7A5F ; "LOAD THE GUN" is running, we're done

 ;

7A48: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7A4B: 00 E0 ; 00E0, outhole-set 3-second timer

7A4D: 24 07 BCC $7A56 ; Outhole was hit in past 3 seconds, keep waiting

 ;

7A4F: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7A52: 78 0F ; 780F, ball-trough handler 1/2 second timer period

7A54: 25 09 BCS $7A5F ; Ball-trough not hit in past 1/2 seconds, we‟re done

 ;

7A56: 4A DECA ; Decrement counter

7A57: 27 06 BEQ $7A5F ; If decremented to zero, then done.

7A59: BD 83 46 JSR $8346 ; Sleep()

7A5C: 06 ;

7A5D: 20 D5 BRA $7A34 ; Keep checking

 ;

7A5F: 35 86 PULS A,B,PC ; "LOAD THE GUN" period is not imminent, or timed out

---;---

The purpose of this function, above, is to have the switch handler (which calls this function) yield to the

system and allow any imminent “Load the Gun” period to become established prior to allowing the

current switch handler to proceed.

A careful examination of the code was done to understand the nature of the functions involved when

the outhole switch is hit and subsequent ball-trough loading and how it relates to the issue of lost “Load

the Gun” period. Having all of the following conditions means “Load the Gun” is imminent:

 The Multiball maintenance loop function ID 0086 is running, and

 The Balls-In-Play counter at ram $BF is 2, and

 The “Load the Gun” tracking function ID 00A9 is not (yet) running, and

 The outhole switch handler scheduled function ID 00E0, 3 second timer is running, and

 The ball-trough switches handler scheduled function ID 780F for ½ second timer is running

By detecting these conditions are all present, the lock shot switch handler will assume a “Load the Gun”

period is imminent. The code will wait on these conditions all being present for up to 5 seconds before

giving up. This effectively fixes the problem of the lost “Load the Ball” problem.

Below is the logic flowchart for this function, shown for reference.

Start: $7A30,3B

Fixup Routine

Balls-in-Play $BF value equal to 2?

Multiball Maintenance Loop

running?

Outhole switch hit within past 3

seconds?

Ball-Trough switch hit within past

1/2 second?

Done

yes

yes

no

no

yes

no

Been checking for 5 seconds?

no

no

yes

no

“LOAD THE GUN” period active? yes

Switch Handler Fixup Routine: Sleep while other switch is being serviced during multiball

Shown below is the second fixup function at $7A61,3B (ROM offset 0x6FA61).

---;---

 ; Fix bug where simultaneous lock shots of left/top lock

 ; during multiball after 1 ball has already drained will

 ; result in "Jackpot Multiplied 0x=0" and both balls

 ; back onto playfield instead of a timed "LOAD THE GUN"

 ; period (and with a single ball kicked back in play).

 ;

7A61: 34 06 PSHS B,A ;

7A63: 86 35 LDA #$35 ; At sleep(6), 0x35 is about 5 seconds of wait

 ;

7A65: D6 BF LDB $BF ; Get number of balls on the playfield from $BF

7A67: C1 02 CMPB #$02 ; Problem only happen during Multiball with 2 balls left

7A69: 26 19 BNE $7A84 ; If count is anything other than 2, we're done

 ;

7A6B: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7A6E: 00 86 ; 0086, multiball-loop is running

7A70: 25 12 BCS $7A84 ; Multiball maintenance loop is not running, we‟re done

 ;

7A72: BD 8A AA JSR $8AAA ; SearchLinkedListAndMaskParameterBytes() C-clr = found

7A75: 00 40 ; 0040 Lock-sw IDs get converted to an ID with 004x

7A77: 01 F0 ; 01F0 Searches for ID 004x, C-clear = entry found

7A79: 25 09 BCS $7A84 ; If no other lock switches are currently being serviced

 ; then we're done

 ;

7A7B: 4A DECA ; Decrement counter

7A7C: 27 06 BEQ $7A84 ; If decremented to zero, then done.

7A7E: BD 83 46 JSR $8346 ; Sleep()

7A81: 06 ;

7A82: 20 E1 BRA $7A65 ; Keep checking

 ;

7A84: 35 86 PULS A,B,PC ; Either no other lock switch hdlr active, or timed out

---;---

The purpose of this function, above, is to have the currently handled lock switch yield to the system until

another lock switch handler, in progress, completes its work. This problem is only found to occur when

there are 2 balls remaining during multiball and, as such, the function will end if the balls-in-play value at

ram $BF is anything other than 2.

A careful study of lock switch handler function was performed where it was determined the issue of

“Jackpot Multiplied 0x=0” can be cured if the first lock switch that is hit is fully serviced before the

second lock switch handling is allowed to commence.

The key to this logic is in how the function ID for lock switch handlers get adjusted to a 16-bit value 004x

where ‘x’ is 4 or 5 to indicate if switch handler detected switch is closed or open, respectively. The

previously depicted common lock switch handler, for four lock switches at $7244,3B performs this

function ID fixup at the following function call:

7290: BD 6F 0F JSR $6F0F ; UpdateCurrentRunningScheduledFnWithSwOpenClosedID()

 ; If switch is closed returns here and code proceeds

And, as mentioned, in L8.3, the instruction at $7290 was replaced with a call to the bugfix fixup function

7290: BD 79 F9 JSR $79F9 ; BallRestSwitch_BugFixRoutine()

And, as previously depicted, the bug fix function then calls this ID updater function prior to returning at

this instruction:

7A02: BD 6F 0F JSR $6F0F ; Call original code replaced with JSR to this fn.

This ID fixup function is partially annotated below, however the details of this running function ID

updater is left as an exercise for the reader:

---;---

 ; UpdateCurrentRunningScheduledFnWithSwOpenClosedID ()

 ;

 ; Called near start of switch processing

 ; Function alters the scheduler ID value for current fn

 ; For example, ball-popper ID starts out at 0004

 ; (from SwitchMatrix table entry for the switch)

 ; and this function changes it to 3044.

 ;

6F0F: 34 20 PSHS Y ;

6F11: 8D 0D BSR $6F20 ; ScheduledFunctionOpenClosedSwitchNewIdIntoY()

6F13: BD 9B 34 JSR $9B34 ; SearchForLinkedListEntryY() // C-clear when found

6F16: 25 03 BCS $6F1B ; (left-lock hit at game-over C-set when sw is closed.)

 ; (left-lock opened during game-over C-clear)

 ;

6F18: 7E 99 A2 JMP $99A2 ; ID Lookup success, the updated ID 3044 or 3055 is

 ; already running, no work to do

6F1B: BD 9B 83 JSR $9B83 ; UpdateCurrentRunningScheduleFunctionIDY()

6F1E: 35 A0 PULS Y,PC ;

---;---

This ID fixup function relies on the next function, below, for determining new function ID value.

---;---

 ; ScheduledFunctionOpenClosedSwitchNewIdIntoY()

 ;

 ; Populates Y with linked-list ID number,

 ; based on 04/05 switch closed/open value

 ; Switch Closed, Y gets 0x3044:

 ; lookup ID is masked with 0x01FF --> 0x0044

 ; Switch Opened, Y gets 0x3045:

 ; lookup ID is masked with 0x01FF --> 0x0045

6F20: 34 06 PSHS B,A ;

6F22: 4D TSTA ;

6F23: 26 04 BNE $6F29 ;

 ; Get here if A is 0x00, invalid, a should be 04 or 05

6F25: BD 82 B6 JSR $82B6 ; ErrorHandler()

6F28: 4B ;

6F29: 1F 89 TFR A,B ;

6F2B: 4F CLRA ;

6F2C: C3 00 40 ADDD #$0040 ; ID Closed sw 0004 --> 0044, Open sw 0005 --> 0045

6F2F: 10 83 00 4F CMPD #$004F ;

6F33: 23 04 BLS $6F39 ;

6F35: BD 82 98 JSR $8298 ;

6F38: 48 ;

6F39: 8A 30 ORA #$30 ; ID Closed sw 0044 --> 3044, Open sw 0045 --> 3045

6F3B: 1F 02 TFR D,Y ; Y gets new ID

6F3D: 35 86 PULS A,B,PC ;

---;---

The new ID of the switch handler can be referenced by other functions, such as the bugfix function

where it looks for any running function with ID value using boolean arithmetic of 0x0040 <AND> 0x01F0.

A careful examination of the L-8 code was done to ensure that this pattern matches the desired search

for any other lock-switch handler function that might be running.

Below is the logic flowchart for this function, shown for reference.

Start: $7A61,3B

Fixup Routine

Any scheduled functions running

with ID matching Boolean pattern

of 0040 AND 01F0

Done

yes

yes

yes

yes

no

Been checking for 5 seconds?

no

no

Balls-in-Play $BF value equal to 2?

Multiball Maintenance Loop

running?

no

Switch Handling, Outhole Switch Handler

This section covers bug fix for the switch highlighted in blue, in the switch-matrix table, above. For the

outhole switch, a single, unique, handler is set in the switch matrix table at $44B1,31 (ROM offset

0x444B1). The outhole switch handler code, mostly annotated, is shown below, along with its follow-up

function to handle ball-saver.

---;---

 ; SwitchMatrixHdlr_Outhole()

 ; B has 0x10 SwitchTable[] index for Outhole switch

 ;

44B1: BD F7 59 JSR $F759 ; CheckGameMode() // z-bit set if game in progress

44B4: 7E 44 B7 JMP $44B7 ; <nop>

44B7: 26 41 BNE $44FA ; If in attract-mode go to kick the outhole solenoid

 ;

44B9: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

44BC: 00 86 ; 0086, multiball-loop is running

44BE: 24 3A BCC $44FA ; If multiball mode is set, kick outhole solenoid

 ; until outhole switch opens.

 ;

44C0: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

44C3: 00 83 ; 0083 == 7 second first multiball ball-save timer

44C5: 24 0F BCC $44D6 ; If 7-second ball-save is on, skip down to ball-save

 ; ----------------

 ; end-of-ball code

 ; ----------------

44C7: 86 10 LDA #$10 ; End-of-ball music

44C9: BD C0 BC JSR $C0BC ; PlayMusicRegisterA()

44CC: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

44CF: 00 AE ; 00AE = end-of-ball bonus collection

44D1: 45 35 31 ; EndOfBallBonusCollection()

44D4: 20 24 BRA $44FA ;

 ; -----------------

 ; Ball-Save Engaged

 ; -----------------

44D6: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

44D9: 00 E0 ; 00E0 == 3-second sleep

44DB: 24 1D BCC $44FA ; If 3-second sleep already running then ball was

 ; re-drained during ball-save timer, no 2nd ball-save

44DD: 8D 2B BSR $450A ; BallSaverSequenceEngage()

44DF: BD 83 19 JSR $8319 ; Getting switch state related function

44E2: 0F ; Possibly: SwitchTableEntry0F, 17, Trough Right

44E3: 25 15 BCS $44FA ;

44E5: BD 85 53 JSR $8553 ;

44E8: 2C ;

44E9: BD 88 D5 JSR $88D5 ;

44EC: 00 0C ;

44EE: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

44F1: 04 ; SolenoidTableEntry04, 04=Trough, 40

 ;

44F2: BD 8B 3D JSR $8B3D ; AddLinkedListEntry()

44F5: 00 04 ;

44F7: 70 CC 3B ; TroughLeftCenterRightSwitchHdlr()

 ;

44FA: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

44FD: 00 E0 ; 00E0 == 3-second sleep

44FF: 45 2E 31 ; Schedules a 3-second sleep

4502: 86 05 LDA #$05 ; SolenoidTableEntry05, 03=Outhole, 40

4504: BD 89 2F JSR $892F ; CallBankedFunction_Param_WPCAddr_NoReturn()

4507: 6D 25 3B ; PulseSolenoidUntilSwitchOpens() A=solenoid, B=switch

 ;

---;---

 ;

 ; BallSaverSequenceEngage()

 ;

450A: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

450D: 00 86 ; 0086, multiball-loop is running

450F: 24 15 BCC $4526 ;

4511: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

4514: 00 EF ; 00EF == 2-second sleep timer

4516: 24 0E BCC $4526 ; If 2-second sleep already running

4518: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

451B: 99 ; 99 = "Don't Move"

451C: 25 08 BCS $4526 ;

451E: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

4521: 00 EF ;

4523: 45 27 31 ; Schedules a 2-second sleep

4526: 39 RTS ;

 ;

---;---

The outhole switch handler, above, entails a single modification as part of the entire suite of code

changes as part of resolving the multiball and “lock the ball” issues. In this case, the initial part of the

outhole handler is changed as depicted below.

---;---

 ; SwitchMatrixHdlr_Outhole()

 ; B has 0x10 SwitchTable[] index for Outhole switch

 ;

44B1: BD F7 59 JSR $F759 ; CheckGameMode() // z-bit set if game in progress

44B4: 7E 44 B7 JMP $44B7 ; <nop>

44B7: 26 41 BNE $44FA ; If in attract-mode go to kick the outhole solenoid

 ;

44B4: 26 44 BNE $44FA ; If in attract-mode go to kick the outhole solenoid

44B6: BD 7F 9B JSR $7F9B ; Jump to bugfix routine that sleeps if MB is imminent

 ;

...

The original code consisted of:

 Dummy JMP instruction to get to next instruction, and

 BNE instruction to branch to $44FA if the result of previously called $F759 cleared the Z-bit

The new code consists of:

 BNE instruction to branch to $44FA if the result of previously called $F759 cleared the Z-bit

 JSR instruction to a new bug-fix function.

Since the bug-fix needs to be called after the BNE, it was easy to move the BNE instruction to prior to

the dummy JMP instruction (and modify the number of bytes the BNE needs to skip) and then change

the dummy JMP instruction to a genuine JSR instruction to the bug-fix function. The implied behavior

now, is that the bug-fix function at $7F9B will return when it completes so that normal code-flow can

proceed in the outhole switch handler function.

Note: Throughout the L-8 code in many places a call to a function in non-banked ROM region is often

followed by a “dummy” instruction to jump to the next instruction. It appears this is a way the original L-

8 code can use to easily allow for a function to be moved out of non-banked ROM into banked ROM, if

needed. The “dummy” jump instruction takes up 3 bytes of ROM space which would be needed if the

function call into a banked function is needed instead. The dummy JMP instruction is effectively a NOP

instruction (no-operation) and can be repurposed, safely, in this way.

The new bug-fix function at $7F9B,31 (ROM offset 0x44F9B) is as follows:

---;---

 ;

;

; Jump here from $44B4/$44B6 to call function in bank $3B where 'forgotten-multiball' fix

; function is in place to wait until all short-lived functions leading up to multiball

; main loop are done running, or Balls-in-play $BF is greater than 1, or up to a timeout.

;

7F9B: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7F9E: 7A 06 3B ; Forgotten-multiball bugfix

7FA1: 39 RTS ;

 ;

---;---

The bug-fix function for outhole switch handler is in place to help with the problem of “forgotten

multiball” when ball is drained immediately as the hunter ship is hit. This function will call the bug-fix

function at $7A06,3B (ROM offset 0x6FA06) which will check if multiball is imminent (but balls-in-play

value at ram $BF is 1) waits until multiball is no longer imminent or $BF value is greater than 1.

This logic will prevent problems with the multiball prematurely ending when the Multiball maintenance

loop would discover the $BF value is 1 and declare end of multiball unexpectedly. By having the outhole

switch yield to the system in this way, and along with the other lock-switch handler bug-fix logic, the

multiball loop will be sure to not end prematurely.

The full description of the bug-fix function, $7A06,3B, is shown earlier where this same function is also

called as part of the common lock-switch handler bug-fix function.

Multiball Corrected Logic
The resulting flowchart depicting the various fixes is shown below. This includes:

 Yellow highlighted fixes for multiball startup and maintenance loop

 Green highlighted fixes for the lock-switches handler code

 Blue highlighted fixes for the outhole-switch handler code

Start:

Multiball Startup

Schedule startup of:

 Multiball Maintenance/Loop

Schedule startup of:

 Ball Trough Evacuation

Done

Start: Multiball

Maintenance/Loop

Done

no

yes

Start: Ball Trough

Evacuation

Ball Trough

Evacuated?
Eject a ball

from ball

trough and

shooter lane
Done

yes

no

Start: Ball Trough

Switch Handler

Update accounting for number of

balls in play at ram $BF.

Are any of these conditions met to keep multiball running?

1. Balls-in-play at ram $BF greater than 1?, or

2. Ball Trough Evacuation function currently running?, or

3. First multiball 7-second ball-save period in progress?, or

4. Is a “Load the Gun” period currently in progress?, or

5. Multiball Startup function currently running?

Is ball trough evacuation

completely done, or is Balls-

in-Play ram $BF > 1, or have

been checking for 8 seconds?

yes

no

Start: Lock

Switch Handlers

Done

Done

Sleep while multiball is imminent

Update accounting for number of

balls in play at ram $BF.

Sleep while “Load the Ball” is imminent

Sleep while other lock switch is being serviced

Start: Outhole

Switch Handler

same function

Normal outhole handling code

Done

Sleep while multiball is imminent

The L8.3 Lamp Driver Update
As part of added enhancement to L8.3, support was added to allow the selection of the desired lamp

driver code, allowing two possible values:

The original L-8 lamp driver code is the original code produced for L-8 which was originally intended for

incandescent bulbs (as LED pinball illumination was non-existent when L-8 was made).

The LED driver code utilizes code based on the publically available no-ghost patch as documented in a

publically downloadable file “WPC_Ghost_Busting.pdf”, with an additional improvement added in L8.3

to fix a ghosting problem that could happen during GI power-saving mode, as described in detail, below.

LED Patch Summary
Refer to online resources, such as “WPC_Ghost_Busting.pdf”, for technical details of the WPC lamp

driver patch. In a nutshell, the patched lamp driver has these characteristics:

 Set the Column drivers to 0 and then the row drivers to 0

o This must be done by clearing B register and then storing B into Column & Row registers

 Have about 30us worth of instructions take place

 Put the derived lamp row value into the Row register

 Put the derived column bit/register value into the Column register

The improved logic, above cures the issues identified as causing the current spikes responsible for the

ghosting.

LED Patch Improvement, power-saver improvement

While analyzing the patched lamp matrix and reviewing information published in the

“WPC_Ghost_Busting.pdf”, it became apparent, during L8.3 development, that the patched lamp matrix

code had missed another location in its code where it turns off the Column and Row registers during the

GI Power Saver mode.

It turns out, that the WPC Lamp Matrix is affected by the GI Power Saver mode, thus making the menu

text somewhat incorrect in its naming since the power-saver function applies to the 8x8 controlled lamp

matrix in addition to the general illumination.

A big THANK YOU to those involved in investigating and developing the LED driver, “no-ghost” patch. The pinball

community has greatly benefited from your work and, now, the L8.3 software benefits from your efforts. Your time

spent documenting the issue and showing the oscilloscope measurements were immensely helpful. The

documented patch, and the patch tool results served as the primary basis of the LED driver code used in L8.3.

The power-saver mode will engage in the following circumstances:

 Standard Adjustment A1.25 “Allow Dim Illum.” is set to “Yes”, and

 Standard Adjustment A1.29 “GI Power Saver” is set to value other than “Off”, and

 Number of minutes configured in A1.29 has elapsed.

As described earlier in this document, the Interrupt Service Routine (ISR) is called periodically. One of

the tasks the ISR performs, in addition to reading the switch matrix, is to update the ‘next’ column of the

lamp matrix. Using the ISR, the lamp matrix is updated on a regular, repeating basis, updating only a

single column on a given pass through the ISR routine.

When the power-saver mode is active, the ISR lamp-matrix updater will utilize the following logic when

it is about to update the ‘next’ column of the lamp matrix.

ISR about to update ‘next’ lamp-matrix column

Is ‘next’ column, the 1st column?

Is GI “power-saver” mode currently active?

Decrement power-save-level counter in ram $A1

Is power-save-level counter $A1 less-than 0 ?

Reset power-save-level counter at ram $A1 with value from ram $6E

Perform ordinary ‘next’ lamp column update

Done

no

yes

no

yes

Turn off Column and Row drivers

no

yes

As shown in the flowchart, above, when the machine is in power-saver mode, after the lamp matrix has

updated the 8th column and about to start over at the 1st column, the power-saver mode is checked and,

if active, the lamp matrix is turned off for that update. Both the column and row registers are cleared

which effectively turns off the lamp matrix. This repeats for subsequent passes through the logic until

the value from ram $A1 has counted down from 0 to -1. Once the $A1 value is decremented to -1 then

the $A1 value gets reset and the column 1 lamps are enabled and remainder of the lamp matrix is

updated at subsequent ISR passes. After all 8 columns have been updated, this power-saver mode

repeats by disabling the lamp matrix for the number passes set in ram $A1 again, repeating until power-

saver mode is no longer active.

Note: The power-saver timer has been observed to utilize a granularity of 1-minute. For example, if the

power-saver time is set to 5 minutes, the power-saver will engage between 4:01 and 5:59 after entering

attract mode. This is likely the reason the minimum timer value is allowed to be 2 minutes.

As indicated, the lamp-matrix will set columns and rows off for a number of passes as derived from the

power-save level adjustment value. This value is set in RAM at $6E and used as the reset value into the

countdown value at $A1. The corresponding values for this countdown value are as follows:

Standard Adjustment A1.30 “Power Save Level” Lamp Matrix power-saver reset value $6E

4 3

5 2

6 2

7 2

The idea is to save on power usage of the lamp-matrix by turning off all lamps for a tiny, hopefully

unperceivable, amount of time. Ironically, the way in which the columns and rows are turned off would

incur a current spike and resulting lamp flicker each time the columns and rows are turned off for the

first time. A careful examination of the scenario would be needed to determine if this actually utilizes

more energy than if the power-saver function didn’t run at all.

The way in which the lamp matrix turns off the columns and rows is highlighted in the following code:

DABA: 7F 3F E4 CLR $3FE4 ; $3FE4=WPC_LAMP_ROW, turns off all row bits

DABD: 7F 3F E5 CLR $3FE5 ; $3FE5=WPC_LAMP_COLUMN, turns off all column bits

As described in the “WPC_Ghost_Busting.pdf” the use of a “CLR” instruction directly on the ROW

register causes a spike of current due to a problem in the WPC ASIC which briefly turns on all of the bits

prior to turning them off. Again, thank you to those who have paved the way and discovered this

information and published it for the pinball community!

For L8.3 LED driver, this has been corrected by using the following instructions.

xxxx: 4F CLRA ; A gets 0x00

xxxx: B7 3F E4 STA $3FE4 ; $3FE4=WPC_LAMP_ROW, turns off all row bits

xxxx: B7 3F E5 STA $3FE5 ; $3FE5=WPC_LAMP_COLUMN, turns off all column bits

As shown, the same fix as used in the no-ghost patch is used. First a register, A, is cleared and then the

register is stored into the Row and Column registers. This resolves the WPC ASIC issue that would

otherwise ensue when the instruction is to CLR the Row/Column registers directly.

Lamp Driver Code Modifications
For reference, shown below is the L-8 original lamp matrix driver code, partially annotated.

---;---

 ; Start of Lamp Matrix code

 ;

DAA9: 9E 9F LDX $9F ; Get current lamp RAM address from $9F:$A0 into X

DAAB: 30 01 LEAX $0001,X ; Increment to next lamp RAM address

DAAD: 96 9E LDA $9E ; Get current column/row bit

DAAF: 48 ASLA ; Rotate left the column or row bit in $9E

DAB0: 26 19 BNE $DACB ; If haven't done 8, go to $DACB to continue the sweep

DAB2: 96 6D LDA $6D ; Load $6D value to see if in power-saver mode

DAB4: 27 10 BEQ $DAC6 ; If $6D is 0x00, not in power-saver mode, reset sweep

DAB6: 0A A1 DEC $A1 ; If $6D is not 0x00, in power-saver mode, decrement $A1

DAB8: 2B 08 BMI $DAC2 ; Power-saver counter < 0, reset counter and reset sweep

DABA: 7F 3F E4 CLR $3FE4 ; $3FE4=WPC_LAMP_ROW, turns off all row bits

DABD: 7F 3F E5 CLR $3FE5 ; $3FE5=WPC_LAMP_COLUMN, turns off all column bits

DAC0: 20 55 BRA $DB17 ; Jump to post lamp-matrix, all done for this pass

DAC2: 96 6E LDA $6E ; Get the power-saver off-cycle count from $6E

DAC4: 97 A1 STA $A1 ; and put it into the $A1 for next time

 ; Now proceed with a regular matrix column update

DAC6: 8E 02 E0 LDX #$02E0 ; Get start of lamp data RAM address 0x02E0 into X

DAC9: 86 01 LDA #$01 ;

 ;

DACB: 9F 9F STX $9F ; Store current or initial lamp ram address into $9F:$A0

DACD: 97 9E STA $9E ; Store next or initial column bit into $9E

 ;

DACF: E6 89 00 10 LDB $0010,X ;

DAD3: 53 COMB ;

DAD4: E4 89 00 08 ANDB $0008,X ;

DAD8: D7 9C STB $9C ;

DADA: E6 89 00 10 LDB $0010,X ;

DADE: E4 89 00 18 ANDB $0018,X ;

DAE2: DB 9C ADDB $9C ;

DAE4: D7 9C STB $9C ;

DAE6: E6 89 00 20 LDB $0020,X ;

DAEA: E4 89 00 28 ANDB $0028,X ;

DAEE: D7 9D STB $9D ;

DAF0: E6 89 00 20 LDB $0020,X ;

DAF4: 53 COMB ;

DAF5: D4 9C ANDB $9C ;

DAF7: DB 9D ADDB $9D ;

DAF9: D7 9C STB $9C ;

DAFB: E6 89 00 30 LDB $0030,X ;

DAFF: E4 89 00 38 ANDB $0038,X ;

DB03: D7 9D STB $9D ;

DB05: E6 89 00 30 LDB $0030,X ;

DB09: 53 COMB ;

DB0A: D4 9C ANDB $9C ;

DB0C: DB 9D ADDB $9D ;

DB0E: 7F 3F E4 CLR $3FE4 ; $3FE4=WPC_LAMP_ROW, this turns off all row bits

DB11: B7 3F E5 STA $3FE5 ; $3FE5=WPC_LAMP_COLUMN, turns on next column bit

DB14: F7 3F E4 STB $3FE4 ; $3FE4=WPC_LAMP_ROW, turns on rows that should be on

---;---

For L8.3, to cause the lamp driver code to choose between this original or a new LED driver code, the

original code is modified with a jump to a new function. The change is made in the following way.

---;---

 ; Start of Lamp Matrix code

 ;

DAA9: 9E 9F LDX $9F ; Get current lamp RAM address from $9F:$A0 into X

DAAB: 30 01 LEAX $0001,X ; Increment to next lamp RAM address

DAA9: 7E FE DD JMP $FEDD ; Jump to new code to choose original or LED driver

DAAC: 12 NOP ; Unused no-op, new code jumps past this to return

DAAD: 96 9E LDA $9E ; Get current column/row bit

DAAF: 48 ASLA ; Rotate left the column or row bit in $9E

DAB0: 26 19 BNE $DACB ; If haven't done 8, go to $DACB to continue sweep

DAB2: 96 6D LDA $6D ; Load $6D value to see if in power-saver mode

...

As shown in the new highlighted code, the first two instructions of the original lamp driver are replaced

with a JMP instruction to a new function located at $FEDD (ROM offset 0x7FEDD). Since two 2-byte

instructions needed to be replaced with a single new 3-byte instruction, the leftover 4th byte is changed

to a NOP instruction. This NOP never gets executed because the new $FEDD will jump back to this

original lamp driver (when appropriate do to so) at address $DAAD, skipping the NOP.

The new function at $FEDD (ROM offset 0x7FEDD) is as follows. Below contains partially annotated code

and number of cycles used by some of the instructions, for reference.

---;---

FEDD: 9E 9F LDX $9F ; Get current lamp RAM address from $9F:$A0 into X

FEDF: 30 01 LEAX $0001,X ; Increment to next lamp RAM address

 ;

 ; Directly read Adjustment Value from RAM for

 ; Lamp Driver from $1BED and proceed with original

 ; or LED lamp driver code.

 ;

FEE1: F6 1B EC LDB $1BEC 5cy ; Read adjustment byte 0=no patch

FEE4: 26 03 BNE $FFE9 3cy ;

FEE6: 7E DA AD JMP $DAAD 4cy ; Go back to original ISR code

 ;

FEE9: 96 9E LDA $9E ; Get current column/row bit

FEEB: 48 ASLA ; Rotate left the column or row bit in $9E

FEEC: 26 1A BNE $FF08 ; If haven't done 8, go to $FF06 to continue the sweep

FEEE: 96 6D LDA $6D ; Load $6D value to see if in power-saver mode

FEF0: 27 11 BEQ $FF03 ; If $6D is 0x00, not in power-saver mode, reset sweep

FEF2: 0A A1 DEC $A1 ; If $6D is not 0x00, in power-saver mode, decrement $A1

FEF4: 2B 09 BMI $FEFF ; Power-saver counter < 0, reset counter and reset sweep

FEF6: 4F CLRA ;

FEF7: B7 3F E4 STA $3FE4 ; $3FE4=WPC_LAMP_ROW, turns off all row bits

FEFA: B7 3F E5 STA $3FE5 ; $3FE5=WPC_LAMP_COLUMN, turns off all column bits

FEFD: 20 53 BRA $FF52 ; Jump to post lamp-matrix, all done for this pass

FEFF: 96 6E LDA $6E ; Get the power-saver off-cycle count from $6E

FF01: 97 A1 STA $A1 ; and put it into the $A1 for next time

FF03: 8E 02 E0 LDX #$02E0 ; Get start of lamp data RAM address 0x02E0 into X

FF06: 86 01 LDA #$01 ;

 ;

FF08: 9F 9F STX $9F ; Store current or initial lamp ram address into $9F:$A0

FF0A: 97 9E STA $9E ; Store next or initial column bit into $9E

 ;

FF0C: E6 88 10 LDB $10,X ;

FF0F: 53 COMB ;

FF10: E4 88 08 ANDB $08,X ;

FF13: D7 9C STB $9C ;

FF15: E6 88 10 LDB $10,X ;

FF18: E4 88 18 ANDB $18,X ;

FF1B: DB 9C ADDB $9C ;

FF1D: D7 9C STB $9C ;

FF1F: E6 88 20 LDB $20,X ;

FF22: E4 88 28 ANDB $28,X ;

FF25: D7 9D STB $9D ;

FF27: 5F CLRB ;

FF28: F7 3F E5 STB $3FE5 ; $3FE5=WPC_LAMP_COLUMN, turns off all column bits

FF2B: F7 3F E4 STB $3FE4 ; $3FE4=WPC_LAMP_ROW, turns off all row bits

FF2E: E6 89 00 20 LDB $0020,X 4+4 ;

FF32: 53 COMB 2cy ;

FF33: D4 9C ANDB $9C 4cy ;

FF35: DB 9D ADDB $9D 4cy ;

FF37: D7 9C STB $9C 4cy ;

FF39: E6 89 00 30 LDB $0030,X 4+4 ;

FF3D: E4 89 00 38 ANDB $0038,X 4+4 ;

FF41: D7 9D STB $9D 4cy ;

FF43: E6 89 00 30 LDB $0030,X 4+4 ;

FF47: 53 COMB 2cy ;

FF48: D4 9C ANDB $9C 4cy ;

FF4A: DB 9D ADDB $9D 4cy ; 60 cycles total, ~30uS, every 2 cycles is ~1uS

FF4C: F7 3F E4 STB $3FE4 ; $3FE4=WPC_LAMP_ROW, turns on rows that should be on

FF4F: B7 3F E5 STA $3FE5 ; $3FE5=WPC_LAMP_COLUMN, turns on next column bit

 ;

 ; Jump back to post-lamp-matrix code

FF52: 7E DB 17 JMP $DB17 ; Go back to original ISR code post lamp-matrix code

---;---

Notable elements of the LED lamp driver, above:

 First 2 instructions are the same 2 instructions that were replaced with the JMP to this code

 “Lamp Driver” value read directly from ram and not using the formal WPC lookup function.

o This is done to have code run as fast as possible.

o Single-byte “Lamp Matrix” is at known, fixed location in Ram at $1BEC

 If adjustment is set to 0 (Original) code jumps back to $DAAD to resume original lamp driver

 If adjustment is non-zero, new LED driver code ensues

 LED driver is a copy of the original driver code with no-ghost patch applied

o Also the GI power-saver bug fix, as previously described, is applied.

 After LED driver updates a column (or a power-saver ‘off’ cycle) code does a JMP to $DB17

 The $DB17 is address after the original lamp driver code, resuming normal ISR code.

Relocated Copyright Message

The updated LED lamp driver code, above, was placed into the region of ROM formally occupied by the

copyright message. The copyright message was present in the ROM for the observer but not utilized by

the code. The original, unmodified, copyright message was moved in its entirety to a location

immediately prior to the non-banked region of ROM in a unused region starting at $7DF0,3D (ROM

offset 0x77DF0) and appears as follows:

The copyright message was moved due to lack of available free space in the non-banked region of the

ROM. No disrespect was intended with this message move. The L8.3 was crafted with all respect given

to those who contributed to the original T-2 game and software design.

Lamp Driver Results
With the new lamp driver in place, it has been confirmed that no LED ghosting takes place when feature

adjustment A2.25 “Lamp Driver” is set to “LED”. Also, when the power-saver mode engages, it has also

been confirmed that lamp-matrix LEDs don’t experience ghosting at such time as well.

Note that using LEDs in general illumination strings will still experience flickering due to the way in which

Triacs are used along with sine-wave “zero-cross” signal to cause a chopped sine-wave at the GI sockets.

A conversion of AC to DC would be needed to achieve smoother GI dimming with LEDs.

Because of this, it is suggested that the game is set up to with standard adjustment A1.25 “Allow Dim

Illum” is set to “No” if LEDs are being used in GI without external voltage-smoothing circuitry.

The L8.3 Multiball-Start Drop-Target Action Enhancement
This section describes a new adjustment added to L8.3 called “Multiball-Start Drop-Target Action”.

Before details of this new adjustment, the following will describe the existing “Drop Target Down

Multiball” to help make it clear the distinct difference between these two adjustments.

Drop Target Down Multiball Adjustment
Most T2 owners have came across this interesting adjustment in the Feature Adjustments menu:

The published T2 manual was produced prior to L-4 where this adjustment made its first appearance.

Because of this, it may not be immediately apparent how this adjustment affects game play.

A thorough examination of the T2 code was made to determine how this setting is used. What was

found was that this adjustment’s value is read during game play during multiball when the ball-popper is

hit. When a ball hits the ball-popper (skull shot) during multiball, this adjustment’s value is then read:

 If “Off”, the drop-target is immediately kicked up

 If “On”,the drop-target is not kicked up (i.e. remains down)

Evidently, the “Off” behavior is to help prevent a second ball from crashing into the locked ball and

possibly getting stuck somewhere up inside the skull assembly. For game operators who don’t like this

behavior, the “On” setting allows the drop-target to remain in the down position while the ball is locked

in the ball-popper.

Multiball-Start Drop-Target Action Adjustment
In L8.3 a new adjustment was added:

This setting allows the game operator to control the drop-target up/down state at multiball start. The

reason such a setting was added was to improve the balance of the game-play so that the multiball

experience can be made more consistent regardless if the multiball was started via:

 Ball Popper and Hunter Ship hit, or

 Database award, or

 Left Loop award

By setting this adjustment to anything other than “None”, the drop-target state will be up or down at

start of multiball for all methods of multiball start, based on the adjustment value and, for some

adjustment values, the number of multiballs that the player has achieved so far.

This feature entails having the game software kick the drop target up, or knocking it down at multiball

start. The drop-target switch and knock-down solenoid must be functioning properly for this feature to

work correctly.

Possible values for this new adjustment are as follows:

 None, no particular drop-target action is taken at multiball start (same as L-8)

 Down, at every multiball start, drop-target is knocked down

 Up, at every multiball start, drop-target is reset (kicked up)

 1 MB Down, At first multiball the drop-target is knocked down. Reset at subsequent multiballs.

 2 MB Down, First 2 multiballs the drop-target is knocked down. Reset at subsequent multiballs.

 3 MB Down, First 3 multiballs the drop-target is knocked down. Reset at subsequent multiballs.

The various adjustment values provide added flexibility in game play, allowing the operator to dial in the

preferred behavior and difficulty of multiball experience, regarding drop-target state at multiball start.

Multiball-Start Drop-Target Action Adjustment Code
The entry point for the drop-target action at multiball start takes place inside the multiball startup

function. The multiball startup function is shown in full in the previous section “Multiball Startup Balls-

In-Play Timing Fix: Startup waits for non-zero balls-in-play”. Below is the relevant portion of the

multiball startup function related to this feature:

...

6C98: 8E 05 C9 LDX #$05C9 ; $05C9, Base Addr of #-of-multiballs per player/game

6C9B: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6C9E: 7E 6C A1 JMP $6CA1 ; <nop> JSR to new function here JSR to $FB8C

6CA1: 6C 84 INC ,X ; Increment multiballs achieved counter for cur player

...

This part of multiball startup function loads up the base address in RAM where the game saves the

number of multiballs that each of the 4 players has had so far during the game. This value does not

reset between balls. The function at $FB29 increments the pointer based on the current player number.

The result when $FB29 returns is that X points to RAM byte containing the number of multiballs the

current player has achieved:

Player Number RAM Address for: Multiballs achieved current game

1 $05C9

2 $05CA

3 $05CB

4 $05CC

For this feature in L8.3, this portion of the multiball startup code is updated as follows:

...

6C98: 8E 05 C9 LDX #$05C9 ; $05C9, Base Addr of #-of-multiballs per player/game

6C9B: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6C9E: BD 7F BA JSR $7FBA ; Jump to Multiball Start Drop-Target Action routine

6CA1: 6C 84 INC ,X ; Increment multiballs achieved counter for cur player

...

As highlighted, at $6C9E there was previously a dummy JMP instruction which simply jumped to the

next instruction at $6CA1. This dummy instruction was replaced with a jump to a new function, $7FBA,

that will handle the new feature by setting the drop target state according to the “Multiball Start Drop-

Target Action” adjustment. Note, above, at $6CA1, the number of multiballs achieved for the current

player gets incremented after the new fixup function is called. This means the multiball counter that the

function gets is the number of multiballs achieved not including the current multiball that is starting up.

The new function at $7FBA (ROM offset 0x47FBA) is located in a region later in the same bank $31 that

was previously unused and is as follows:

---;---

7FBA: 34 04 PSHS B ;

7FBC: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

7FBF: 14 00 ; 0x14, FeatureAdjustment020, Drop Trgt. Broken

 ; C-bit set when not-equal

7FC1: 25 23 BCS $7FE6 ; Not-equal to 0x00 then dt broken is “yes”, we're done

 ;

7FC3: BD 83 0C JSR $830C ; Get8BitSettingIntoBParameterByte()

7FC6: 1A ; 0x1A, FeatureAdjustment026, MB Start DT Action

7FC7: 5D TSTB ;

7FC8: 27 1C BEQ $7FE6 ; If B is 0x00 then no action, return

7FCA: C1 01 CMPB #$01 ; Check if B is 0x01 “Down”

7FCC: 26 0A BNE $7FD8 ; If B is not 0x01, skip down to $7FD8

 ;

7FCE: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback()

7FD1: 00 B7 ; 0x00B7 Unique id for the target-down callback

7FD3: 78 94 3B ; WPC Address for drop-target-down callback

7FD6: 20 0E BRA $7FE6 ; Jump to done

 ;

7FD8: C0 02 SUBB #$02 ; Here when B is 0x02 or more, decrement it by 2.

7FDA: E1 84 CMPB ,X ; Compare B with X, number of MBs so far for cur player

7FDC: 2E F0 BGT $7FCE ; If B-register was greater than the MB, do target-down

 ;

7FDE: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback()

7FE1: 00 B9 ; 0x00B9 Unique id for the target-up callback

7FE3: 78 B7 3B ; WPC Address for drop-target-up callback

7FE6: 35 84 PULS B,PC ;

---;---

The drop-target ‘action’ function, above, is called with ‘X’ register containing the number of multiballs

the player as achieved so far, not including the current MB that is starting. For first multiball, for

example, X has 0. This function checks the configured “Drop Target Broken” and will not do anything if

configured to “yes”. After this, the new “MB Start DT Action” adjustment value is read. If configured to

0 (None), then no particular action takes place. If 1 (Down) then DT is scheduled to go down. Otherwise,

the code will treat the configured value as number of prior multiballs that must have taken place as the

threshold to push drop-target UP or kick it down. Effectively, the “Up” setting is treated same as if it

were named “0 MB Down”.

The flowchart for the Drop-Target Action function is as follows:

The logic used in the flowchart, above includes a mathematical formula used on the configured “MB

Start DT Action” adjustment value. The numeric value for each adjustment value is as follows:

MB Start DT Action Adjustment Value Numeric Value

None 0

Down 1

Up 2

1 MB Down 3

2 MB Down 4

3 MB Down 5

MB Start DT Action

handler start

Drop-Target Broken?

Action: None?

Action: Down?

(Action Adjustment – 2)

greater than number of

multiballs so far?

Schedule Drop-Target Up

Done

yes

no

yes

no

Schedule Drop-Target Down

yes

yes

no

no

When the adjustment value is “Up” (2) or greater, the logic compares the adjustment value, minus 2,

with the number of multiballs, to determine whether to reset the drop-target up or knock it down. For

illustrative purposes, the table below shows some example values and resulting drop-target action.

Number of Multiballs
achieved so far

Configured Drop
Target Action

Formula
(Adjustment – 2) > Multiballs?

Drop Target
Action

0 None (0) n/a None

0 Down (1) n/a Down

0 Up (2) (Adjustment Value 2 – 2) = 0 > 0 ? No Up

0 1 MB Down (3) (Adjustment Value 3 – 2) = 1 > 0 ? Yes Down

0 2 MB Down (4) (Adjustment Value 4 – 2) = 2 > 0 ? Yes Down

0 3 MB Down (5) (Adjustment Value 5 – 2) = 3 > 0 ? Yes Down

1 None (0) n/a None

1 Down (1) n/a Down

1 Up (2) (Adjustment Value 2 – 2) = 0 > 1 ? No Up

1 1 MB Down (3) (Adjustment Value 3 – 2) = 1 > 1 ? No Up

1 2 MB Down (4) (Adjustment Value 4 – 2) = 2 > 1 ? Yes Down

1 3 MB Down (5) (Adjustment Value 5 – 2) = 3 > 1 ? Yes Down

2 None (0) n/a None

2 Down (1) n/a Down

2 Up (2) (Adjustment Value 2 – 2) = 0 > 2 ? No Up

2 1 MB Down (3) (Adjustment Value 3 – 2) = 1 > 2 ? No Up

2 2 MB Down (4) (Adjustment Value 4 – 2) = 2 > 2 ? No Up

2 3 MB Down (5) (Adjustment Value 5 – 2) = 3 > 2 ? Yes Down

3 None (0) n/a None

3 Down (1) n/a Down

3 Up (2) (Adjustment Value 2 – 2) = 0 > 3 ? No Up

3 1 MB Down (3) (Adjustment Value 3 – 2) = 1 > 3 ? No Up

3 2 MB Down (4) (Adjustment Value 4 – 2) = 2 > 3 ? No Up

3 3 MB Down (5) (Adjustment Value 5 – 2) = 3 > 3 ? No Up

4 None (0) n/a None

4 Down (1) n/a Down

4 Up (2) (Adjustment Value 2 – 2) = 0 > 4 ? No Up

4 1 MB Down (3) (Adjustment Value 3 – 2) = 1 > 4 ? No Up

4 2 MB Down (4) (Adjustment Value 4 – 2) = 2 > 4 ? No Up

4 3 MB Down (5) (Adjustment Value 5 – 2) = 3 > 4 ? No Up

5 None (0) n/a None

5 Down (1) n/a Down

5 Up (2) (Adjustment Value 2 – 2) = 0 > 5 ? No Up

5 1 MB Down (3) (Adjustment Value 3 – 2) = 1 > 5 ? No Up

5 2 MB Down (4) (Adjustment Value 4 – 2) = 2 > 5 ? No Up

5 3 MB Down (5) (Adjustment Value 5 – 2) = 3 > 5 ? No Up

The table, above, shows the various combinations of multiball count, configured “MB Start DT Action”

values, and resulting drop-target up/down state that will get set at multiball start. The resulting state is

expected and consistent with the described behavior for this adjustment. As mentioned, the multiball

count refers to multiballs the player has achieved thus far (not including current multiball startup) while

the adjustment value for “1 MB Down”, “2 MB Down” and “3 MB Down” number conceptually includes

the current multiball startup. So if player had already achieved 2 multiballs and adjustment is set to “2

MB Down” then this logic applies as such player is experiencing their 3rd muliball, therefore, the drop-

target gets reset (kicked up).

Multiball-Start Drop-Target Action Adjustment Code, Up/Down Functions

As depicted in the new code for Multiball-Start Drop-Target Action, the new code can, depending on

conditions, do one of the following:

 Schedule a “Down” function at $7894,3B (ROM offset 0x6F894), or

 Schedule a “Up” function at $78B7,3B (ROM offset 0x6F8b7)

These two new functions are located in bank $3B where more available unused ROM space is available.

The functions are as follows:

---;---

 ; MbStartDropTargetDown()

 ;

7894: BD 84 8F JSR $848F ; ClearMemoryFlag()

7897: E3 ; 0xE3 cleared at dt-down-switch, set at dt-up

7898: C6 03 LDB #$03 ;

789A: 34 04 PSHS B ;

 ;

789C: BD 83 19 JSR $8319 ; --\ CheckSwitchState() C-clear = switch closed

789F: 3F ; | Drop-Target switch

78A0: 24 10 BCC $78B2 ; | C-bit clear, target is down, done

78A2: BD 83 46 JSR $8346 ; | Sleep()

78A5: 10 ; |

78A6: BD 83 85 JSR $8385 ; | EnqueueSolenoidPulse_ParameterByte()

78A9: 13 ; | SolenoidTableEntry13, 0C=Knock Down, 20

78AA: BD 83 46 JSR $8346 ; | Sleep()

78AD: 10 ; |

78AE: 6A E4 DEC ,S ; |

78B0: 26 EA BNE $789C ; --/

 ;

78B2: 35 04 PULS B ;

78B4: 7E 99 A2 JMP $99A2 ;

---;---

 ; MbStartDropTargetUp()

 ;

78B7: BD 84 80 JSR $8480 ; SetMemoryFlag()

78BA: E3 ; 0xE3 cleared at dt-down-switch, set at dt-up

78BB: C6 03 LDB #$03 ;

78BD: 34 04 PSHS B ;

 ;

78BF: BD 83 19 JSR $8319 ; --\ CheckSwitchState() C-clear = switch closed

78C2: 3F ; | Drop-Target switch

78C3: 25 10 BCS $78D5 ; | C-bit set, target is up, done

78C5: BD 83 46 JSR $8346 ; | Sleep()

78C8: 10 ; |

78C9: BD 83 85 JSR $8385 ; | EnqueueSolenoidPulse_ParameterByte()

78CC: 06 ; | SolenoidTableEntry06, 1C=Drop Target, 40

78CD: BD 83 46 JSR $8346 ; | Sleep()

78D0: 10 ; |

78D1: 6A E4 DEC ,S ; |

78D3: 26 EA BNE $78BF ; --/

 ;

78D5: 35 04 PULS B ;

78D7: 7E 99 A2 JMP $99A2 ;

---;---

These new functions have similar logic and are intended solely for use by the new Multiball-Start Drop-

Target Action feature. The following flowchart depicts the logic used by both functions.

Logic used in these Up/Down functions is modeled after existing drop-target up function used by L-8

game code. The normal game code uses a retry count of 6. Other elements are identical including the ¼

second sleep times and switch-check.

Start

Set RAM $E3 value to match

the new up/down DT state

DT Switch in desired

up/down state?

Sleep ¼ second, 250mS

Pulse appropriate solenoid to

reset DT or knock it down

Sleep ¼ second, 250mS

Made 3 Attempts?

Done

yes

yes

no

no

Multiball-Start Drop-Target Action Adjustment Code, Drop-Target Switch Handler

The software controlled up/down of the drop target will necessarily cause the drop-target switch to be

hit or opened as the target is knocked down or kicked up, respectively. When the drop target switch

becomes closed due to the drop-target down state, the switch handler code will necessarily get invoked

as per normal switch-matrix handling and function callback behavior. The switch handler code will

behave as if the player had knocked the drop-target down and accumulate points if code is not in place

to prevent this.

Referring to the switch matrix table shown earlier in this document, the table entry for the drop-target

switch is as follows:

4BE9: 00 02 ; SwitchTableEntry3F, 77, Drop Target

4BEB: 67 0C 31 ;

4BEE: 3C 00 80 ;

4BF1: 40 00 04 ;

The switch-matrix entry for drop-target switch schedules function $670C,31. This is the drop-target

switch handler function, partially annotated, is shown in full, below.

---;---

 ; DropTargetSwitchHandler()

 ;

670C: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

670F: 00 B3 ; 0x00B3 DropTargetUp()

6711: 10 24 00 E7 LBCC $67FC ;

 ;

6715: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

6718: 00 E7 ; Search for 00E7 BallSearchDropTargetSleepAndReset()

671A: 10 24 00 DE LBCC $67FC ;

 ;

671E: BD 84 8F JSR $848F ; ClearMemoryFlag()

6721: E3 ; 0xE3 cleared at dt-down-switch, set at dt-up

 ;

6722: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

6725: 50 ; 0x50 Sound Index "Vu-vilp"

 ;

6726: BD FA AE JSR $FAAE ;

6729: 7E 67 2C JMP $672C ; <nop>

 ;

672C: C6 03 LDB #$03 ;

672E: BD 6D E9 JSR $6DE9 ;

 ;

6731: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

6734: 00 86 ; Search for 0086, C-bit clear = multiball running

 ;

6736: 24 03 BCC $673B ;

6738: BD 68 82 JSR $6882 ;

673B: BD 87 3C JSR $873C ;

673E: 0F 40 ;

6740: 25 13 BCS $6755 ;

6742: BD 84 AD JSR $84AD ; GetMemoryFlag()

6745: D1 ;

6746: 25 05 BCS $674D ;

6748: BD 88 D5 JSR $88D5 ;

674B: 00 20 ;

674D: BD 87 22 JSR $8722 ;

6750: 0F 40 ;

6752: BD 57 43 JSR $5743 ;

6755: BD 83 19 JSR $8319 ; Gets switch state

6758: 3E ; 0x3E switch (ball-popper switch)

6759: 25 03 BCS $675E ; If switch is open C-bit set, skip target-up, no need

675B: BD 68 08 JSR $6808 ; ScheduleDropTargetUp() if ball in popper, reset target

675E: BD 8A AA JSR $8AAA ;

6761: 00 A4 ;

6763: 01 FF ;

6765: 25 15 BCS $677C ;

6767: BD 61 C3 JSR $61C3 ;

676A: BD 8A AA JSR $8AAA ; SearchLinkedListAndMaskParameterBytes() C-clr=found

676D: 00 86 ; Search for 0x0086, C-clear = multiball running

676F: 01 FF ;

6771: 24 0D BCC $6780 ;

6773: BD 68 08 JSR $6808 ; ScheduleDropTargetUp()

6776: BD 68 A0 JSR $68A0 ;

6779: 7E 99 A2 JMP $99A2 ;

 ;

677C: BD 85 1F JSR $851F ;

677F: 46 ;

6780: BD 8A AA JSR $8AAA ; SearchLinkedListAndMaskParameterBytes() C-clr=found

6783: 00 86 ; Search for 0x0086, C-clear = multiball running

6785: 01 FF ;

6787: 24 58 BCC $67E1 ;

6789: BD 87 15 JSR $8715 ;

678C: 0E 40 ;

678E: 8E 05 A1 LDX #$05A1 ;

6791: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6794: 7E 67 97 JMP $6797 ; <nop>

6797: A6 84 LDA ,X ;

6799: BD 83 0C JSR $830C ; Get8BitSettingIntoBParameterByte()

679C: 05 ; 0x05, FeatureAdjustment005, Drop Targt Count

679D: 34 04 PSHS B ; Save adjustment value onto stack

679F: A1 E0 CMPA ,S+ ; Compare A with adjustment value (and pop stack)

67A1: 25 16 BCS $67B9 ;

 ;

67A3: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

67A6: 00 86 ; Search for 0x0086, C-clear = multiball running

67A8: 24 08 BCC $67B2 ;

67AA: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

67AD: 00 A6 ; 0x00A6 = DropTargetDownSwitchTimerLoop()

67AF: 68 4A 31 ; $684A,31

67B2: BD A7 25 JSR $A725 ;

67B5: 85 01 BITA #$01 ;

67B7: 27 12 BEQ $67CB ;

 ;

67B9: 86 6A LDA #$6A ;

67BB: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

67BE: 6A ; 0x6A = “Lock sequence initiated”

67BF: 25 1A BCS $67DB ;

67C1: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

67C4: 00 ED ;

67C6: 68 02 31 ; $6802,31

67C9: 20 10 BRA $67DB ;

67CB: BD 85 46 JMP $8546 ; DoSoundTableParameterByte()

67CE: 7C ; 0x7C = “Load the cannon”

67CF: 25 0A BCS $67DB ;

67D1: 86 43 LDA #$43 ;

67D3: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

67D6: 00 ED ;

67D8: 68 02 31 ; $6802,31

67DB: BD 68 A0 JSR $68A0 ;

67DE: 7E 99 A2 JMP $99A2 ;

67E1: BD 84 AD JSR $84AD ; GetMemoryFlag()

67E4: 42 ;

67E5: 24 15 BCC $67FC ;

67E7: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

67EA: 00 A9 ; Search for 0x00A9

67EC: 25 0E BCS $67FC ;

67EE: BD 83 19 JSR $8319 ; Gets switch state

67F1: 3E ; 0x3E switch

67F2: 24 08 BCC $67FC ;

67F4: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

67F7: 00 A9 ; ID 00A9 == "LOAD THE GUN" period when 1 ball remaining

67F9: 48 AF 31 ; $48AF,31

67FC: BD 68 A0 JSR $68A0 ;

67FF: 7E 99 A2 JMP $99A2 ;

---;---

As shown, the drop-target switch handler starts off with the following three operations:

 Checks if function ID 00 B3 is running, if so then skip to the end of the function. The 00 B3

function means the normal game function for drop-target “Up” is running and, therefore, the

drop target going ‘up’ imminent and, therefore, the drop-target switch being closed is ignored.

 Checks if function ID 00 E7 is running, if so then skip to the end of the function. The 00 E7

function is used during ball search to represent a period of time in which the drop-target is

being exercised as an effort to dislodge a stuck ball. If this is happening then the drop-target

switch being closed is ignored.

 Clears the $E3 flag. This is a flag used by game code to track the known state of the drop target.

Drop-target down means $E3 is cleared while drop-target up has $E3 being set. Other game

code can query this flag to derive the position of the drop-target.

 Remaining drop-target processing proceeds.

In order to support the software-controlled “Multiball Start Drop Target Action” having the code

automatically reset the drop-target up or automatically knocking it down, this drop-target switch

handler needs to have added check similar to the first two operations mentioned above. The added

check needs to check if one of the new “Up” or “Down” drop-target functions are running and, if so,

ignore the drop-target switch. If such check was not in place, the “MB Start DT Action” knocking the

drop-target down would incur point accumulation as if the player had knocked the DT down at multiball

start.

In order to insert new code that checks if new “Up” or “Down” function is running, the 3rd operation

(Clearing the $E3 flag) is replaced with a jump to a new routine which will perform such checks. The

new routine will also include the clearing of the $E3 flag, as necessary.

Shown below is the first part of the drop-target handler function with the L8.3 change highlighted.

---;---

 ; DropTargetSwitchHandler()

 ;

670C: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

670F: 00 B3 ; 0x00B3 DropTargetUp()

6711: 10 24 00 E7 LBCC $67FC ;

 ;

6715: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

6718: 00 E7 ; Search for 00E7 BallSearchDropTargetSleepAndReset()

671A: 10 24 00 DE LBCC $67FC ;

 ;

671E: BD 84 8F JSR $848F ; ClearMemoryFlag()

6721: E3 ; 0xE3 cleared at dt-down-switch, set at dt-up

 ;

671E: 7E 7F A2 JMP $7FA2 ; Go to drop-target handler fixup function

6721: 12 NOP ;

 ;

6722: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

6725: 50 ; 0x50 Sound Index "Vu-vilp"

...

As shown, the JSR function and its extra parameter byte were replaced with a JMP to $7FA2 and a NOP

instruction. In this case a JMP instruction is used which means the fixup function will need to JMP back

to desired address instead of the typical JSR which requires RTS to come back to resume code execution.

This new function at $7FA2 is in the current bank, $31. This address corresponds to ROM offset

0x47FA2, and is shown below.

---;---

7FA2: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7FA5: 00 B7 ; 0x00B7 Drop target down function id

7FA7: 24 0E BCC $7FB7 ; Drop target “Down” is running, ignore the dt switch

 ;

7FA9: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7FAC: 00 B9 ; 0x00B9 Drop target up function id

7FAE: 24 07 BCC $7FB7 ; Drop target “Up” is running, ignore the dt switch

 ;

7FB0: BD 84 8F JSR $848F ; ClearMemoryFlag()

7FB3: E3 ; 0xE3 cleared at dt-down-switch, set at dt-up

7FB4: 7E 67 22 JMP $6722 ; Go do regular drop-target switch code

 ;

7FB7: 7E 99 A2 JMP $99A2 ; Done with this switch handler, up/down is running

---;---

The function at $7FA2, above, performs some basic operations:

 Checks if function ID 00 B7 is running, if so then skip to the end of the function to jump to $99A2

which is the end of switch handler jump point. The 00 B7 function means the “MB Start DT

Action” has scheduled the “Down” function to knock the drop-target down, and that function

hasn’t yet completed.

 Checks if function ID 00 B9 is running, if so then skip to the end of the function to jump to $99A2

which is the end of switch handler jump point. The 00 B9 function means the “MB Start DT

Action” has scheduled the “Up” function to reset the drop-target up, and that function hasn’t

yet completed.

 If neither 00 B7 or 00 B9 are running, then the E3 flag is cleared (indicating drop-target is down)

and code then jumps to $6722 which is the instruction immediately after the JMP instruction

that jumped to this $7FA2 code. By doing this jump, code effectively resumes its normal drop-

target handler logic.

 As indicated, if either 00 B7 or 00 B9 are running, then code performs a JMP instruction to jump

to $99A2 which is a common jump point for scheduled functions to jump to when they are

complete.

The logic, above, effectively allows the game to ignore the drop-target switch while the “MB Start DT

Action” feature is resetting the drop-target up or knocking it down.

Multiball-Start Drop-Target Action Adjustment Code Analysis
As shown in the new functions, above, the code will schedule a drop-target up or drop-target down

function call depending on the logic shown. These refer to two new functions with these characteristics:

 Drop-Target Down Drop-Target Up

WPC Address $7894,3B $78B7,3B

ROM Offset 0x6F894 0x6F8B7

Function ID 00 B7 00 B9

Special consideration was needed to choose the 16-bit value for the Function ID associated with these

new scheduled functions. Without knowledge of how function ID numbers were originally chosen for

existing functions in L-8, values were chosen that were initially found to not be in use by any existing

function and are numerically close to existing functions of similar nature. For example, below shows

some existing Function ID values from L-8 software:

Function WPC
Address

Function
ID

Function Purpose

$45D7,31 00 B2 Kick a ball out of shooter lane and checks shooter-lane switch

$6816,31 00 B3 Reset drop-target up and checks drop-target switch

$4A77,31 00 B5 TBD, Called when left-loop lock shot is hit

$4A28,31 00 B6 TBD, Called when right-loop is hit

$6C80,31 00 B8 TBD, Called as part of multiball startup

The table, above, shows the various function IDs from bank $31 using Function ID starting with 00 Bx.

Initial survey of the code seemed that no function appears to be defined with 00 B7 or 00 B9 as the ID

value (a deeper investigation, below, reveals this isn’t actually the case). To further demonstrate that

these 2 IDs could safely be used for the MB Start DT Action feature, as part of this documentation a

survey across the entire L-8 ROM image was done to see if any code could be found using these 2 ID

values. The table below shows some function signatures that are used to determine whether other

functions are using these 2 ID values.

Function Name L-8 Function
Usage Signature

Description

ScheduleFunctionStart() BD 8B 77 xx xx yy yy yy Schedules function ID xx xx to start at WPC

Addr yy yy yy

SearchLinkedListForId() BD 86 90 xx xx Searches for scheduled function ID xx xx

CancelScheduledCallbackFunction() BD 86 9E xx xx Cancels scheduled function ID xx xx

UpdateCurrentRunningSchedule
FunctionIDParameterBytes()

BD 86 AC xx xx Sets currently running function ID to xx xx

TBD() BD 86 BA xx xx TBD, where xx xx is function ID

CancelScheduledCallbackIDParameterBytes() BD 86 D0 xx xx Cancels scheduled ID xx xx

CancelAllCallbacksIdMaskParameterBytes() BD 8A 9A xx xx yy yy Cancels scheduled functions matching ID
pattern of xx xx bitwise-and yy yy

SearchLinkedListAndMaskParameterBytes() BD 8A AA xx xx yy yy Searches for schedule functions matching ID
pattern of xx xx bitwise-and yy yy

AddLinkedListEntry() BD 8B 3D xx xx yy yy yy Adds function yy yy yy to linked list as ID xx xx

ScheduleFunctionStart() BD 8B 77 xx xx yy yy yy Schedules function yy yy yy ID xx xx

TBD() BD 8B 9D xx xx yy yy yy TBD, where xx xx is ID and yy yy yy is addr.

ScheduleFunctionCallback() BD 8B C3 xx xx yy yy yy Schedules function yy yy yy ID xx xx

TBD() BD 8B F7 xx xx yy yy yy Schedules function yy yy yy ID xx xx

The functions listed above are not necessarily exhaustive nor have they been assigned 100% accurate

names or given 100% accurate descriptions. This information is based on a cursory review of the L-8

code and observing how it behaves. The distinction between similarly named functions is not part of

this documentation. The function names were as given during an initial survey of WPC code and are

worthy of renaming as more information is learned about the code flow.

During L8.3 development an examination of the two new ID values for new drop-target Up and Down

functions was done and the values were chosen as apparently available ID values and deemed safe for

L8.3. After L8.3 release with this documentation providing thorough information and full transparency,

while demonstrating how these ID values was chosen, some minor overlap in ID values was detected

and will be described in more detail, below.

Function Name DT Search
Pattern

Search Results

ROM L-8 ROM L8.3

SearchLinkedListForId() Down BD 86 90 00 B7 Zero hits One hit, bank $31

Up BD 86 90 00 B9 Zero hits One hit, bank $31

CancelScheduledCallbackFunction() Down BD 86 9E 00 B7 Zero hits Zero hits

Up BD 86 9E 00 B9 Zero hits Zero hits

UpdateCurrentRunningSchedule
FunctionIDParameterBytes()

Down BD 86 AC 00 B7 Zero hits Zero hits

Up BD 86 AC 00 B9 Zero hits Zero hits

TBD() Down BD 86 BA 00 B7 Zero hits Zero hits

Up BD 86 BA 00 B9 Zero hits Zero hits

CancelScheduledCallbackIDParameterBytes() Down BD 86 D0 00 B7 Zero hits Zero hits

Up BD 86 D0 00 B9 Zero hits Zero hits

CancelAllCallbacksIdMaskParameterBytes() Down BD 8A 9A 00 B7 Zero hits Zero hits

Up BD 8A 9A 00 B9 Zero hits Zero hits

SearchLinkedListAndMaskParameterBytes() Down BD 8A AA 00 B7 Zero hits Zero hits

Up BD 8A AA 00 B9 Zero hits Zero hits

AddLinkedListEntry() Down BD 8B 3D 00 B7 Zero hits Zero hits

Up BD 8B 3D 00 B9 Zero hits Zero hits

ScheduleFunctionStart() Down BD 8B 77 00 B7 Zero hits Zero hits

Up BD 8B 77 00 B9 Two hits, bank $3B Two hits, bank $3B

TBD() Down BD 8B 9D 00 B7 Zero hits Zero hits

Up BD 8B 9D 00 B9 Zero hits Zero hits

ScheduleFunctionCallback() Down BD 8B C3 00 B7 Zero hits One hit, bank $31

Up BD 8B C3 00 B9 Zero hits One hit, bank $31

TBD() Down BD 8B F7 00 B7 Zero hits Zero hits

Up BD 8B F7 00 B9 Zero hits Zero hits

For the table, above, the following color code applies:

 Green box No problems, search pattern not found

 Red box Found function ID in rom L-8, conflicting with new function ID in L8.3

 Yellow box Found function ID in rom L8.3, conflicting with existing ID from L-8

 Blue box Found function ID in rom L8.3 not conflicting with L-8

The highlighted elements are as follows using highlighted color text consistent with their finding, above:

 In ROM L8.3, in bank $31

o The “Down” function schedule callback for “MB Start DT Action”, as documented above

o The “Down” function ID lookup in the drop-target switch handler, as documented above

o The “Up” function schedule callback for “MB Start DT Action”, as documented above

o The “Up” function ID lookup in the drop-target switch handler, as documented above

 In Both ROMs L-8 and L8.3, in bank $3B

o Two existing references to function ID 00 B9, conflicting with the new “Up” function ID

A deeper investigation into the 00 B9 overlap between L8.3 and existing L-8 code is provided below. The

overlap of the new “Up” function is not likely to be problematic or noticeable during game play. Refer

to the analysis, below, for details.

Drop-Target Up Function ID 00 B9 Overlap

As indicated, above, the chosen ID value for the new Drop-Target Up function at multiball startup is

cited in 2 other places in bank $3B in the original L-8 ROM (and in L8.3). This 00 B9 function ID is used

by a helper function used during the ball search routine. During ball search, there is a moment where a

function is scheduled with ID 00 B9 where such function is responsible for simply performing a 3.5

second sleep and then cancelling 2 other ball-search functions before ending itself. The “00 B9” ID is

only cited during the function scheduling and there is no ball search (or any other) code that checks if

the 00 B9 ball-search helper function is running. Additionally there is no ball search (or any other) code

that attempts to cancel the 00 B9 function.

Since ball search only happens when there is trouble (no playfield switch hit for a certain period of time)

and since the “MB Start DT Action” code engages at multiball startup, and since multiball startup

happens soon after a switch has been hit, it is reasonable to suggest that the ball-search 00 B9 function

is not likely to conflict with the “MB Start DT Action” function 00 B9 that resets the target to the up

position.

To help understand how the ball-save code works, and where its use of function ID 00 B9 is used, the

ball-search code is shown below, partially annotated, along with some of its supporting functions. A fair

amount of the ball-search logic can be gleaned by an examination of the code, however a full

description of the ball-search process is outside the scope of this document and a deeper-dive into ball-

search is left as an exercise to the reader. Ball search code related to function ID 00 B9 is highlighted.

This ball-search code starts at $5F42,3B (ROM offset 0x6DF42).

---;---

5F42: BD F7 59 JSR $F759 ; ChecksGameMode(), if game in progress, z-bit set

5F45: 7E 5F 48 JMP $5F48 ; <nop>

5F48: 26 1C BNE $5F66 ;

5F4A: 81 01 CMPA #$01 ;

5F4C: 22 0A BHI $5F58 ;

5F4E: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

5F51: 00 EE ; ID 00EE == BallSearchFrom5FBE() BallSearchPhase1()

5F53: 5F BE 3B ;

5F56: 20 16 BRA $5F6E ;

5F58: 81 02 CMPA #$02 ;

5F5A: 22 0A BHI $5F66 ;

5F5C: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

5F5F: 00 EE ; ID 00EE == BallSearchFrom5FA3() BallSearchPhase2()

5F61: 5F A3 3B ;

5F64: 20 08 BRA $5F6E ;

 ;

5F66: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

5F69: 00 EE ; ID 00EE == BallSearchFrom5F6F() BallSearchPhase3()

5F6B: 5F 6F 3B ; and all subsequent phases

5F6E: 39 RTS ;

 ;

---;---

 ;--------------------------------

 ; ID 00EE == BallSearchFrom5F6F()

 ; BallSearchPhase3() and all subsequent phases

 ;--------------------------------

 ;

 ; Knock drop-target down 4 times and 2.5 seconds later

 ; reset it to original position.

 ;

5F6F: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

5F72: 00 E7 ; ID 00E7 BallSearchDropTargetSleepAndReset()

5F74: 60 D1 3B ;

 ;

5F77: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5F7A: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

5F7B: BD 83 46 JSR $8346 ; Sleep()

5F7E: 02 ;

5F7F: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5F82: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

5F83: BD 83 46 JSR $8346 ; Sleep()

5F86: 01 ;

5F87: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5F8A: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

5F8B: BD 83 46 JSR $8346 ; Sleep()

5F8E: 02 ;

5F8F: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5F92: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

5F93: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5F96: 01 ; SolenoidTableEntry01, 0A=Top Lock, 10

5F97: BD 83 46 JSR $8346 ; Sleep()

5F9A: 05 ;

5F9B: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5F9E: 03 ; SolenoidTableEntry03, 10=Left Lock, 20

5F9F: BD 83 46 JSR $8346 ; Sleep()

5FA2: 05 ;

 ;--------------------------------

 ; ID 00EE == BallSearchFrom5FA3()

 ; BallSearchPhase2() starts here

 ;--------------------------------

 ;

5FA3: BD 60 9A JSR $609A ; BallSearchDropTargetUpAnd00E7Reset()

 ;

5FA6: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5FA9: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

5FAA: BD 83 46 JSR $8346 ; Sleep()

5FAD: 02 ;

5FAE: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5FB1: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

5FB2: BD 83 46 JSR $8346 ; Sleep()

5FB5: 02 ;

5FB6: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5FB9: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

5FBA: BD 83 46 JSR $8346 ; Sleep()

5FBD: 05 ;

 ;--------------------------------

 ; ID 00EE == BallSearchFrom5FBE()

 ; BallSearchPhase1() starts here

 ;--------------------------------

 ;

5FBE: 85 01 BITA #$01 ;

5FC0: 26 30 BNE $5FF2 ;

5FC2: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

5FC5: 00 AA ; ID 00AA == BallInPopper()

5FC7: 24 29 BCC $5FF2 ; If ball is in popper, skip over the following

5FC9: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

5FCC: 00 BC ; ID 00BC == Sleep3andHalfSeconds()

5FCE: 24 22 BCC $5FF2 ;

5FD0: BD 84 8F JSR $848F ; ClearMemoryFlag()

5FD3: C6 ;

5FD4: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5FD7: 0A ; SolenoidTableEntry0A, 0B=Gun Motor, FF

 ;

5FD8: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

5FDB: 00 E8 ; ID 00E8 == Sleep3SecondsThenPulseGunKicker()

5FDD: 60 AE 3B ;

 ;

5FE0: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

5FE3: 00 BD ;

5FE5: 66 75 31 ;

 ;

5FE8: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

5FEB: 00 B9 ; ID 00B9 == Sleep3andHalfSecondsThenCancel00BDand00BC()

5FED: 60 B9 3B ;

5FF0: 20 34 BRA $6026 ;

 ; ;

5FF2: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

5FF5: 00 AB ;

5FF7: 24 2D BCC $6026 ;

5FF9: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

5FFC: 00 AA ;

5FFE: 24 26 BCC $6026 ;

6000: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

6003: 00 BD ;

6005: 24 1F BCC $6026 ;

6007: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

600A: 00 BC ; ID 00BC == Sleep3andHalfSeconds()

600C: 24 18 BCC $6026 ;

600E: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

6011: 07 ; SolenoidTableEntry07, 01=Ball Popper, 40

6012: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

6015: 00 BC ; ID 00BC == Sleep3andHalfSeconds()

6017: 60 CA 3B ;

601A: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

601D: 00 B9 ; ID 00B9 == Sleep3andHalfSecondsThenCancel00BDand00BC()

601F: 60 B9 3B ;

6022: BD 83 46 ; Sleep()

6025: 05 ;

6026: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

6029: 00 AE ;

602B: 24 0E BCC $603B ;

602D: BD 83 19 JSR $8319 ; GetSwitchClosedParameterByte() // C-clear = sw closed

6030: 0F ;

6031: 24 08 BCC $603B ;

6033: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

6036: 04 ; SolenoidTableEntry04, 04=Trough, 40

6037: BD 83 46 JSR $8346 ; Sleep()

603A: 05 ;

603B: BD F7 59 JSR $F759 ; ChecksGameMode(), if game in progress, z-bit set

603E: 7E 60 41 JMP $6041 ; <nop>

6041: 27 08 BEQ $604B ;

6043: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

6046: 11 ; SolenoidTableEntry11, 08=Kickback, 40

6047: BD 83 46 JSR $8346 ;

604A: 05 ;

604B: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

604E: 0E ; SolenoidTableEntry0E, 0F=Bottom Jet, 40

604F: BD 83 46 JSR $8346 ;

6052: 05 ;

6053: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

6056: 0C ; SolenoidTableEntry0C, 0D=Left Jet, 40

6057: BD 83 46 JSR $8346 ;

605a: 05 ;

605B: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

605E: 0D ; SolenoidTableEntry0D, 0E=Right Jet, 40

605F: BD 83 46 JSR $8346 ;

6062: 05 ;

6063: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

6066: 0F ; SolenoidTableEntry0F, 05=Right Sling, 40

6067: BD 83 46 JSR $8346 ;

606A: 05 ;

606B: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

606E: 10 ; SolenoidTableEntry10, 06=Left Sling, 40

606F: BD 83 46 JSR $8346 ;

6072: 05 ;

6073: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

6076: 05 ; SolenoidTableEntry05, 03=Outhole, 40

6077: BD 83 46 JSR $8346 ;

607A: 05 ;

607B: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

607E: 09 ; SolenoidTableEntry09, 09=Plunger, 40

607F: BD 83 46 JSR $8346 ;

6083: 05 ;

6083: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

6086: 00 E7 ; ID 00E7 BallSearchDropTargetSleepAndReset()

6088: 60 D1 3B ;

608B: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

608E: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

608F: BD 83 46 JSR $8346 ; Sleep()

6092: 02 ;

6093: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

6096: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

6097: 7E 99 A2 JMP $99A2 ;

 ;

---;---

 ;

 ; BallSearchDropTargetUpAnd00E7Reset()

 ;

609A: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

609D: 14 00 ; 0x14, FeatureAdjustment020, Drop Trgt. Broken

609F: 27 0C BEQ $60AD ;

60A1: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

60A4: 00 E7 ; ID 00E7 BallSearchDropTargetSleepAndReset()

60A6: 60 D1 3B ;

60A9: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

60AC: 06 ; SolenoidTableEntry06, 1C=Drop Target, 40

60AD: 39 RTS ;

 ;

---;---

 ;

 ; ID 00E8 == Sleep3SecondsThenPulseGunKicker()

 ;

60AE: BD 83 46 JSR $8346 ; Sleep()

60B1: C0 : 0xC0 == 3 seconds

 ;

60B2: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

60B5: 08 ; SolenoidTableEntry08, 02=Gun Kicker, 40

60B6: 7E 99 A2 JMP $99A2 ;

 ;

---;---

 ;

 ; ID 00B9 == Sleep3andHalfSecondsThenCancel00BD_and00BC()

 ;

60B9: BD 83 46 JSR $8346 ; Sleep()

60BC: E3 ; 0xE3 == ~3.5 seconds

 ;

60BD: BD 86 9E JSR $869E ; CancelScheduledCallbackFunction()

60C0: 00 BD ;

60C2: BD 86 9E JSR $869E ; CancelScheduledCallbackFunction()

60C5: 00 BC ; ID 00BC == Sleep3andHalfSeconds()

60C7: 7E 99 A2 JMP $99A2 ;

 ;

---;---

 ;

 ; ID 00BC == Sleep3andHalfSeconds()

 ;

60CA: BD 83 46 JSR $8346 ; Sleep()

60CD: E0 ; 0xE0 == 3.5 seconds

60CE: 7E 99 A2 JSR $99A2 ;

 ;

---;---

 ;

;

; BallSearchDropTargetSleepAndReset()

;

; If 0xE3 is set (meaning target should be up) then kick it up (if not set to broken=yes)

; If 0xE3 is clr (meaning target should be dn) then kick it dn

;

; Function to set target to desired state after a ball-search

;;

60D1: BD 83 46 JSR $8346 ; Sleep()

60D4: A0 ; 0xA0 = 2.5 second sleep

60D5: BD 84 AD JSR $84AD ; GetMemoryFlag()

60D8: E3 ; If 0xE3 memory flag is set then do NOT do the

 ; drop-down. E3-set(c-clear)== dt-down

 ; 0xE3 cleared at dt-down-switch, set at dt-up

60D9: 24 0F BCC $60EA ;

60DB: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

60DE: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

60DF: BD 83 46 JSR $8346 ; Sleep()

60E2: 02 ;

60E3: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

60E6: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

60E7: 7E 99 A2 JMP $99A2 ;

 ;

---;---

 ;

60EA: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

60ED: 14 01 ; 0x14, FeatureAdjustment020, Drop Trgt. Broken

60EF: 27 04 BEQ $60F5 ;

60F1: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

60F4: 06 ; SolenoidTableEntry06, 1C=Drop Target, 40

60F5: 7E 99 A2 JMP $99A2 ;

 ;

---;---

As shown, the ball-search 00 B9 function performs these operations:

 Sleep for E3 which is slightly over 3.5 seconds (0x40 = 1 second, 0xE0 = 3.5 seconds).

 Cancel Function ID 00 BD

 Cancel Function ID 00 BC

The 00 BC function, as shown above at $60CA, simply sleeps for exactly 3.5 seconds. This allows other

code to determine if 3.5 seconds has elapsed by simply checking of function 00 BC is running. The

function 00 BD is located in a different bank at $6675,31 (ROM offset 0x46675) and hasn’t been traced

and is not depicted here.

The following sections analyze both scenarios:

 Scenario 1, when the ball-search 00 B9 is scheduled while drop-target “Up” 00 B9 is running

 Scenario 2, when the drop-target “Up” 00 B9 is scheduled while ball-search 00 B9 is running

The scenarios are analyzed with these facts in mind:

 The ball-search 00 B9 is scheduled with $8B77 scheduler which cancels any existing function

running with the same ID prior to scheduling the function.

 The “MB Start DT Action” schedules the new “Up” function with scheduler $8BC3 which will not

schedule the function if one is already running with the same ID.

Drop-Target Up Function ID 00 B9 Conflict Scenario 1

This scenario analyzes the case where the “MB Start DT Action” new “Up” function 00 B9 is running and

then the ball search engages and tries to schedule its 00 B9 function. As mentioned, this case seems

highly unlikely to occur in game play since this scenario would involve a ball-search taking place as

multiball starts up.

In this scenario, the multiball is starting, and “MB Start DT Action” determines the drop-target should be

reset to the up-position. At this same time, the ball search is taking place which then needs to schedule

its own 00 B9 function as part of its duties. As mentioned, the ball-search 00 B9 scheduler $8B77 will

cancel the existing 00 B9 function and then schedule the new 00 B9 function.

This means the drop-target will not be reset up, and the ball-search will proceed according to the ball-

search code and not experience any unexpected ball-search behavior. The player will experience a case

where multiball is starting, ball-trough being evacuated, while other playfield solenoids are kicking

during ball-search, and throughout all of this, the drop-target will not have been kicked up from the “MB

Start DT Action”.

The ball-search includes drop-target reset/knock-down activity as well. The ball-search is intended to

end with the drop-target reset to whatever position it was prior to the ball-search, whether it was up or

down prior to the ball-search. So if the drop-target was down when this scenario started, it will end up

down even though the ball-search may have kicked it up at some point. Since the ball-search, however,

ends when it detects a playfield switch, it seems likely that the ball-trough evacutation would have

resulted in end of ball-search. Precise details on how the ball-search ends has not been traced.

It seems reasonable to suggest that this situation is not likely to occur during game play and, if it

somehow does occur, the player is not likely to notice since there was a ball-search taking place which

would be more unexpected than the drop target not getting reset at multiball start.

Drop-Target Up Function ID 00 B9 Conflict Scenario 2

This scenario analyzes the case where the ball-search function 00 B9 is running and then the multiball is

started and “MB Start DT Action” determines that the drop-target should be in the up position and

attempts to schedule its 00 B9 function.

In this scenario, the game is performing its ball-search routine and has started its 00 B9 function which

runs for 3.5 seconds. During this 3.5 seconds, the game starts a multiball and the ‘MB Start DT Action”

attempts to schedule its “Up” function using scheduler $8BC3 which will not schedule the function if a

00 B9 function is already running. This effectively produces the same result as described in Scenario 1,

above. The result is that the ball-search routine will continue to operate without having its 00 B9

function interrupted or cancelled. For the player, the result is that the drop-target is not reset to the up

position when it otherwise should have been due to the “MB Start DT Action” feature, however a ball

search was taking place at multiball start so the drop-target position may be the least of the concern.

Drop-Target Up Function ID 00 B9 Conflict Drop-Target Switch Handler

Additional behavior due to the 00 B9 conflict is related to the L8.3 code addition to the drop-target

switch handler. Depicted earlier was how the drop-target switch handler has been updated to ensure

that the switch closure is ignored if the “MB Start DT Action” has scheduled the new Up or Down

function to reset the target up, or knock it down, respectively.

This also means that if a ball-search is taking place, and the player is able to hit a ball into the drop

target causing it to go into the down position, the player will not be awarded anything for hitting the

drop-target. The ball-search code and the drop-target switch handler are already designed to ignore the

switch closure if the drop-target had been knocked down as part of the ball-search routine itself. This

means the player may reasonable assume the lack of drop-target award was due to hitting the drop-

target while a ball search was taking place, however this may not be the actual reason the award was

not given.

In the overall scheme of things, this and the other behaviors that could occur due to the 00 B9 ID conflict

are not likely to be considered a major problem however in some extremely rare circumstances, my be

observable by the player.

The L8.3 Timed 3-Bank Lamp Fixes
During the L8.3 development, an observant tester brought up the odd behavior of original L-8 which

could be addressed as part of L8.3 involving the 3-bank lamp behavior. This odd behavior is effectively a

software bug in L-8 but is being addressed in L8.3 by having a new adjustment to select between original

or corrected behavior. This was done this way in the event that some prefer the original behavior and

incorporate it into their gameplay.

The problem is in regards to the center 3-bank lamps (each lamp associated with one of the three 3-

bank standup targets). The issue is with regards to the timeout behavior of the 3-bank lamps not

behaving in an expected or consistent way.

The 3-bank lamps behavior depends on the number of times the 3-bank targets have been completed by

the player for the current game. The number of times the 3-bank targets have been completed is

Note: Subsequent ROM update, in the future, will re-analyze this and change

the “Up” function ID value to remove any chance of conflict.

compared against the Feature Adjustment value for A2.06 “Three Bank Count” which has default value

of 2.

 When the 3-bank targets have NOT yet been completed number of times set in A2.06:

o Each hit to a 3-bank target causes its lamp to remain solidly lit.

o When all 3 of the 3-bank targets have been hit, award is given and all 3 lamps extinguish.

 When the 3-bank targets HAVE been completed number of times set in A2.06:

o Each hit to a 3-bank target causes its lamp to remain solidly lit.

o When only 1 target has been hit, the remaining 2 lamps are blinking

o When only 2 targets have been hit, the remaining 1 lamp is blinking

o When 1 or 2 lamps are blinking, all 3 lamps are subjected to timeout:

 Timeout period is set by Feature Adjustmet A2.10 “Three Bank Timer”

 Default timeout period is 15 seconds

 When 2nd of the 3 targets is hit, timeout period restarts

 When timeout period expires, ALL THREE lamps are extinguished

 After timeout, all 3 targets need to behit again in order to complete the bank

o When all three targets are hit, award is given and all 3 lamps are extinguished.

The problem behavior happens after the player drains their ball while the 3-bank targets are in a

timeout period. When the player is served their next ball, the L-8 behavior is as follows:

 Any unhit targets that were previously blinking, are extinguished

 Any hit targets that were previously solid (while the remaining 1 or 2 lamps were previously

blinking) now remain solidly lit and are not subjected to timeout as the player starts their ball.

o In the case where two lamps are solidly lit at start of ball:

 Re-hitting the solidly lit targets will not cause timeout to start

 Hitting the 3rd will complete the 3-bank standup, giving award and extinguishing

all three lamps.

o In the case where one lampis solidly lit at start of ball:

 Re-hitting the solidly lit target will not cause timeout to start

 Hitting a 2nd target will cause its lamp to be solidly lit and the remaining unhit

target to start to blink, and subject all three targets to timeout.

 When timeout expires, all three lamps are extinguished.

This behavior of L-8 is unexpected and inconsistent. Prior to the ball-draining, all three targets were

subjected to a timeout period however at the next ball, hit targets are no longer subjected to timeout

except in the case where only a single lit target was carried over to next ball and then player hits a 2nd

target in the 3-bank. At that point, their previously solidly lit lamp now becomes subjected to timeout.

A more reasonable approach would be that all of the 3-bank lamps which were subjected to timeout

when previous ball drained should be extinguished at the start of the next ball. This is the basis of this

new adjustment in L8.3.

This new adjustment allows section between the original L-8 logic as described above, or

The selection “Off at EOB” refers to the new logic which will entail having the timed 3-bank lamps being

turned off at end-of-ball.

This new logic, as its adjustment text implies, ensures that all three of the 3-bank lamps which were

subject to timeout are extinguished. More specifically, instead of only the unhit lamps being

extinguished, ALL lamps are extinguished. Note, although the adjustment is named “Off at EOB” the

actual moment that the hit lamps (which were subject to timeout) are extinguished is as the start of the

next ball. Using EOB was a lot easier to convey the new logic in the limited amount of space for

adjustment text. An observant player will also notice that the blinking lamps extinguish when the ball

drains and the solid lamps (which were subject to timeout) are extinguished during the start of the next

ball.

The way in which the original L-8 code extinguishes the blinking lamps at end-of-ball is fairly

straightforward. End of ball code cancels the function responsible for maintaining the timeout state of

the unhit 3-bank targets. Normally, during game-play the timer function will extinguish all three lamps

when the timer expires but cancelling the function at end-of-ball prevents this from taking pace.

For the hit targets which were subject to timeout, it appears the solid lamps need to be extinguished

from the ball startup code which is responsible for establishing the various state data for the new ball,

including lamp states. This startup code is important especially when you consider a multiplayer game

where each player has a different set of acquired achievements.

The start-of-ball function is depicted in full below, however it is only partially annotated. This function is

located at $625B,3B (ROM offset 0x6E25B).

---;---

 ; StartOfBallCurrentPlayer_ResetPlayfieldState()

625B: 34 16 PSHS X,B,A ;

625D: BD 84 AD JSR $84AD ; GetMemoryFlag()

6260: D0 ;

6261: 24 04 BCC $6267 ;

6263: BD 85 53 JSR $8553 ;

6266: 34 ;

6267: BD 84 8F JSR $848F ; ClearMemoryFlag()

626A: D1 ;

626B: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

626E: 04 00 ; 0x04, FeatureAdjustment004, Consolation Ball

6270: 24 49 BCC $62BB ; If Consolidation ball is not off then branch to $62BB

 ;

 ;--

 ; No consolidation ball, advance to next player

 ;--

6272: BD B1 D1 JSR $B1D1 ;

6275: 25 44 BCS $62BB ; Retain current player ball

6277: BD B3 CA JSR $B3CA ;

627A: 4D TSTA ;

627B: 26 3E BNE $62BB ; Retain current player

627D: 8E 05 AD LDX #$05AD ;

6280: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6283: 7E 62 86 JMP $6286 ; <nop>

6286: 6D 84 TST ,X ;

6288: 26 31 BNE $62BB ; Branch down to retain current player

628A: BD B1 AB JSR $B1AB ; GetCurrentPlayerIndexIntoA()

628D: BD BB 3E JSR $BB3E ; GetPlayerScoreIndexAintoU()

6290: 6D C4 TST ,U ;

6292: 26 27 BNE $62BB ;

6294: A6 41 LDA $0001,U ;

6296: 81 03 CMPA #$03 ;

6298: 24 21 BCC $62BB ;

629A: BD 88 F5 JSR $88F5 ;

629D: 4C 7B 38 ;

62A0: 6D 88 22 TST $22,X ;

62A3: 26 16 BNE $62BB ;

62A5: EC 88 22 LDD $22,X ;

62A8: C1 1E CMPB #$1E ;

62AA: 22 0F BHI $62BB ;

62AC: BD 88 D5 JSR $88D5 ;

62AF: 00 1F ;

62B1: BD 84 80 JSR $8480 ; SetMemoryFlag()

62B4: D1 ;

62B5: BD 88 F5 JSR $88F5 ;

62B8: 57 23 31 ;

 ;

62BB: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

62BE: 03 01 ; 0x03, FeatureAdjustment003, Extraball Memory

62C0: 24 05 BCC $62C7 ; extraball-memory is not on, then jump past the lampOff

62C2: BD 87 22 JSR $8722 ; LampOff() // likely turns off extraball lamp

62C5: 0F 40 ;

62C7: BD 83 E8 JSR $83E8 ;

62CA: 08 ;

62CB: BD 84 8F JSR $848F ; ClearMemoryFlag()

62CE: 42 ;

62CF: BD 84 80 JSR $8480 ; SetMemoryFlag()

62D2: D2 ;

62D3: BD 88 F5 JSR $88F5 ;

62D6: 68 08 31 ;

62D9: BD 87 BE JSR $87BE ;

62DC: 19 40 ;

62DE: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag is set

62E1: 41 ; Extra-Ball flag?

62E2: 24 1B BCC $62FF ; Jumps over the following when extra ball being served

62E4: BD F7 DE JSR $F7DE ; GetXTablePointer_05DB_ForCurrentPlayer()

62E7: 7E 62 EA JMP $62EA ;

62EA: 6F 84 CLR ,X ;

62EC: 6F 01 CLR $0001,X ;

62EE: 6F 02 CLR $0002,X ;

62F0: 6F 03 CLR $0003,X ;

62F2: 6F 04 CLR $0004,X ;

62F4: 8E 05 91 LDX #$0591 ;

62F7: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

62FA: 7E 62 FD JMP $62FD ; <nop>

62FD: 6F 84 CLR ,X ;

62FF: BD 84 8F JSR $848F ; ClearMemoryFlag()

6302: 41 ; Clear extra-ball flag(?)

6303: 8E 05 95 LDX #$0595 ;

6306: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6309: 7E 63 0C JMP $630C ; <nop>

630C: A6 84 LDA ,X ;

630E: 8E 05 99 LDX #$0599 ;

6311: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6314: 7E 63 17 JMP $6317 ; <nop>

6317: A1 84 CMPA ,X ;

6319: 26 08 BNE $6323 ;

631B: BD 84 1C JSR $841C ; ValidateThenSingleLampSetParameterBytePlane0()

631E: 30 ; 30 == Left Ramp Lamp

631F: BD 84 1C JSR $841C ; ValidateThenSingleLampSetParameterBytePlane0()

6322: 3A ; 3A == Right Ramp Lamp

6323: BD 87 BE JSR $87BE ;

6326: 0B 10 ;

6328: BD 87 BE JSR $87BE ;

632A: 0B 00 ;

632D: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

6330: 07 00 ; 0x07, FeatureAdjustment007, Kickback Setting

6332: 24 07 BCC $633B ; Kickback is not extra-easy, skip over the following

6334: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

6337: 07 01 ; 0x07, FeatureAdjustment007, Kickback Setting

6339: 25 0E BCS $6349 ; Kickback setting is easy, skip over the following

633B: 86 FF LDA #$FF ;

633D: 97 B1 STA $B1 ;

633F: BD 84 1C JSR $841C ; ValidateThenSingleLampSetParameterBytePlane0()

6342: 09 ; 09 == Kickback lamp

6343: BD 84 80 JSR $8480 ; SetMemoryFlag()

6346: 44 ;

6347: 20 1B BRA $6364 ;

6349: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

634C: 07 04 ; 0x07, FeatureAdjustment007, Kickback Setting

634E: 25 0C BCS $635C ; Kickback setting is 'extra hard' skip over the

following

6350: 0F B1 CLR $B1 ;

6352: BD 84 8F JSR $848F ; ClearMemoryFlag()

6355: 44 ;

6356: BD 84 2B JSR $842B ; ClrSingleLampParamByteBank0TestBankChkValidations()

6359: 09 ; 09 == Kickback lamp

635A: 20 08 BRA $6364 ;

635C: BD 84 AD JSR $84AD ; GetMemoryFlag() // c-bit clear when flag set

635F: 44 ;

6360: 24 D9 BCC $633B ;

6362: 20 EC BRA $6350 ;

6364: BD 66 36 JSR $6636 ;

6367: BD 88 F5 JSR $88F5 ;

636A: 47 8B 31 ;

636D: BD 85 B2 JSR $85B2 ;

6370: 08 ;

6371: BD 84 80 JSR $8480 ; SetMemoryFlag()

6374: D0 ;

6375: BD 84 AD JSR $84AD ; GetMemoryFlag() // c-bit clear when flag set

6378: 45 ;

6379: 25 05 BCS $6380 ;

637B: BD 87 15 JSR $8715 ; LampOnParameterByte1PlaneParameterByte2()

637E: 2F 40 ; 2F == Database 1 Lamp

6380: BD 84 AD JSR $84AD ; GetMemoryFlag() // c-bit clear when flag set

6383: 46 ;

6384: 25 04 BCS $638A ;

6386: BD 84 1C JSR $841C ; ValidateThenSingleLampSetParameterBytePlane0()

6389: 1A ; 1A == Database 2 Lamp

638A: BD 84 AD JSR $84AD ; GetMemoryFlag() // c-bit clear when flag set

638D: 47 ;

638E: 25 04 BCS $6394 ;

6390: BD 84 1C JSR $841C ; ValidateThenSingleLampSetParameterBytePlane0()

6393: 0C ; 0C == Right Return Lane Lamp

6394: 8E 5F 43 LDX #$5F43 ;

6397: BD 88 F5 JSR $88F5 ;

639A: 5F 16 3D ;

639D: 25 06 BCS $63A5 ;

639F: BD 88 F5 JSR $88F5 ;

63A2: 50 AE 31 ;

63A5: 35 96 PULS A,B,X,PC ;

---;---

The full playfield-state reset function is shown above for refrence. Within the function, an appropriate

location was chosen where code can jump to a new function to perform the task of extinguishing the 3-

bank lamps if they were subject to timeout during previous ball in play for the current player.

The modified portion of the function is shown below with new code highlighted.

...

62FF: BD 84 8F JSR $848F ; ClearMemoryFlag()

6302: 41 ; Clear extra-ball flag(?)

6303: 8E 05 95 LDX #$0595 ;

6306: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6309: 7E 63 0C JMP $630C ; <nop>

6309: BD 79 00 JSR $7900 ; Three-Bank Timed Lamp Handler

630C: A6 84 LDA ,X ;

630E: 8E 05 99 LDX #$0599 ;

6311: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6314: 7E 63 17 JMP $6317 ; <nop>

...

As shown, at $6309 was, effectively, a NOP instruction which simply jumped to the very next instruction.

This JMP instruction was replaced with a JSR to $7900 which will jump to the new 3-bank fixup function

located in unused region of ROM bank $3B at 7900 (ROM offset 0x6F900). The new function is as

follows:

---;---

7900: 34 16 PSHS X,B,A ;

7902: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

7905: 1B 01 ; 0x1B, FeatureAdjustment027, TIMED 3BANK LAMP

7907: 25 17 BCS $7920 ; C-bit set when not set to 0x01 'OFF AT EOB'

 ; so assume it is default/off, and return, no work

 ;

 ; Here when c-bit is set which means timed 3-bank

 ; lamps need turned off if at eob

 ;

7909: 8E 05 A5 LDX #$05A5 ; $05A5 = Number of 3-bank completions per player

790C: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

790F: A6 84 LDA ,X ; A has number of 3-bank completions for current player

7911: BD 83 0C JSR $830C ; Get8BitSettingIntoBParameterByte()

7914: 06 ; 0x06, FeatureAdjustment006, Three Bank Count

7915: 34 04 PSHS B ;

7917: A1 E0 CMPA ,S+ ; Checking if number of 3-bank completions exceeds

 ; configured "Three Bank Count" value

7919: 25 05 BCS $7920 ; C-bit set means not at a point where targets

 ; should be timed, done, no work

 ;

 ; Determined player has reached point in

 ; which standups should be timed.

 ; Call function to force off the 3 standup lamps

 ;

791B: BD 87 BE JSR $87BE ; This call results in extinguish of the solid lamps

791E: 06 00 ; Gets into $AE53 with X=0x0600, Y=0x9E92, A=0xFF B=0x04

 ;

7920: 35 96 PULS A,B,X,PC ;

 ;

---;---

The new function, above, to handle extinguishing the timed 3-bank lamps performs the following:

 Checks configured “Timed 3-bank lamp” adjustment, if “Original, then return

 Checks configured “Three Bank Count” adjustment and compares against the number of 3-bank

completions that the current player has achieved so far in their game.

o If player has’t yet completed enough 3-bank target completions to cause timed-lamps,

then return

o If player has completed enough 3-bank target completions to cause timed-lamps then a

function is called to turn off all of the 3-bank lamps. This is the same function used by

the normal timeout function when game times out all 3 lamps during game play.

The logic, as described above, results in the extinguishing of the 3-bank lamps at ball start if the player

has reached the point in which the 3-bank targets are subjected to timeout, thus achieving the desired

behavior.

For reference, the new logic is depicted below in a flowchart.

The L8.3 Ball-Search Bug Fixes
During L8.3 development a ball-search problem was reported and nicely depicted with video

demonstration of the problem. The problem was also found to be present in the original L-8 code. The

issue is that, during ball-search when the drop-target is knocked down as part of ball-search, it causes

the game to award the player with points and sound-call as if the player had intentionally hit the drop-

target with the ball.

To reproduce the issue, simply remove the ball from game-play and wait for the ball-search to

commence. When the ball-search knocks down the drop target, you will observe point accumulation

and a sound-call.

While investigating this issue, a secondary issue was also discovered. The secondary issue is that the

ball-search will reset the target to the up-position when the Feature Adjustment A2.20 “Drop Target

Broken” is set to “On”. In all other cases of game code, when the A2.20 adjustment is set to “On”, the

game will specifically not pulse the drop-target reset coil however the ball-search code from L-8 is

allowing the drop-target to kick up in this condition. In fact, the problem code in ball-search will

specifically try to reset the drop target up only when the A2.20 adjustment is set to “On”.

A majority of the ball-search code was depicted in the previous section describing the “Multiball Start

Drop-Target Action” feature. The applicable portions of ball-search code are shown below:

Ball playfield state setup logic

Is “Timed 3-bank Lamp” set

to “Off at EOB”?

Player 3-bank

completions >= “Three Bank

Count” value?

Extinguish all 3 of the 3-bank lamps

Done

yes

yes

no

no

First, during phase2 of the ball-search which starts at $5FA3,3B (ROM offset 0x6DFA3), there is the

following portion of code that calls $609A and then performs 3 pulses of the drop-target knock-down

solenoid. Note there are other sections of the ball-search that also pulse the drop-target knock down

solenoid however they are not problematic and do not have the same scenario as depicted in the

trouble code below.

 ;--------------------------------

 ; ID 00EE == BallSearchFrom5FA3()

 ; BallSearchPhase2() starts here

 ;--------------------------------

 ;

5FA3: BD 60 9A JSR $609A ; BallSearchDropTargetUpAnd00E7Reset()

 ;

5FA6: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5FA9: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

5FAA: BD 83 46 JSR $8346 ; Sleep()

5FAD: 02 ;

5FAE: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5FB1: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

5FB2: BD 83 46 JSR $8346 ; Sleep()

5FB5: 02 ;

5FB6: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

5FB9: 13 ; SolenoidTableEntry13, 0C=Knock Down, 20

5FBA: BD 83 46 JSR $8346 ; Sleep()

5FBD: 05 ;

...

The above ball-search code appears to call function at $609A and then proceeds to knock the drop-

target down 3 times. Referring back to previously depicted drop-target switch handler function, it was

previously shown that the drop-target switch function checks for scheduled function ID 00 E7 as a case

in which the drop-target switch will be ignored (and, as such, not accumulate points). This leads to the

conclusion that the call to $609A must unconditionally schedule function 00 E7 so that the subsequent

drop-target knock down solenoid pulses will, if successfully knocks down the drop-target, result in the

drop-target switch closure being ignored.

The content of the $609A,3B function is depicted below (ROM offset 0x6E09A).

---;---
 ;

 ; BallSearchDropTargetUpAnd00E7Reset()

 ;

609A: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

609D: 14 00 ; 0x14, FeatureAdjustment020, Drop Trgt. Broken

609F: 27 0C BEQ $60AD ;

60A1: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

60A4: 00 E7 ; ID 00E7 BallSearchDropTargetSleepAndReset()

60A6: 60 D1 3B ;

60A9: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

60AC: 06 ; SolenoidTableEntry06, 1C=Drop Target, 40

60AD: 39 RTS ;

 ;

---;---

The L-8 $609A function, above employs the logic as shown in the following flowchart:

L-8 $609A Function

Is “Drop Target

Broken” set?

Schedule Function ID 00 E7

Pluse Drop-Target solenoid to reset

drop-target to the up position

Return

no

yes

Ball-search: Phase 2 start, or

continuation from phase 3

Run the $609A Function

Pluse Knock-Down solenoid to knock drop-

target to the down position

Sleep very short period

Pulsed knock-down 3

times?

Continue with remainder of ball-

search sequence

no

yes Function ID 00 E7 Start

Sleep 2.5 seconds

Was target UP prior

to ball search?

Pluse Knock-Down solenoid to knock drop-

target to the down position

Sleep very short period

Pluse Knock-Down solenoid to knock drop-

target to the down position

Done

yes

Is “Drop Target

Broken” set?

Pluse Drop-Target solenoid to reset

drop-target to the up position

no

no

yes

As evident in the flowchart, above, the logic for function at $609A is flawed in two ways:

 The $609A function should schedule the 00 E7 function unconditionally but it does not. The

$609A function needs to unconditionally schedule the 00 E7 function because the ball-search

phase 2 code will always attempt to knock down the drop-target after $609A is done, and the

knocking down of the drop-target causes the drop-target switch handler to check for 00 E7

scheduled function as basis of ignoring the drop-target switch. Therefore, the 00 E7 function

must always be scheduled whenever the ball-search code pulses the knock-down solenoid.

 The $609A function pulses the drop-target to reset the drop target up, but only when the

adjustments are such that the drop-target is deemed as broken. This is obviously the opposite

of what is correct logic. Considering that all other uses of the “Drop Target Broken” adjustment

prevent the drop-target solenoid from being engaged when the setting is set to indicate the

drop-target is broken.

The updated code for L8.3 for the $609A function is as follows:

---;---
 ;

 ; BallSearchDropTargetUpAnd00E7Reset()

 ;

609A: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

609D: 00 E7 ; ID 00E7 BallSearchDropTargetSleepAndReset()

609F: 60 D1 3B ;

60A2: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

60A5: 14 01 ; 0x14, FeatureAdjustment020, Drop Trgt. Broken

60A7: 27 04 BEQ $60AD ;

60A9: BD 83 85 JSR $8385 ; EnqueueSolenoidPulse_ParameterByte()

60AC: 06 ; SolenoidTableEntry06, 1C=Drop Target, 40

60AD: 39 RTS ;

 ;

---;---

The corrected function addresses both problems by:

 Unconditionally scheduling function ID 00 E7

 Pulses the drop-target solenoid only if adjustments do not indicate drop-target is broken.

With these changes in place, the ball search knock-down of the drop-target will no longer cause points

to accumulate and no longer cause a sound-call to take place. When the “Drop Target Broken” is set to

“Yes” the ball-search code will no longer make any attempt to reset the drop-target to the up position.

The new function changes the logic of the flowchart to the following. Changed logic is highlighted.

L-8 $609A Function

Is “Drop Target

Broken” set?

Schedule Function ID 00 E7

Pluse Drop-Target solenoid to reset

drop-target to the up position

Return

yes

no

Ball-search: Phase 2 start, or

continuation of from phase 3

Run the $609A Function

Pluse Knock-Down solenoid to knock drop-

target to the down position

Sleep very short period

Pulsed knock-down 3

times?

Continue with remainder of ball-

search sequence

no

yes Function ID 00 E7 Start

Sleep 2.5 seconds

Was target UP prior

to ball search?

Pluse Knock-Down solenoid to knock drop-

target to the down position

Sleep very short period

Pluse Knock-Down solenoid to knock drop-

target to the down position

Done

yes

Is “Drop Target

Broken” set?

Pluse Drop-Target solenoid to reset

drop-target to the up position

no

no

Appendix
This section contains additional information not covered in the previous sections.

Solenoid Table
Several of the code samples make reference to the pulsing of a solenoid. The function that pulses

solenoid take an index number that corresponds to a row within the solenoid table. The solenoid table

is at $4C8F,3D (ROM offset 0x74C8F) and is shown below.

---;---

 ;

 ; SolenoidTable[]

4C8F: 00 14 ;

4C91: 02 ;

 ;

4C92: 00 00 ; SolenoidTableEntry00, NULL

4C94: 0A 10 ; SolenoidTableEntry01, 0A=Top Lock, 10

4C96: 0A 20 ; SolenoidTableEntry02, 0A=Top Lock, 20

4C98: 10 20 ; SolenoidTableEntry03, 10=Left Lock, 20

4C9A: 04 40 ; SolenoidTableEntry04, 04=Trough, 40

4C9C: 03 40 ; SolenoidTableEntry05, 03=Outhole, 40

4C9E: 1C 40 ; SolenoidTableEntry06, 1C=Drop Target, 40

4CA0: 01 40 ; SolenoidTableEntry07, 01=Ball Popper, 40

4CA2: 02 40 ; SolenoidTableEntry08, 02=Gun Kicker, 40

4CA4: 09 40 ; SolenoidTableEntry09, 09=Plunger, 40

4CA6: 0B FF ; SolenoidTableEntry0A, 0B=Gun Motor, FF

4CA8: 0B 00 ; SolenoidTableEntry0B, 0B=Gun Motor, 00

4CAA: 0D 40 ; SolenoidTableEntry0C, 0D=Left Jet, 40

4CAC: 0E 40 ; SolenoidTableEntry0D, 0E=Right Jet, 40

4CAE: 0F 40 ; SolenoidTableEntry0E, 0F=Bottom Jet, 40

4CB0: 05 40 ; SolenoidTableEntry0F, 05=Right Sling, 40

4CB2: 06 40 ; SolenoidTableEntry10, 06=Left Sling, 40

4CB4: 08 40 ; SolenoidTableEntry11, 08=Kickback, 40

4CB6: 07 40 ; SolenoidTableEntry12, 07=Knocker, 40

4CB8: 0C 20 ; SolenoidTableEntry13, 0C=Knock Down, 20

 ;

---;---

Each entry in the solenoid table contains 2 bytes. The first byte corresponds to the solenoid transistor

that is associated with the solenoid. The second byte corresponds to a time period associated with the

solenoid pulse, effectively defining the power associated with the solenoid pulse. This second byte value

usage has been inferred based on code examination and could be subject to correction or refinement.

Checksum Bytes
The T2 ROM utilizes common WPC Checksum method and, as such, various tools and documentation is

available online to describe the checksum calculation. The 16-bit sum of the bytes in the ROM must

equate to the value of the 2 checksum bytes located in unpaged region at $FFEE (ROM offset 0x7FFEE).

The region of ROM bytes containing checksum is shown below.

FFEC: DF 41 ; When set to 00 FF, debug mode engages

FFEE: 73 08 ; Checksum

FFF0: 8E CD ; Interrupt Vector: Reserved (undefined vector)

FFF2: 8E D1 ; Interrupt Vector: SWI3 Software Interrupt

FFF4: 8E D5 ; Interrupt Vector: SWI2 Software Interrupt

FFF6: 8E C0 ; Interrupt Vector: FIRQ Fast Interrupt request

FFF8: D9 C0 ; Interrupt Vector: IRQ Interrupt Request

FFFA: 8E BD ; Interrupt Vector: SWI Software Interrupt

FFFC: 8E DE ; Interrupt Vector: NMI Non-maskable interrupt

FFFE: 8C 8B ; Interrupt Vector: Restart

The L8.3 checksum is highlighted in the ROM output, above. Some interesting characteristics of the

checksum are as follows:

 The 2nd byte of the checksum is used by the game to declare the version. For L-8, the 2nd byte is

0x08. For L8.1, L8.2 and L8.3, efforts were in place to ensure the second byte remain at 0x08.

 The 2nd byte of the checksum is saved in battery-backed RAM at $180B so the game remembers

the most recent ‘version’ of software has used.

 At startup, if the battery-backed copy of the checksum version-byte at $180B doesn’t match the

currently running software checksum second-byte, then memory is wiped and “Factory Settings

Restored” happens.

 The L8.1, L8.2, L8.3 retain 0x08 as second byte to prevent the “Factory Settings Restored” from

taking place when switching between L-8 and these variations. Factory Settings don’t need to

be reset in this situation due to the commonalities between memory usage among these images.

 In order to generate a checksum that specifically has fixed byte 0x08 as its second byte, it is

necessary to fixup a 3rd byte in ROM image so that the sum of all bytes results in a 16-bit value

with 2nd byte having the desired 0x08 byte.

 Without certainty about which ROM bytes were used in the original L-8 as the fixup bytes, for

L8.3 an unused byte in ROM at $7FBF,35 (ROM Offset 0x57FBF) was adjusted in order to get the

desired checksum with 2nd byte having byte value 0x08. Online references indicate the bytes

preceding the checksum at $FFEC could be used for such purpose.

 If the 2 bytes immediately prior to the checksum at $FFEC are set to 00 FF, the game power-up

will bypass the “Testing…” phase and immediately go to attract mode. This is a debug mode to

allow quick testing of new code without worrying about checksum and should not be used for

released game ROMs. It is not clear if other behaviors ensure while in this mode.

o Some 3rd party sound boards may fail to play sounds when game powers up in this mode

as they, apparently, require the power-up messages from the CPU board before they

will function, after a power-up.

 If the high nibble of the checksum contains ‘D’ it enables a ‘prototype’ designation which will

cause the version string to use “P-8” instead of “L-8”. For example if the 2nd byte of the

checksum had 0xD8 instead of 0x08. Changing checksum in this way will alter the 2nd byte in

such a way that “Factory Settings Restored” will take place.

 The L8.1, L8.2 and L8.3 modify the version strings so that they automatically contain the “.1”, “.2”

or “.3”, respectively. The underlying game code treats it like L-8 but simply displays the updated

string which contains the extra version suffix designator.

General Illumination and Zero Cross
This section describes some information about General Illumination circuit which was gathered during

the development of L8.3 to have better understanding of the lighting in T2. The information was

gathered from online resources and from general electric/electronic knowledge. It may be possible

some of the information provided is not 100% accurate however it can serve as a starting point for

understanding the General Illumination design of T2 and other WPC games.

The General Illumination circuit utilizes a 6.3 A/C circuit which is gated by a triac component. There are

5 such circuits or GI strings, in most WPC games. The original design is such that each circuit can

accommodate up to 18 incandescent bulbs.

The interesting part of how the triacs behave, is that the ASIC on the CPU board gets a “zero-cross”

signal (aka “ZC”) which is simply a single wire signal (pcb trace) that originates from the power-driver

board. The ZC signal simply indicates whenever the A/C sine wave crosses the zero voltage x-axis. For

systems that are on 60hz line voltage, the ZC signal pulses at a rate of 120 times per second. For

systems that are on 50hz line voltage, the ZC signal pulses at a rate of 100 times per second. This is due

to how a full hertz cycle consists of 2 crossings of the sine wave across the 0 axis (once as the wave is

going up and once as the wave is going down).

Shown above is the ZC signal that occurs based on the sine wave of the AC line voltage. These 2 pulses

occur for each cycle. This signal depiction is based on the healthy ZC signal depicted online at

www.pinwiki.org.

 The ASIC on the CPU board takes the ZC signal and, from it, controls a single signal to the Triacs in order

to produce dimming effect. The ZC signal goes into the ASIC. The ASIC also receives L8.3 software

originated messages from the CPU to control brightness levels for the 5 GI circuits. The ASIC then

controls the “TRIAC” signal back to the power driver board which gets fanned out to the 5 different

triacs at chip U1 (refer to board schematics and pinwiki for details)

When the game is set to full GI brightness, the ZC signal is ignored and the triacs are always ‘on’.

When game needs to dim the GI, the ZC signal is used along with the desired brightness level by the ASIC

to set the signal levels to control each triac. In this case, the triac itself is inherently aware of zero-cross

as it is directly provided the A/C voltage, it does not need the distinct ZC signal mentioned above. When

A/C crosses the zero point (regardless if the sine wave is going up or going down in its cycle) the triac

will turn OFF the voltage to the lamps. Then some tiny moment in time after this, the ASIC sends short

signal to turn on the triac for the remainder of the half-cycle. If brightness is to be mostly bright, then

this short signal is sent soon after the zero-cross. If the brightness is to be more dim, then this short

signal is sent a while later. When the sine wave crosses zero again, the process starts over.

Taking an image from internet search of “triac sine wave” the following image is copyright by its

respective owner (multiple sites host this image) and augmented to indicate ZC and TRIAC signals:

The drawing above is an example of the triac output during GI dimming. The blue portions are when the

voltage is “on”. If the game wants to dim the GI further, the B1 value would increase so that the blue

regions would then be smaller. This effectively dims incandescent bulbs by reducing the time period

that they get power during each A/C cycle. Since the ‘off’ moments are at a rate of 120 or 100 times per

second and since incandescent bulbs retain illumination for a brief moment when power is taken away,

this produces a mostly decent dimming effect.

For those using LEDs in the GI circuit, it should be noted that since the LEDs only conduct in one

direction, everything below the zero would be an “Off” LED period. Depending on wiring of the GI and

of the LED bulb, it may be the opposite, meaning everything below the zero could be on while everything

above the zero is off. This means that even without enabling “Dimming” in the game, the LEDs are only

half as bright as they could be.

Using a full-wave bridge rectifier (4 diodes) could effectively flip the bottom part of the sine-wave to the

top, allowing the LED to be on for both parts of the sine wave, such as depicted below.

Using a capacitor could then smooth the voltage or cause the on-time of the LED to be longer during

each cycle and possibly allow the LED to participate in the GI dimming provided by the WPC system

without noticeable flickering. The purpose of these statements are to inspire hobbyists to consider

these things when using LEDs in GI circuits and whether to disable the GI dimming in the game

adjustments or consider using external circuitry to allow better dimming of the LEDs with less flicker.

Any such experiments with bridge rectifiers, diodes, capacitors, etc are done at your own risk. Ideally,

only those with proficient knowledge in these areas should be attempting such things.

Attract Mode Code
The attract mode code, mostly annotated, is shown below for reference. A lot of different functions get

called for the different portions of the attract mode. This code may be helpful for those interested in

further understanding how the T2 code works. This code includes some comments about where such

L8.3 hooks would be located to alter the original attract mode for L8.2 and L8.3 design. This code starts

at $793F,30 (ROM offset 0x4393F).

---;---

 ;

793F: BD FB AE JSR $FBAE ; Clear display data

7942: 7E 79 45 JMP $7945 ; <nop>

 ; Determine if in game-over or power-up mode

7945: BD 84 AD JSR $84AD ; GetMemoryFlag()

7948: D3 ; 0xD3 game-over mode, set by game-over code in $3B

 ;

7949: 24 09 BCC $7954 ; c-bit clear = game-over mode, skip over bash effect

 ;

 ; c-bit set = power-up mode, play bash effect

794B: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

794E: 76 CB 35 ; AttractMode_T2BashEffect() at start of attract mode

7951: 16 00 98 LBRA $79EC ; Now go down to power-up attract mode after bash effect

 ;

 ;--

 ;

 ; Game-Over Attract-Mode Starts Here

 ;

7954: BD 84 AD JSR $84AD ; GetMemoryFlag()

7957: DB ; 0xDB indicating power-up sequence started

 ;

7958: 10 24 00 90 LBCC $79EC ;

 ;

795C: BD 84 AD JSR $84AD ; GetMemoryFlag()

795F: DA ; 0xDA flag gets cleared in bank 0x3B

 ;

7960: 24 21 BCC $7983 ;

 ;

7962: BD 84 80 JSR $8480 ; SetMemoryFlag()

7965: DA ; 0xDA flag gets cleared in bank 0x3B

7966: BD 84 80 JSR $8480 ; SetMemoryFlag()

7969: DC ; 0xDC main inner attract block played 2 times

796A: BD 84 80 JSR $8480 ; SetMemoryFlag()

796D: D9 ; 0xD9 main outter attract block played 5 times

 ;

796E: BD 7C 43 JSR $7C43 ; AttractMode_HighScores()

7971: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

 ; L8.3 Attract Mode Fixup 09:

 ; If L8.2 mode: Replace FanClubMessage with

 ; CreditsInsertCoin/LastGamesScores

7974: 7E DB 35 ; -->AttractMode_FanClubMessage()

7977: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

 ; L8.3 Attract Mode Fixup 10:

 ; If L8.1 mode: CastCredits

 ; else for L8.2 do TerminatorLightning

797A: 48 03 24 ; -->AttractMode_CastCredits()

797D: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

 ; L8.3 Attract Mode Fixup 11:

 ; If L8.1 mode: SpecialThanks and CustomRomMessage

 ; else for L8.2 CyborgComputerReadout and

 ; CustomRomMessage

7980: 51 67 24 ; -->AttractMode_SpecialThanks()

7983: C6 03 LDB #$03 ;

7985: 34 04 PSHS B ;

7987: BD 7B E1 JSR $7BE1 ; AttractMode_LastGameScores()

 ; Call $7F69 function that clears display prior

 ; to LastGameScores in special circumstances.

798A: BD 7D 02 JSR $7D02 ; AttractMode_ReplayAt()

798D: BD 7D 9F JSR $7D9F ; AttractMode_GameOver()

7990: BD 7B 74 JSR $7B74 ; AttractMode_CreditsInsertCoin()

7993: BD 7C 43 JSR $7C43 ; AttractMode_HighScores()

7996: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

 ; L8.3 Attract Mode Fixup 12:

 ; If L8.2 mode: Replace FanClubMessage with

 ; CreditsInsertCoin/LastGamesScores

7999: 7E DB 35 ; -->AttractMode_FanClubMessage()

799C: BD 7B 33 JSR $7B33 ; AttractMode_WilliamsLogoBlockyWipe()

799F: BD 7B 58 JSR $7B58 ; AttractMode_Presents()

79A2: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

79A5: 76 CB 35 ; -->AttractMode_T2BashEffect()

79A8: BD FB E2 JSR $FBE2 ; AttractMode_StaringArnold()

79AB: 7E 79 AE JMP $79AE ; <null>

 ; L8.3 Attract Mode Fixup 13:

 ; If L8.2 mode: GameOver

79AE: BD 7B E1 JSR $7BE1 ; AttractMode_LastGameScores()

79B1: BD 7D 02 JSR $7D02 ; AttractMode_ReplayAt()

79B4: BD 7C 43 JSR $7C43 ; AttractMode_HighScores()

79B7: BD 7B 74 JSR $7B74 ; AttractMode_CreditsInsertCoin()

79BA: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

79BD: 44 12 24 ; -->AttractMode_PullTrigger()

79C0: BD 7B E1 JSR $7BE1 ; AttractMode_LastGameScores()

79C3: BD 7D 02 JSR $7D02 ; AttractMode_ReplayAt()

79C6: BD 7B 00 JSR $7B00 ; AttractMode_WilliamsLogoDraw()

79C9: BD 7B E1 JSR $7BE1 ; AttractMode_LastGameScores()

79CC: BD 7C 43 JSR $7C43 ; AttractMode_HighScores()

79CF: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

79D2: 7E 43 35 ; -->AttractMode_ArnoldShootingShotgun()

79D5: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

79D8: 7E B2 35 ; -->AttractMode_SayNoToDrugs()

79DB: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

 ; L8.3 Attract Mode Fixup 14:

 ; Play CustomMessage and CustomRomMessage

79DE: 54 86 24 ; -->AttractMode_CustomMessage()

79E1: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

79E4: 7E 18 33 ; -->AttractMode_CyborgComputerReadout()

79E7: 35 04 PULS B ;

79E9: 5A DECB ;

79EA: 26 99 BNE $7985 ;

 ;

---;---

 ;

 ; The following is done at power-up, code jumps here

 ; immediately after having played the T2 bash effect.

 ;

79EC: BD 84 80 JSR $8480 ; SetMemoryFlag()

79EF: DB ; 0xDB indicating power-up sequence started

79F0: C6 05 LDB #$05 ;

79F2: 34 04 PSHS B ;

79F4: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

 ; L8.3 Attract Mode Fixup 01:

 ; Replace SpecialThanks with

 ; SpecialThanks/CustomRomMessage

79F7: 51 67 24 ; -->AttractMode_SpecialThanks()

79FA: C6 02 LDB #$02 ;

79FC: 34 04 PSHS B ;

79FE: BD 7D 02 JSR $7D02 ; AttractMode_ReplayAt()

7A01: BD 7C 43 JSR $7C43 ; AttractMode_HighScores()

7A04: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

 ; L8.3 Attract Mode Fixup 02:

 ; If L8.2 mode: Replace FanClubMessage with

 ; CreditsInsertCoin/LastGamesScores

7A07: 7E DB 35 ; -->AttractMode_FanClubMessage()

7A0A: BD 7B 74 JSR $7B74 ; AttractMode_CreditsInsertCoin()

 ; L8.3 Attract Mode Fixup 03:

 ; If L8.1 mode: CreditsInsertCoin

 ; else for L8.2 ReplayAt

7A0D: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7A10: 78 92 35 ; -->AttractMode_T2ShineyLogo()

7A13: BD FB E2 JSR $FBE2 ; AttractMode_StaringArnold()

7A16: 7E 7A 19 JMP $7A19 ; <null>

 ; L8.3 Attract Mode Fixup 04:

 ; If L8.2 mode: GameOver

7A19: BD 7B E1 JSR $7BE1 ; AttractMode_LastGameScores()

7A1C: BD 7B 00 JSR $7B00 ; AttractMode_WilliamsLogoDraw()

7A1F: BD 7B 58 JSR $7B58 ; AttractMode_Presents()

7A22: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7A25: 76 CB 35 ; -->AttractMode_T2BashEffect()

7A28: BD 7C 43 JSR $7C43 ; AttractMode_HighScores()

7A2B: BD 7B 74 JSR $7B74 ; AttractMode_CreditsInsertCoin()

7A2E: BD 7B 1D JSR $7B1D ; AttractMode_WilliamsLogoBlocky()

7A31: BD 7B 58 JSR $7B58 ; AttractMode_Presents()

7A34: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7A37: 78 62 35 ; -->AttractMode_JudgementDay()

7A3A: BD FB E2 JSR $FBE2 ; AttractMode_StaringArnold()

7A3D: 7E 7A 40 JMP $7A40 ; <null>

 ; L8.3 Attract Mode Fixup 05:

 ; If L8.2 mode: LastGameScores

7A40: BD 7C 43 JSR $7C43 ; AttractMode_HighScores()

7A43: BD 7B 74 JSR $7B74 ; AttractMode_CreditsInsertCoin()

7A46: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7A49: 44 12 24 ; -->AttractMode_PullTrigger()

7A4C: BD 7D 02 JSR $7D02 ; AttractMode_ReplayAt()

7A4F: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

7A52: 10 00 ; 0x10 == Attract Sounds, C-bit = not equal to 0x00

7A54: 24 17 BCC $7A6D ;

 ;

7A56: BD 84 AD JSR $84AD ; GetMemoryFlag()

7A59: D9 ; 0xD9 main outer attract block played 5 times

 ;

7A5A: 25 11 BCS $7A6D ; Normally: C-bit set, skip "I am a cybornetic organism"

 ;

7A5C: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

7A5F: 00 E4 ; <related to "I am a cybornetic organism" and music>

7A61: 7E F0 30 ;

7A64: 86 04 LDA #$04 ;

7A66: BD C0 DB JSR $C0DB ;

 ;

7A69: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

7A6C: A5 ; 0xA5="I am a cybernetic organism"

 ;

7A6D: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7A70: 7C A1 33 ; -->AttractMode_TerminatorLightning()

7A73: BD 7B 33 JSR $7B33 ; AttractMode_WilliamsLogoBlockyWipe()

7A76: BD 7B 58 JSR $7B58 ; AttractMode_Presents()

7A79: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7A7C: 78 92 35 ; -->AttractMode_T2ShineyLogo()

7A7F: BD FB E2 JSR $FBE2 ; AttractMode_StaringArnold()

7A82: 7E 7A 85 ; <null>

 ; Call hook function that only does this when NOT time

 ; to pay "Cybornetic organism" speech

 ; L8.3 Attract Mode Fixup 06:

 ; If L8.2 mode: LastGameScores

7A85: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

7A88: 10 00 ; 0x10 == Attract Sounds, C-bit set when not 0x00

7A8A: 24 16 BCC $7AA2 ;

 ;

7A8C: BD 84 AD JSR $84AD ; GetMemoryFlag()

7A8F: D9 ; 0xD9 main outer attract block played 5 times

 ;

7A90: 25 10 BCS $7AA2 ;

 ;

7A92: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

7A95: 9D ; 0x9D="I am a cyberdyne systems series 800 terminator"

 ;

7A96: BD 8B 77 JSR $8B77 ; <related to "I am a Cyberdyne series 800-terminator">

7A99: 00 E4 ;

7A9B: 7E A2 30 ;

 ;

7A9E: BD 84 8F JSR $848F ; ClearMemoryFlag()

7AA1: D9 ; 0xD9 main outer attract block played 5 times

 ;

7AA2: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7AA5: 7E 18 33 ; -->AttractMode_CyborgComputerReadout()

7AA8: BD 7B 74 JSR $7B74 ; AttractMode_CreditsInsertCoin()

7AAB: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7AAE: 44 12 24 ; -->AttractMode_PullTrigger()

7AB1: BD 7D 02 JSR $7D02 ; AttractMode_ReplayAt()

7AB4: BD 7C 43 JSR $7C43 ; AttractMode_HighScores()

7AB7: BD 7B 74 JSR $7B74 ; AttractMode_CreditsInsertCoin()

7ABA: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7ABD: 78 62 35 ; -->AttractMode_JudgementDay()

7AC0: BD FB E2 JSR $FBE2 ; AttractMode_StaringArnold()

7AC3: 7E 7A C6 ; <null>

 ; L8.3 Attract Mode Fixup 07:

 ; If L8.2 mode: LastGameScores

7AC6: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7AC9: 7E 43 35 ; -->AttractMode_ArnoldShootingShotgun()

7ACC: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7ACF: 7E B2 35 ; -->AttractMode_SayNoToDrugs()

7AD2: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

 ; L8.3 Attract Mode Fixup 08:

 ; Play CustomMessage and CustomRomMessage

7AD5: 54 86 24 ; -->AttractMode_CustomMessage()

7AD8: 35 04 PULS B ;

7ADA: 5A DECB ;

7ADB: 10 26 FF 1D LBNE $79FC ;

7ADF: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7AE2: 7D 82 35 ; -->AttractMode_IamTheFuture()

 ;

7AE5: BD 84 80 JSR $8480 ; SetMemoryFlag()

 ; L8.3 Attract Mode Fixup 15:

 ; At inner-x2 if L8.3 set flag for Cybornetic Sounds

7AE8: DC ; 0xDC main inner attract block played 2 times

7AE9: 35 04 PULS B ;

7AEB: 5A DECB ;

7AEC: 10 26 FF 02 LBNE $79F2 ;

7AF0: BD 7D 5A JSR $7D5A ; AttractMode_TimeDate()

7AF3: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7AF6: 48 03 24 ; -->AttractMode_CastCredits()

 ;

7AF9: BD 84 80 JSR $8480 ; SetMemoryFlag()

7AFC: D9 ; 0xD9 main outer attract block played 5 times

 ;

7AFD: 16 FE EC LBRA $79EC ;

 ;

---;---

Fan Club Code
Shown below is the T2 Fan Club code that was removed from L8.3. It is being shown as an aid for those

interested in T2 code since this function involves writing some messages on the display and also

checking the system date. In L-8 ROM this code started at $7EDB,35 (ROM offset 0x57EDB).

---;---

 ;

 ; AttractMode_FanClubMessage() (74 bytes of ROM)

 ;

7EDB: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

7EDE: 12 00 ; 0x12 == T2FanClub, C-bit set when not equal to 0x00

7EE0: 27 42 BEQ $7F24 ;

7EE2: 4F CLRA ;

7EE3: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7EE6: 42 DC 39 ; GetTimeDateYearIntoD()

7EE9: 10 83 07 C8 CMPD #$07C8 ; Checks if current year is 1992 or less

7EED: 25 0D BCS $7EFC ; If year is less than 1992 then C is set, go to $7EFC

 ;

7EEF: 22 33 BHI $7F24 ; If year is > 1992 then no fan club message, go to end

 ;

7EF1: 4F CLRA ;

7EF2: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7EF5: 42 E5 39 ; GetTimeDateMonthIntoA()

7EF8: 81 06 CMPA #$06 ; Checks if current month is June

7EFA: 22 28 BHI $7F24 ; If greater than June, skip to the end.

 ; So fan club not allowed after June 1992

7EFC: BD D3 4C JSR $D34C ;

7EFF: BD D3 60 JSR $D360 ;

7F02: BD D7 99 JSR $D799 ;

7F05: 00 D0 ; String index 0xD0 = "TERMINATOR 2"

7F07: 01 ; Font index 0x01 = 7 high single stroke

7F08: 40 07 ; Center horizontally, bottom starts at line 7

7F0A: BD D7 99 JSR $D799 ;

7F0D: 00 D1 ; String index 0xD1 = "Fan Club"

7F0F: 01 ; Font index 0x01 = 7 high single stroke

7F10: 40 11 ; Center horizontally, bottom starts at line 17

7F12: BD D7 99 JSR $D799 ;

7F15: 00 D2 ; String index 0xD2 = "Call 1-800-237-4400"

7F17: 01 ; Font index 0x01 = 7 high single stroke

7F18: 40 1C ; Center horizontally, bottom starts at line 28

7F1A: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7F1D: 7F 57 33 ;

7F20: BD 83 46 JSR $8346 ; Sleep()

7F23: C0 ;

7F24: 39 RTS ;

 ;

---;---

ROM Image Changes
The table, below, identifies every ROM change in L8.3 as compared to the official L-8 ROM image with a

brief description of each ROM change.

ROM
Offset

WPC
Address

Original Bytes Original Description New Bytes New Description

0x1012C $412C,24 C9 52 Security Level animation.
Original jump address at
end of animation.

57 49 Security Level animation.
New jump address to
$5749,24 new code.

0x11749
-

0x11756

$5749,24
-

$5756,24

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF
Unused bytes in bank
$24

34 02 86 55 97 B4 35 02

BD FB AE 7E C9 52
New end-of-animation code
to prevent flicker at end of
the animation.

0x400D5
-

0x40103

$40D5,30
-

$4103,30

00 16 02 41 04 41 09 41

19 41 2A 41 3B 41 4C 41

5D 41 6E 41 7F 41 90 41

A1 41 B2 41 C1 41 CF 41

DD 41 EB 41 F9 42 08 42

19 42 25 42 35 42 47

Feature Adjustments,
English selections string
pointers.

00 0C 02 41 04 67 62 67

6C 67 7D 67 8D 67 9D 67

AE 67 B9 51 8B 4E 6F 4E

C2 57 B6 41 62 7A 75 67

20 5A 69 65 68 65 6E 00

FF FF FF FF FF FF FF

Sound Test, English
selections string pointer
table at $40D5 - $40EF.
German string at $40F0 –
40FC. Unused bytes at
$40FD - $4103.

0x404AB
-

0x404D9

$44AB,30
-

$44D9,30

00 16 02 41 04 44 DA 44

EA 44 FB 45 0D 45 18 45

29 45 3A 45 4A 45 5B 45

6C 45 7B 45 89 45 96 45

A3 45 B2 45 BF 42 08 42

19 42 25 42 35 42 47

Feature Adjustments,
German selections string
pointers.

00 0C 02 41 04 6D C4 6D

CE 6D DC 6D EB 6D FD 6E

0E 6E 1B 5B CF 6E 25 5A

36 57 B6 FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF

Sound Test, German
selections string pointer
table at $44AB - $44C5.
Unused bytes at $44C6 -
$44D9.

0x40577 $4577,30 49 45 German string content. 45 49 Corrected German text.

0x407EA
-

0x40818

$47EA,30
-

$4818,30

00 16 02 41 04 48 19 48

2B 48 3A 48 4C 48 5C 48

6E 48 80 48 91 48 A4 48

B7 48 C8 48 DA 48 EC 41

DD 48 FE 49 10 49 21 42

19 49 33 49 44 42 47

Feature Adjustments,
French selections string
pointers.

00 0C 02 41 04 71 97 71

A7 71 B7 71 C7 71 D6 1

E3 71 F3 71 FE 72 0C 72

17 57 B6 FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF

Sound Test, French
selections string pointer
table at $47EA - $4804.
Unused bytes at $4805 -
$4818.

0x41864 $5864,30 5A EE 5A F4 German string pointers. 5B 4F 40 F0 Corrected/fixed pointers.

0x4187E
-

0x41889

$587E,30
-

$5889,30

5B 43 5B 4E 5B 58 5B 5E

5B 63 5B 67 51 21
German string pointers. 5B 44 51 03 51 0B 51 12

51 18 51 1D 51 21
Corrected/fixed pointers.

0x41952 $5952,30 5D CA German string pointer. 5A EE Corrected/fixed pointer.

0x419C6 $59C6,30 4E 66 German FUA pointer. 57 B6 Corrected/fixed pointer.

0x419D6 $59D6,30 4E 66 German FUA pointer. 57 B6 Corrected/fixed pointer.

0x41AA1 $5AA1,30 4B 20 German string content. 43 4B Corrected German text.

0x41AEE
-

0x41AFF

$5AEE,30
-

$5AFF,30

5A 69 65 68 65 00 56 6F

72 20 41 62 73 63 68 75

73 73

German string content. 44 41 53 20 56 49 53 49

45 52 20 42 45 57 45 47

45 4E

Repurposed German string
content as part of text
corrections.

0x41B38
-

0x41B69

$5B38,30
-

$5B69,30

54 42 41 43 4B 20 42 45

4C 2E 00 4B 49 54 42 41

43 4B 20 42 45 00 4B 49

54 42 41 43 4B 20 20 00

4B 49 54 42 41 00 4B 49

54 42 00 4B 49 54 00 4B

49 00

German string content. 43 4B 42 41 43 4B 20 42

45 4C 2E 00 4B 49 43 4B

42 41 43 4B 20 42 00 5A

69 65 6C 65 6E 20 55 6E

64 20 44 65 6E 00 FF FF

FF FF FF FF FF FF FF FF

FF FF

Corrected German text.
Repurposed German string
content as part of text
corrections.
Moved string now unused
bytes at $5B5E - $5B69.

0x41C00
-

0x41C0D

$5C00,30
-

$5C0D,30

53 54 41 52 54 20 44 52

55 43 4B 45 4E
German string content. 44 52 55 45 43 4B 45 20

53 54 41 52 54
Corrected German text.

0x41DC2
-

0x41DD7

$5DC2,30
-

$5DD7,30

20 54 41 54 54 45 4E 00

42 49 4C 44 20 57 45 43

48 53 45 4C 4E 00

German string content. 54 41 53 54 45 52 4E 00

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF

Corrected German text.
Moved string now unused
bytes at $5DCA - $5DD7.

0x42029 $6029,30 4E 66 French FUA pointer. 57 B6 Corrected/fixed pointer.

0x42039 $6039,30 4E 66 French FUA pointer. 57 B6 Corrected/fixed pointer.

0x42749
-

0x42761

$6749,30
-

$6761,30

00 0B 02 41 04 67 62 67

6C 67 7D 67 8D 67 9D 67

AE 67 B9 51 8B 4E 6F 4E

C2

Sound Test, English
selections string
pointers.

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF

Moved table.
Now unused bytes.

0x42DAB
-

0x42DC3

$6DAB,30
-

$6DC3,30

00 0B 02 41 04 6D C4 6D

CE 6D DC 6D EB 6D FD 6E

0E 6E 1B 5B CF 6E 25 5A

36

Sound Test, German
selections string
pointers.

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF

Moved table.
Now unused bytes.

0x4317E
-

0x43196

$717E,30
-

$7196,30

00 0B 02 41 04 71 97 71

A7 71 B7 71 C7 71 D6 71

E3 71 F3 71 FE 72 0C 72

17

Sound Test, French
selections string
pointers.

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF

Moved table.
Now unused bytes.

0x43942 $7942,30 7E 79 45 Attract Mode start, NOP
instruction.

BD 7F 79 Jump to fix for WPC Custom
Message “Testing…” bug.

0x43971
-

0x439AD

$7971,30
-

$79AD,30

BD 88 F5 7E DB 35 BD 88

F5 48 03 24 BD 88 F5 51

67 24 C6 03 34 04 BD 7B

E1 BD 7D 02 BD 7D 9F BD

7B 74 BD 7C 43 BD 88 F5

7E DB 35 BD 7B 33 BD 7B

58 BD 88 F5 76 CB 35 BD

FB E2 7E 79 AE

Attract Mode routine BD 7F CD 12 12 12 BD 7F

E4 12 12 12 BD 7F B3 12

12 12 C6 03 34 04 BD 7F

69 BD 7D 02 BD 7D 9F BD

7B 74 BD 7C 43 BD 7F CD

12 12 12 BD 7B 33 BD 7B

58 BD 88 F5 76 CB 35 BD

FB E2 BD 7F D7

Attract Mode updates,
calling new logic in the $30
bank.

0x439DB
-

0x43A18

$79DB,30
-

$7A18,30

BD 88 F5 54 86 24 BD 88

F5 7E 18 33 35 04 5A 26

99 BD 84 80 DB C6 05 34

04 BD 88 F5 51 67 24 C6

02 34 04 BD 7D 02 BD 7C

43 BD 88 F5 7E DB 35 BD

78 74 BD 88 F5 78 92 35

BD FB E2 7E 7A 19

Attract Mode routine BD 7F AB 12 12 12 BD 88

F5 7E 18 33 35 04 5A 26

99 BD 84 80 DB C6 05 34

04 BD 7F 9E 12 12 12 C6

02 34 04 BD 7D 02 BD 7C

43 BD 7F CD 12 12 12 BD

7F C1 BD 88 F5 78 92 35

BD FB E2 BD 7F D7

Attract Mode updates,
calling new logic in the $30
bank.

0x43A3D $7A3D,30 7E 7A 40 “ BD 7F DF “

0x43A82 $7A82,30 7E 7A 85 “ BD 7F 60 “

0x43AC3 $7AC3,30 7E 7A C6 “ BD 7F DF “

0x43AD2 $7AD2,30 BD 88 F5 54 86 24 “ BD 7F AB 12 12 12 “

0x43AE5 $7AE5,30 BD 84 80 DC “ BD 7F 87 12 “

0x43BE1 $7BE1,30 BD D3 60 Attract Mode Display
routine for showing
scores from previously
played game, start.

BD 7F 72 Branch to bug fix for game-
over attract mode failure to
display previously played
scores during L8.1 mode.

0x43F60
-

0x43FFF

$7F60,30
-

$7FFF,30

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

Unused region in bank
$30.

BD 88 F5 64 23 3D 25 77

39 BD 88 F5 64 0F 3D 7E

7B E1 BD D3 4C BD D3 60

39 34 14 8E 01 60 C6 60

6F 80 5A 26 FB 35 94 BD

84 80 DC 8D 07 25 04 BD

84 80 D9 39 34 02 BD 82

FF 17 81 02 35 82 BD 88

F5 51 67 24 BD 88 F5 7F

65 3D 39 BD 88 F5 54 86

24 20 F1 8D 41 24 02 20

E5 BD 88 F5 7E 18 33 20

E3 8D 33 24 04 BD 7B 74

39 BD 7D 02 39 8D 27 25

05 8D F2 BD 7B E1 39 8D

1D 25 03 BD 7D 9F 39 8D

Updated Attract Mode
logic. These are small
functions called from the
main attract mode fixups,
above, in order to show
correct attract mode based
on the attract mode
adjustment.

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

15 24 F0 39 8D 10 24 07

BD 88 F5 48 03 24 39 BD

88 F5 7C A1 33 39 34 02

BD 82 FF 17 81 01 35 82

0x444B4 $44B4,31 7E 44 B7 26 41 Outhole switch handler,
NOP and BNE
instruction.

26 44 BD 7F 9B Moved BNE in place of NOP
and added a branch to bug
fix routine related to ball
drain at MB start.

0x455CB $55CB,31 BD 85 46 89 Database award handler
for 100,000 points. Plays
“Big Points” sound call.

BD 7F E8 12 Branch to routine to check
profanity adjustment and
play “Big Points” or FUA
sound call.

0x4671E $671E,31 BD 84 8F E3 Drop-target switch
handler code.

7E 7F A2 12 Insert jump to new code to
ensure DT switch is ignored
when it had been kicked up
or down automatically by
software.

0x46C9E $6C9E,31 7E 6C A1 Multiball start code.
NOP instruction.

BD 7F BA Branch to new code to
check DT-Action adjustment
and set DT up or down as
needed.

0x46CCC
-

0x46CD9

$6CCC,31
-

$6CD9,31

BD 83 46 02 BD 8B C3 00

82 6F 0D 31 27 F2
Multiball start code.
Code that waits until all
balls have been ejected
onto playfield.

BD 88 F5 79 35 3B 20 06

12 12 12 12 12 12
Branch to new code to fix
multiball startup bugs. Due
to space issues this jumps to
fixup function located in a
different bank at $7935,3B.

0x46D7B
-

0x46D87

$6D7B,31
-

$6D87,31

BD 86 90 00 A9 24 E1 BD

84 AD 48 24 DB
Multiball maintenance
code. This is end of a
loop that continuously
checks for conditions
that ensure MB is active.

BD 88 F5 79 22 3B 24 E0

7E 6D 88 12 12
Branch to new code to fix
multiball bugs. Due to
space issues this jumps to
fixup function located in a
different bank at $7922,3B.

0x47F9B
-

0x47FFB

$7F9B,31
-

$7FFB,31

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF

Unused bytes in bank
$31.

BD 88 F5 7A 06 3B 39 BD

86 90 00 B7 24 0E BD 86

90 00 B9 24 07 BD 84 8F

E3 7E 67 22 7E 99 A2 34

04 BD 86 5B 14 00 25 23

BD 83 0C 1A 5D 27 1C C1

01 26 0A BD 8B C3 00 B7

78 94 #B 20 0E C0 02 E1

84 2E F0 BD 8B C3 00 B9

78 B7 3B 35 84 8D 0C 25

05 BD 85 46 92 39 BD 85

46 89 39 BD 86 5B 16 01

39

New code for:
Outhole switch bug fix.
Drop-target switch bug fix.
Multiball DT-Action up/dn.

Database “Big Points/FUA”.
FUA Adjustment Checker.

0x4F4C9 $74C9,33 1A 01 39 Database award handler
call to check Profanity
mode, always returns
Profanity=off.

7E 7F F6 Jump to new code that
reads the Profanity
adjustment and returns
on/off.

0x4FFF6 $7FF6,33 FF FF FF FF FF FF Unused bytes in bank
$33

BD 86 5B 16 01 39 New code that reads
Profanity adjustment and
returns on/off.

0x57723 $7723,35 BD 85 46 94 Attract mode where first
“Boom” is played.

BD 7F C0 94 Branch to new code that
only plays the “Boom” if
“Attract Sounds”

adjustment is on.

0x577B7 $77B7,35 BD 85 46 94 Attract mode where
second “Boom” is
played.

BD 7F C0 94 “

0x57EDB
-

0x57F24

$7EDB,35
-

$7F24,35

BD 86 5B 12 00 27 42 4F

BD 88 F5 42 DC 39 10 83

07 C8 25 0D 22 33 4F BD

88 F5 42 E5 39 81 06 22

28 BD D3 4C BD D3 60 BD

D7 99 00 D0 01 40 07 BD

D7 99 00 D1 01 40 11 BD

D7 99 00 D2 01 40 1C BD

88 F5 7F 57 33 BD 83 46

C0 39

T2 Fan Club code that
checks adjustment and
system date and displays
the attract mode “T2 Fan
Club” message if
appropriate to do so.

39 34 02 86 55 97 B4 35

02 BD FB AE 39 FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF

Function for neatly ending
animation and clearing
display memory. Called for
better end-of-animation to
prevent flicker/brightness
change at last frame.
Unused bytes.

0x57F9B $7F9B,35 7E 7F 9E BD 83 46 20 At end of animation
handler for Extra ball
award T-1000 shotgun
blast, NOP and ½ second
sleep function call.

BD 83 46 20 BD 7E DC The ½ second sleep call
followed by jump to the
new code, above, to neatly
end the animation to
prevent flicker.

0x57FBF
-

0x57FFF

$7FBF,35
-

$7FFF,35

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF

Unused bytes in bank
$35.

19 34 12 20 2A 20 54 32

5F 6C 38 33 20 20 62 79

20 47 61 72 72 65 74 74

20 4C 65 65 2C 20 6D 72

67 6C 65 65 40 79 61 68

6F 6F 2E 6e 6F 6D 20 AE

63 A6 80 AF 63 BD 86 5B

10 00 24 03 BD BD FB 35

92

Checksum fixup byte is in
this region. The “boom
boom” fixes call this code to
only play “boom” if “Attract
Sounds” are on. Author sig.

0x62CDE $6CDE,38 20 53 50 49 45 4C German string content. 50 49 45 4C 00 00 Corrected German text.

0x69C53 $5C53,3A 81 C7 26 07 Adjustment allowance
checker function start.

7E 79 ED 12 Jump to new code that
checks if adjustment is “Fan
club” to ensure the
adjustment is disabled (not
shown in menu).

0x6AD95 $6D95,3A BD 6D F3 During sound-test
advancement to next
sound, this is code that
calls the function to stop
current sound before
playing next sound.

BD 7A 0B Jump to new code that
ensures sound T06 is fully
stopped prior to playing
next sound.

0x6ADB4 $6DB4,3A BD AC 38 During sound-test index
calculation this code that
checks the sound-test
index number is valid.

BD 79 FE Jump to new code that can
perform additional fixup on
the sound-test index based
on Profanity adjustment.

0x6B9ED
-

0x6BA1A

$79ED,3A
-

$7A1A,3A

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF

Unused bytes in bank
$3A.

81 12 27 0A 81 C7 26 03

7E 5C 57 7E 5C 5E 7E 5C

88 BD AC 38 BD 86 5B 16

00 25 02 31 3F 39 34 02

BD 6D F3 A6 41 81 06 26

03 BD C0 A5 35 82

Adjustment allowance code
to disable fan-club
adjustment.
Sound-test index
adjustment based on
“Profanity” adjustment.
Sound test T06 extra code
to ensure sound is stopped.

0x6E09A
-

$609A,3B
-

BD 86 5B 14 00 27 0C BD

8B 77 00 E7 60 D1 3B
Ball-search code used
when drop-target is

BD 8B 77 00 E7 60 D1 3B

BD 86 5B 14 01 27 04
Corrected ball-search drop-
target code to prevent

0x6E0A8 $60A8,3B kicked up as part of ball
search.

drop-target reset during
ball-search when “Drop
Target Broken” adjustment
is set. Also prevents point
accumulation when DT is
automatically knocked
down during ball-search.

0x6E309 $6309,3B 7E 63 0C Start-of-ball audit and
housekeeping function.
NOP.

BD 79 00 Branch to new function to
perform solid 3-bank lamp
extinguish, as per
adjustment.

0x6F290 $7290,3B BD 6F 0F Code in common switch-
handler for gun-loaded,
left-lock, top-lock, and
ball-popper. This is code
when it was found that
the hit switch is
currently closed.

BD 79 F9 Branch to new code to fix
issues with “forgotten-
multiball” when switch is hit
during hunter-ship
explosion at very start of
multiball.

0x6F894
-

0x6F8D9

$7894,3B
-

$78D9,3B

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF

Unused bytes in bank
$3B.

BD 84 8F E3 C6 03 34 04

BD 83 19 3F 24 10 BD 83

46 10 BD 83 85 13 BD 83

46 10 6A E4 26 EA 35 04

7E 99 A2 BD 84 80 E3 C6

03 34 04 BD 83 19 3F 25

10 BD 83 46 10 BD 83 85

06 BD 83 46 10 6A E4 26

EA 35 04 7E 99 A2

Code to handle the DT-
Action of automatically
knocking drop-target down
or kicking it up at start of
multiball depending on
adjustment.

0x6F900
-

0x6F965

$7900,3B
-

$7965,3B

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF

Unused bytes in bank
$3B.

34 16 BD 86 5B 1B 01 25

17 8E 05 A5 BD FB 29 A6

84 BD 83 0C 06 34 04 A1

E0 25 05 BD 87 BE 06 00

35 96 BD 86 90 00 A9 24

0B BD 86 90 00 B8 24 04

BD 84 AD 48 39 34 06 BD

83 46 02 BD 8B C3 00 B2

6F 0D 31 27 F2 86 55 D6

BF C1 01 22 17 BD 86 90

00 82 34 07 BD 86 90 00

B2 25 09 4A 27 06 BD 83

46 06 20 E3 35 86

The 3-bank lamp extinguish
function, per adjustment.
Multiball startup bug-fix
code functions to prevent
“forgotten-multiball”
problems. Multiball-end
bug-fix to prevent lost
“load-the-ball” period.

0x6F9F9
-

0x6FA85

$79F9,3B
-

$7A85,3B

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF

Unused bytes in bank
$3B.

BD 7A 06 BD 7A 30 BD 7A

61 BD 6F 0F 39 34 06 86

55 D6 BF C1 01 22 1E BD

86 90 00 84 24 0E BD 86

90 00 E1 24 07 BD 86 90

00 B8 25 09 4A 27 06 BD

83 46 06 20 DC 35 86 34

06 86 35 D6 BF C1 02 26

25 BD 86 90 00 86 25 1E

BD 86 90 00 A9 24 17 BD

86 90 00 E0 24 07 BD 86

90 78 0F 25 09 4A 27 06

BD 83 46 06 20 D5 35 86

34 06 86 35 D6 BF C1 02

26 19 BD 86 90 00 86 25

12 BD 8A AA 00 40 01 F0

25 09 4A 27 06 BD 83 46

06 20 E1 35 86

Additional helper functions
for bug-fixes for the
“forgotten-multiball” bug.

0x70202 $4202,3C 4D 57 4D 62 English string pointers
for version strings.

7F AC 7F B9 Pointers to new version
strings, English.

0x70CA7
-

0x70CAF

$4CA7,3C
-

4E 45 54 48 45 52 4C 4E

44
German string content. 48 4F 4C 4C 41 4E 44 00

00
Corrected German text.

$4CAF,3C

0x7192A $592A,3C 5D 1C German string pointer. 7F 9B Corrected/fixed pointer.

0x71930 $5930,3C 5D 37 German string pointer. 7F A4 Corrected/fixed pointer.

0x71B04 $5B04,3C 62 AC 62 B8 German string pointers
for version strings.

7F C6 7F D4 Pointers to new version
strings, German.

0x71D1C $5D1C,3C 4D 49 54 57 4F 43 48 00 German string content. FF FF FF FF FF FF FF FF String moved, leaving this as
unused bytes.

0x71D37 $5D37,3C 53 41 4E 54 41 47 00 “ FF FF FF FF FF FF FF String moved, leaving this as
unused bytes.

0x71D88 $5D88,3C 44 “ 4F Corrected German text.

0x71E7E $5E7E,3C 20 4D 45 4E 55 45 “ 4D 45 4E 55 45 00 “

0x721A1 $61A1,3C 4D “ 4E “

0x72288 $6288,3C 43 “ 4B “

0x722A4 $62A4,3C 45 20 4D 45 4E 55 45 “ 4D 45 4E 55 45 00 00 “

0x722DA $62DA,3C 50 “ 46 “

0x72491 $6491,3C 45 “ 48 “

0x72505 $6505,3C 20 53 50 49 45 4C “ 50 49 45 4C 00 00 “

0x72C42 $6C42,3C 74 64 74 71 French string pointers
for version strings.

4F E2 7F F1 Pointers to new version
strings, French.

0x73F9B
-

0x73FFF

$7F9B,3C
-
$7FFF,3C

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF

Unused bytes in bank
$3C.

4D 49 54 54 57 4F 43 48

00 53 41 4D 53 54 41 47

00 52 45 56 2E 20 4C 2D

25 58 41 2E 33 00 52 45

56 2E 20 50 2D 25 58 41

2E 33 00 45 50 52 4F 4D

20 4C 2D 25 58 41 2E 33

00 45 50 52 4F 4D 20 50

2D 25 58 41 2E 33 00 50

52 4F 47 52 2E 20 4C 2D

25 58 41 2E 33 00 50 52

4F 47 52 2E 20 50 2D 25

58 41 2E 33 00

Relocated/corrected
German text strings at
$7F9B - $7FAB.

Relocated version strings
for English, German and
French at $7FAC - $7FFF.

0x75680
-

0x7578A

$5680,3D
-

$578A,3D

00 16 0C 00 00 00 00 00

00 00 01 00 8E BC FF 00

03 00 00 00 0A 00 01 00

71 E8 3A 00 0A 00 00 00

23 00 01 00 71 E8 3A 00

01 00 00 00 01 74 13 3A

72 70 3A 00 01 00 00 00

01 74 13 3A 72 70 3A 00

01 00 00 00 03 00 01 00

72 79 3A 00 02 00 00 00

04 00 01 00 72 79 3A 00

02 00 00 00 04 71 E7 31

72 70 3A 00 02 00 00 00

04 71 E7 31 72 70 3A 00

0B 00 05 00 63 00 01 00

71 B2 31 00 0F 00 05 00

63 00 01 00 71 B2 31 00

0F 00 07 00 63 00 01 00

71 B2 31 00 14 00 0A 00

63 00 01 00 71 B2 31 00

0C 00 08 00 63 00 01 00

71 B2 31 00 01 00 00 00

01 74 13 3A 72 70 3A 00

00 00 00 00 78 00 01 00

71 C7 31 00 00 00 00 00

01 74 13 3A 72 70 3A 00

00 00 00 00 01 74 13 3A

72 70 3A 00 01 00 00 00

01 74 13 3A 72 70 3A 00

00 00 00 00 01 74 13 3A

72 70 3A 00 00 00 00 00

01 74 13 3A 72 70 3A 00

00 00 00 00 01 74 13 3A

72 70 3A

Feature Adjustments
Metadata Table.

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF

Table relocated, leaving this
as unused bytes.

0x7640F
-

0x764DF

$640F,3D
-

$64DF,3D

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF

Unused bytes in bank
$3D.

34 16 C1 03 26 09 8E 7F

00 BD 7F B8 5D 26 03 BD

7F D2 35 96 BD 84 AD D9

25 0C BD 86 5B 10 00 24

03 1C FE 39 1A 01 39 4E

4F 4E 45 00 4B 45 49 4E

45 00 41 55 43 55 4E 00

44 4F 57 4E 00 55 4E 54

45 4E 00 42 21 53 00 55

50 00 4F 42 45 4E 00 48

41 55 54 00 31 20 4D 42

20 44 4F 57 4E 00 31 20

4D 42 20 55 4E 54 45 4E

00 31 20 4D 42 20 42 41

53 00 33 20 4D 42 20 44

4F 57 4E 00 33 20 4D 42

20 55 4E 54 45 4E 00 32

20 4D 42 20 42 41 53 00

33 20 4D 42 20 44 4F 57

4E 00 33 20 4D 42 20 55

4E 54 45 4E 00 33 20 4D

42 20 42 41 53 00 4F 46

46 20 41 54 20 45 4F 42

00 41 55 53 20 42 45 49

20 45 4F 42 00 46 49 4E

20 44 55 20 42 51 4C 4C

00

Bug fix for game-over
attract mode L8.1 display of
previous game scores at
$640F - $6422.

Attract mode ‘cybornetic
organism’ code update at
$6423 - $6435.

English, German, French
strings used in some of the
new feature adjustment
selectable settings at $6436
- $64DF.

0x7653D
-

0x766DF

$653D,3D
-

$66DF,3D

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF

Unused bytes in bank
$3D.

BD 65 71 24 01 39 34 50

8D 05 BD B9 51 35 D0 34

06 11 83 00 00 26 06 8E

66 44 7E 65 E3 11 83 00

01 26 06 8E 65 6B 7E 66

AC 8E 65 AB 35 86 64 BD

64 C8 64 D4 C1 02 26 04

1C FE 20 02 1A 01 39 8D

F3 24 01 39 34 50 8D 05

BD B9 51 35 D0 8E 65 AB

11 83 00 00 26 04 8E 65

B6 39 11 83 00 01 26 04

8E 65 BB 39 11 83 00 02

26 03 8E 65 C0 39 4D 45

4E 55 20 45 52 52 4F 52

00 4C 38 2E 31 00 4C 38

2E 32 00 4C 38 2E 33 00

8D AA 24 01 39 34 50 8D

05 BD B9 51 35 D0 34 06

11 83 00 00 26 05 8E 66

44 20 03 8E 66 4A BD 82

FF 95 81 02 22 04 1F 89

58 3A AE 84 35 86 BD 65

71 24 01 39 34 50 8D 05

BD B9 51 35 D0 34 06 11

83 00 00 26 05 8E 66 44

20 D4 8E 66 50 35 86 4F

52 49 47 49 4E 41 4C 00

4F 52 49 47 49 4E 41 4C

45 00 43 4F 52 52 45 43

54 45 44 00 4B 4F 52 52

49 47 49 45 52 54 00 43

4F 52 52 49 47 45 00 66

14 66 14 66 1D 66 27 66

31 66 3C 4C 45 44 00 BD

65 71 24 01 39 34 50 8D

05 BD B9 51 35 D0 34 06

11 83 00 00 26 05 8E 66

BC 20 3C 11 83 00 01 26

05 8E 66 C2 20 31 11 83

00 02 26 05 8E 66 C8 20

26 11 83 00 03 26 05 8E

66 CE 20 1B 11 83 00 04

26 05 8E 66 D4 20 10 11

83 00 05 26 05 8E 66 DA

20 05 8E 65 AB 20 0E BD

82 FF 95 81 02 22 04 1F

89 58 3A AE 84 35 86 64

36 64 3B 64 41 64 47 64

4C 64 52 64 56 64 59 64

5E 64 63 64 6D 64 78 64

81 64 8B 64 96 64 9F 64

A9 64 B4

Feature Adjustment handler
for “Timed 3Bank Lamps” at
$653D - $6570.

Feature Adjustment helper
function at $6571 - $657B.

Feature Adjustment handler
for “Attract Mode” at $657C
- $65C4.

Feature Adjustment handler
for “Animation Code” at
$65C5 - $65F2.

Feature Adjustment handler
for “Lamp Driver” at $65F3 -
$6613.

Strings for new adjustment
“Original”, “Corrected”,
“Led” at $6614 - $6653.

Feature Adjustment handler
for “MB Start DT Action” at
$6654 - $66DF.

0x76700
-

0x768EA

$6700,3D
-

$68EA,3D

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF

Unused bytes in bank
$3D.

00 1C 02 67 43 67 48 67

58 67 69 67 7A 67 8B 67

9C 67 AD 67 BE 67 CF 67

E0 67 F1 68 00 68 0E 68

1C 68 2A 68 38 68 47 68

58 68 64 68 74 68 86 68

97 68 A1 68 AE 68 BD 68

C9 68 DA 67 43 67 43 67

43 67 43 4E 55 4C 4C 00

53 50 45 43 49 41 4C 20

50 45 52 43 45 4E 54 00

45 58 54 52 41 42 41 4C

4C 20 50 45 52 43 4E 54

00 45 58 54 52 41 42 41

4C 4C 20 4D 45 4D 4F 52

59 00 43 4F 4E 53 4F 4C

41 54 49 4F 4E 20 42 41

4C 4C 00 44 52 4F 50 20

54 41 52 47 54 20 43 4F

55 4E 54 00 54 48 52 45

45 20 42 41 4E 4B 20 43

4F 55 4E 54 00 4B 49 43

4B 42 41 43 4B 20 53 45

54 54 49 4E 47 00 53 4B

49 4C 4C 20 53 48 4F 54

20 54 49 4D 45 52 00 44

52 4F 50 20 54 41 52 47

54 20 54 49 4D 45 52 00

54 48 52 45 45 20 42 41

4E 4B 20 54 49 4D 45 52

00 48 55 52 52 59 20 55

50 20 54 49 4D 45 52 00

50 41 59 42 41 43 4B 20

54 49 4D 45 52 00 4A 41

43 4B 50 4F 54 20 54 49

4D 45 52 00 4D 49 4C 4C

49 4F 4E 53 20 50 4C 55

53 00 54 49 4D 45 44 20

50 4C 55 4E 47 45 52 00

41 54 54 52 41 43 54 20

53 4F 55 4E 44 53 00 44

52 50 20 54 47 54 20 41

55 54 4F 46 49 52 45 00

54 32 20 46 41 4E 20 43

4C 55 42 00 46 4C 49 50

50 45 52 20 54 52 49 47

47 45 52 00 44 52 4F 50

20 54 52 47 54 2E 20 42

52 4F 4B 45 4E 00 44 52

50 54 52 47 54 20 44 57

4E 20 4D 4C 54 49 00 50

52 4F 46 41 4E 49 54 59

00 41 54 54 52 41 43 54

20 4D 4F 44 45 00 41 4E

49 4D 41 54 49 4F 4E 20

43 4F 44 45 00 4C 41 4D

50 20 44 52 49 56 45 52

00 4D 42 20 53 54 41 52

54 20 44 54 20 41 43 54

4E 00 54 49 4D 45 44 20

33 42 41 4E 4B 20 4C 41

4D 50 00

Feature Adjustments,
English selections string
pointer table at $6700 -
$6742 and strings at $6743 -
$68EA.

0x76A00
-

0x76B7E

$6A00,3D
-

$6B7E,3D

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

Unused bytes in bank
$3D.

00 1C 02 67 43 6A 43 6A

53 6A 64 6A 76 6A 81 6A

92 6A A3 6A B3 6A C4 6A

D5 6A E4 6A F2 6A FF 6B

0C 6B 1B 6B 28 68 47 68

58 68 64 68 74 68 86 68

97 6B 35 6B 40 6B 4F 6B

5D 6B 6E 67 43 67 43 67

43 67 43 53 50 45 5A 49

41 4C 20 50 52 4F 5A 45

4E 54 00 45 58 54 52 41

42 41 4C 4C 20 50 52 4F

5A 4E 54 00 45 58 54 52

41 42 41 4C 4C 20 53 50

45 49 43 48 2E 00 54 52

4F 53 54 4B 55 47 45 4C

00 44 52 4F 50 2D 54 41

52 47 54 20 5A 41 45 48

4C 00 33 2D 45 52 2D 42

Feature Adjustments,
German selections string
pointer table at $6A00 -
$6A42 and strings at $6A43
- $6B7E.

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF

41 4E 4B 20 5A 41 45 48

4C 2E 00 4B 49 43 4B 42

41 43 4B 20 45 49 4E 53

54 2E 00 53 4B 49 4C 4C

20 53 48 4F 54 20 5A 45

49 54 2E 00 44 52 4F 50

20 54 41 52 47 45 54 20

5A 45 49 54 00 33 2D 45

52 2D 42 41 4E 4B 20 5A

49 45 54 00 48 55 52 52

59 20 55 50 20 5A 45 49

54 00 50 41 59 42 41 43

4B 20 5A 45 49 54 00 4A

41 43 4B 50 4F 54 20 5A

45 49 54 00 4D 49 4C 4C

49 4F 4E 45 4E 20 50 4C

55 53 00 50 4C 55 4E 47

45 52 20 5A 45 49 54 00

57 45 52 42 45 4D 45 4C

4F 44 49 45 00 57 45 52

42 45 4D 4F 44 55 53 00

41 4E 49 4D 41 54 49 4F

4E 53 43 4F 44 45 00 4C

41 4D 50 45 4E 54 52 45

49 42 45 52 00 4D 42 20

53 54 41 52 54 20 44 54

20 41 4B 54 4E 00 5A 45

49 54 20 33 42 41 4E 4B

20 4C 41 4D 50 45 00

0x76D00
-

0x76ED3

$6D00,3D
-

$6ED3,3D

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

Unused bytes in bank
$3D.

00 1C 02 67 43 6D 43 6D

55 6D 64 6D 76 6D 86 6D

98 6D AA 6D BB 6D CE 6D

E1 6D F2 6E 04 6E 16 68

1C 6E 28 6E 3A 6E 4B 68

58 6E 5D 6E 6E 68 86 68

97 6E 80 6E 90 6E A1 6E

B2 6E C3 67 43 67 43 67

43 67 43 50 4F 55 52 43

45 4E 54 2E 20 53 50 45

43 49 41 4C 00 5C 25 20

45 58 54 52 41 20 42 49

4C 4C 45 00 4D 45 4D 4F

49 52 45 20 45 58 2E 20

42 49 4C 4C 45 00 42 49

4C 4C 45 20 43 4F 4E 53

4F 4C 41 54 2E 00 44 49

46 46 2E 20 43 49 42 4C

45 20 54 4F 4D 42 2E 00

44 49 46 46 2E 20 43 49

42 4C 45 53 20 43 4E 54

52 00 52 45 47 4C 41 47

45 20 4B 49 43 4B 42 41

43 4B 00 44 49 46 46 2E

20 54 49 52 20 4C 2E 20

42 49 4C 4C 45 00 4D 49

4E 55 54 2E 20 43 49 42

4C 45 20 54 4F 4D 42 2E

00 4D 49 4E 2E 20 43 49

42 4C 45 53 20 43 4E 54

52 00 4D 49 4E 55 54 2E

20 22 48 55 52 52 59 20

55 50 22 00 4D 49 4E 55

54 2E 52 49 45 20 50 41

59 42 41 43 4B 00 4D 49

4E 55 54 2E 52 49 45 20

4A 41 43 4B 50 4F 54 00

4C 2E 20 42 49 4C 4C 45

20 41 55 54 4F 4D 41 54

2E 00 53 4F 4E 20 44 27

41 54 54 52 41 43 54 49

4F 4E 00 41 55 54 4F 46

49 52 45 20 43 49 42 4C

45 20 54 2E 00 46 4C 49

50 50 45 52 20 47 41 43

48 45 54 54 45 00 43 49

42 4C 45 20 54 4D 42 2E

20 43 41 53 53 45 45 00

4D 4F 44 45 20 41 54 54

52 41 43 54 49 4F 4E 00

43 4F 44 45 20 44 27 41

4E 49 4D 41 54 49 4F 4E

Feature Adjustments,
French selections string
pointer table at $6D00 -
$6D42 and strings at $6D43
- $6ED3.

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF

00 44 52 49 56 45 52 20

44 45 20 4C 41 4D 50 45

53 00 4D 42 20 44 45 42

55 54 20 44 54 20 41 43

54 4E 00 54 45 4D 50 53

20 33 42 41 4E 43 20 4C

41 4D 50 00

0x77000
-

0x771A9

$7000,3D
-

$71A9,3D

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF

Unused bytes in bank
$3D.

00 1C 0C 00 00 00 00 00

00 00 01 00 8E BC FF 00

03 00 00 00 0A 00 01 00

71 E8 3A 00 0A 00 00 00

23 00 01 00 71 E8 3A 00

01 00 00 00 01 74 13 3A

72 70 3A 00 01 00 00 00

01 74 13 3A 72 70 3A 00

01 00 00 00 03 00 01 00

72 79 3A 00 02 00 00 00

04 00 01 00 72 79 3A 00

02 00 00 00 04 71 E7 31

72 70 3A 00 02 00 00 00

04 71 E7 31 72 70 3A 00

0B 00 05 00 63 00 01 00

71 B2 31 00 0F 00 05 00

63 00 01 00 71 B2 31 00

0F 00 07 00 63 00 01 00

71 B2 31 00 14 00 0A 00

63 00 01 00 71 B2 31 00

0C 00 08 00 63 00 01 00

71 B2 31 00 01 00 00 00

01 74 13 3A 72 70 3A 00

00 00 00 00 78 00 01 00

71 C7 31 00 00 00 00 00

01 74 13 3A 72 70 3A 00

00 00 00 00 01 74 13 3A

72 70 3A 00 01 00 00 00

01 74 13 3A 72 70 3A 00

00 00 00 00 01 74 13 3A

72 70 3A 00 00 00 00 00

01 74 13 3A 72 70 3A 00

00 00 00 00 01 74 13 3A

72 70 3A 00 00 00 00 00

01 74 13 3A 72 70 3A 00

02 00 00 00 02 00 01 00

65 7C 3D 00 01 00 00 00

01 00 01 00 65 C5 3D 00

00 00 00 00 01 00 01 00

65 F3 3D 00 00 00 00 00

05 00 01 00 66 54 3D 00

00 00 00 00 01 00 01 00

65 3D 3D 00 00 00 00 00

00 00 01 00 8E BC FF 00

00 00 00 00 00 00 01 00

8E BC FF 00 00 00 00 00

00 00 01 00 8E BC FF 00

00 00 00 00 00 00 01 00

8E BC FF 00 0C 03 00 00

00 03 00 00 04 00 00 07

00 00 14 00 00 B2 00 00

BF 00 60 C6 00 60 25 01

60 27 01 60 28 01 60 3F

01 88

Feature Adjustments
Metadata Table at $7000 -
$7182.

Sound Test Sound Call Table
at $7183 - $71A9.

0x77DF0
-

0x77EC3

$7DF0,3D
-

$7EC3,3D

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

Unused bytes in bank
$3D.

20 43 6F 70 79 72 69 67

68 74 20 28 63 29 20 31

39 39 32 2C 20 31 39 39

31 2C 20 31 39 39 30 20

57 69 6C 6C 69 61 6D 73

20 45 6C 65 63 74 72 6F

6E 69 63 73 20 47 61 6D

65 73 20 49 6E 63 2E 20

20 41 6C 6C 20 52 69 67

68 74 73 20 52 65 73 65

72 76 65 64 20 20 53 79

73 74 65 6D 20 53 6F 66

74 77 61 72 65 20 62 79

20 4C 61 72 72 79 20 44

65 4D 61 72 2C 20 42 69

6C 6C 20 50 66 75 74 7A

65 6E 72 65 75 74 65 72

2C 20 54 65 64 20 45 73

74 65 73 20 26 20 4D 61

72 6B 20 50 65 6E 61 63

WMS Copyright message
and team credits moved
here from unbanked ROM
region, below.

The unbanked ROM bytes
were repurposed for lamp
driver and animation fix
code.

With all due respect to

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF

68 6F 20 20 45 6C 65 63

74 72 6F 6E 69 63 73 20

62 79 20 43 68 75 63 6B

20 42 6C 65 69 63 68 20

61 6E 64 20 4D 61 72 6B

20 43 6F 6C 64 65 62 65

6C 6C 61 20

original developers, the
copyright message was
moved here.

0x77F65
-

0x77FFF

$7F65,3D
-

$7FFF,3D

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF

Unused bytes in bank
$3D.

34 16 86 00 8D 5A 8E 7F

00 8D 48 5D 27 35 34 02

8D 5B 8D 31 BD D7 99 00

00 01 40 07 8D 27 BD D7

99 00 00 01 40 11 8D 1D

BD D7 99 00 00 01 40 1C

BD E2 74 12 12 12 35 02

4D 26 04 86 00 8D 21 BD

83 46 C0 35 96 8D 3B 20

06 A1 00 27 02 EA 00 30

88 20 39 34 12 5F 86 FF

8D EF 8D ED 8D EB 35 92

27 0A BD 86 5B 10 00 24

03 BD BD FB 39 86 01 BD

FB 88 BD 83 46 08 86 55

97 B4 BD FB AE BD 83 46

08 39 34 56 CE 03 86 C6

20 A6 80 81 FF 26 01 4F

A7 C0 27 05 5A 26 F2 6F

C4 35 D6

Custom ROM –embedded
attract mode message
handler.

Code reads ROM bytes
located prior to this code:

Line 1 text at $7F00 - $7F1F.
Line 2 text at $7F20 - $7F3F.
Line 3 text at $7F40 - $7F5F.

0x781EF $81EF 56 80 3D Feature Adjustments
Metadata Table Pointer.

70 00 3D New table pointer value.

0x781FB $81FB 49 0D 3D Sound Test, Sound Call
Vector Table Pointer.

71 83 3D New table pointer value.

0x78261
-

0x78269

$8261
-

$8269

40 D5 30 44 AB 30 47 EA

30
Feature Adjustments
strings table pointers for
English, German, French.

67 00 3D 6A 00 3D 6D 00

3D
New table pointer values.
$8261 is English. $8264 is
German. $8269 is French.

0x7827C
-

0x78284

$827C
-

$8284

67 49 30 6D AB 30 71 7E

30
Sound Test strings table
pointers for English,
German, French.

40 D5 30 44 AB 30 47 EA

30
New table pointer values.
$827C is English. $827F is
German. $8282 is French.

0x7DAA9 $DAA9 9E 9F 30 01 Lamp Matrix code start. 7E FE DD 12 Jump to updated lamp
driver code that has LED
patch or jumps back to
original code depending on
“Lamp Driver” adjustment.

0x7FB88 $FB88 34 12 34 02 DMD Animation
initialization code.

7E FF 55 12 Jump to updated DMD
animation code that
performs corrected or
original animation
depending on “Animation
Code” adjustment.

0x7FEDD
-

0x7FFA5

$FEDD
-

$FFA5

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF 20 43 6F 70 79

72 69 67 68 74 20 28 63

29 20 31 39 39 32 2C 20

31 39 39 31 2C 20 31 39

39 30 20 57 69 6C 6C 69

61 6D 73 20 45 6C 65 63

74 72 6F 6E 69 63 73 20

47 61 6D 65 73 20 49 6E

63 2E 20 20 41 6C 6C 20

52 69 67 68 74 73 20 52

65 73 65 72 76 65 64 20

20 53 79 73 74 65 6D 20

53 6F 66 74 77 61 72 65

Unused bytes.
WMS Copyright
message.
Unused bytes.

9E 9F 30 01 F6 1B EC 26

03 7E DA AD 96 9E 48 26

1A 96 6D 27 11 0A A1 2B

09 4F B7 3F E4 B7 3F E5

20 53 96 6E 97 A1 8E 02

E0 86 01 9F 9F 97 9E E6

88 10 53 E4 88 08 D7 9C

E6 88 10 E4 88 18 DB 9C

D7 9C E6 88 20 E4 88 28

D7 9D 5F F7 3F E5 F7 3F

E4 E6 89 00 20 53 D4 9C

DB 9D D7 9C E6 89 00 30

E4 89 00 38 D7 9D E6 89

00 30 53 D4 9C DB 9D F7

3F E4 B7 3F E5 7E DB 17

BD 86 5B 18 00 25 07 34

12 34 02 7E FB 8C 34 06

At $FFEDD - $FF54: Updated
lamp driver code to update
lamp matrix using LED patch
or go back to original lamp
code, depending on “Lamp
Driver” adjustment.

At $FF55 - $FFA5: Updated
animation code handler to
perform corrected

20 62 79 20 4C 61 72 72

79 20 44 65 4D 61 72 2C

20 42 69 6C 6C 20 50 66

75 74 7A 65 6E 72 65 75

74 65 72 2C 20 54 65 64

20 45 73 74 65 73 20 26

20 4D 61 72 6B 20 50 65

6E 61 63 68 6F 20 FF FF

FF

97 B5 4C 97 B6 0D B4 26

02 0A B4 86 03 91 B4 22

02 97 B4 CC FF 84 DD 0A

86 04 B7 3F BD 35 86 34

02 96 B4 4A 27 0A 81 03

24 0F 97 B4 96 B5 20 06

86 03 97 B4 96 B6 B7 3F

BF 86 04 B7 3F BD 35 02

3B

animations or go back to
original animation code
dependging on “Animation
Code” adjustment.

0x7FFEE $FFEE 8E 08 WPC Checksum 73 08 Updated checksum.

L8.3 Test/Verification
Testing of the L8.3 image was done to ensure all scenarios behave as expected. Each major set of

changes provided in each beta L8.3 ROM image were carefully constructed and thoroughly tested.

Each Beta image was crafted using a custom patch tool to aid in the L8.3 image build process. The tool

ensures each and every ‘before’ and ‘after’ byte of ROM change is as expected. Prior to making any

changes, it ensures the entire ROM image is the original, unmodified, L-8 ROM image. After applying

the specific modifications, the tool calculates an updated checksum and records it into the ROM image.

A file comparison tool was also used to observe the difference in ROM image updates to ensure

expected set of changes were made at the specific regions of ROM. This tool presents the ROM data in

hex format, depicting all differences, making it easy to find all differences in file data.

Each ROM image is immediately tested in emulator environment, single stepping through the changed

code to ensure correct addresses and values are used. Along the way, occasional errors in the new code

were identified and corrected. Typically, such errors would be immediately obvious even without the

emulator as they would lead to immediate program crash and game restart. Once corrected to their

intended logic, the new code is then exercised in the emulator prior to being released for beta testing on

real machines.

Testing included:

 Extensive testing of the custom ROM message was done, ensuring multiple font selection,

placement and appearance was as expected, as well as optional sound-call option. Since this

feature involves changes to ROM image, testing of this feature was done on emulator where all

other improvement testing was done on emulator and on real machines.

 Extensive testing of the attract mode changes was done, ensuring all selections L8.1, L8.2 and

L8.3 behave as expected, including both “on” and “off” settings for “attract sounds” to ensure

correct behavior occurs every time.

 Single player and multi-player games tested

 English, German and French modes tested for expected text.

 Each bug-fix tested to ensure expected behavior and problem resolution.

 Each new adjustment tested to ensure correct behavior for each possible adjustment setting.

During testing, any found bugs were reported, studied, and fixed (if bug was reproducible). Beta testers

identified several bugs which existed in original L-8 which were fixed in latter L8.3 beta and release

image. A big THANK YOU to all beta testers! Your feedback was instrumental in the final L8.3 image

containing so many bug fixes!

