
May 2023

Terminator 2 ROM L8.4

ROM L8.4 Manual Includes

Change Log

Technical Details

Appendix

ROM Image Changes

Terminator 2 L8.4
History/Summary of Releases:

Revision Date Checksum Info

L-8 Dec. 15, 1992 BE08 Official release

L8.1 April 9, 2011 7608 Small change to have the attract mode “boom boom” sound only
when Feature Adjustment A2.16 “Attract Sounds” is set to “ON”.

L8.2 April 1, 2012 6F08 This is 8.1 plus changes to attract mode sequence to have
previously played game scores shown more often especially at
game-over. This image also deletes the “T2 Fan Club”.

L8.3 June 28, 2022 7308 Selectable 8.1, 8.2, 8.3 attract mode. L8.3 attract mode playing “I
am a cybernetic organism” more often. Profanity ROM logic.
Custom ROM embedded attract mode message. Bug fixes for:
attract mode, DMD animation flicker, multiball ball-lock issues,
German text, ball-search. Selectable original or corrected DMD
animation logic. Selectable original and LED lamp driver.
Selectable drop-target state at multiball start. Selectable 3-bank
lamp behavior.

L8.4 May 17, 2023 9A08 Fixed several long standing bugs. Improved Tournament Mode
behavior. Adjustments for more challenging behaviors at the
hunter-ship and super jackpot. Adjustment for skill-shot autofire
time. Attract mode gun/start sound effects.

L8.4 Beta and Release Candidate ROM Image History
Revision Date Checksum Info

L8.4 December 31, 2022 B408 Initial Beta containing: Pre-menu checksum report. Removed
sound text 05 explicit stop. Fixed the L8.3 function ID overlap.
Fixed 5-bank “Targets remaining” discrepancy issue. Added
“Cannon 1 hit” adjustment. Fixed PAPA Lost Super Jackpot
bug. Fixed Security Level inserts problem.

L8.4 January 6, 2023 9608 Fix Security Level inserts issue in beta B408 when both arrows
should remain lit after Security Pass award. Fixed Bonus-X
and Hold Bonus lamp issue at tilt lamps now get cleared.

L8.4 March 11, 2023 ED08 Added “SS Autofire Time” adjustment. Added “Super Jackpot”
adjustment. Minor update to German text during game
adjustments “sek.” changed to “Sek.”

L8.4 March 13, 2023 DF08 Prototype “Scattered Pixels” fix. Power-up init code performs
a clear of memory and updates DMD board in a way more
closer to what Indiana Jones L-7 does.

L8.4 March 19, 2023 D808 Investigative ROM for “Scattered Pixels” fix. Delay based on
the configured value of A2.09 “Drop Target Timer”. During
the delay the game is spending time clearing DMD memory.

L8.4 May 6, 2023 A608 Initial release candidate. Found to need update to L8.4 attract
mode start-button so can play sounds during “Insert Coin”.

L8.4 Change Log
 Added pre-menu report of CPU U6 Checksum value to report the ROM stored checksum value.

 Removed the L8.3 Sound Test “Sound 05 Explicit Stop” code which was inadvertently in L8.3.

 Fixed the L8.3 Function ID Overlap issue, now using non overlapping ID for the L8.3 function.

 Fixed 5-bank “Targets Remaining” discrepancy w/lit targets when targets hit simultaneously.

 Added feature adjustment “Cannon 1 hit” to restrict hunter ship hits per cannon shot to 1.

 Fixed the PAPA Lost Super Jackpot bug when ball-popper hit during lengthy animation sequence.

 Fixed the Payback Time Security Levels inserts misalignment issue after Security Pass award.

 Fixed Bonus lamps at Tilt. Bonus-X lamps and Hold Bonus lamps cleared when player tilts.

 Added feature adjustment “SS Autofire Time” to allow adjustment of the skillshot autofire timer.

 Text correction, German “sek.” Changed to “Sek.” In menu system for abbreviated “seconds”.

 Added feature adjustment “Super Jackpot” to adjust how 5-bank lamps behave for super jackpot.

 Fixed auto-fire ball saver during first multiball so it always returns ball without loading cannon.

 Tournament Mode Enhancement: Database awards same awards for all players.

 Tournament Mode Enhancement: 5-bank lamp patterns for multiball start same for all players.

 Tournament Mode Enhancement: 5-bank single lamp for jackpot same for all players.

 Tournament Mode Enhancement: Video Mode same for all players.

 Tournament Mode Enhancement: Gun-trigger during attract mode shows previous game scores.

 Fix when Adjustment A.1 03 is set to “NO EX. BALL”, no EB animations and no lit-EBs.

 Fixed issue where start-button would play sound when zero credits and attract sounds are off.

 Added “L8.4” as new adjustment value for feature adjustment “Attract Mode”

 For L8.4 attract mode, start-button will play sounds when there are zero credits.

 For L8.4 attract mode, gun-trigger will play sounds.

Document Revision History
Revision 0.1, November 2022, Initial framework.
Revision <untracked>, Active document updates as L8.4 progressed.

Revision 1.0, May 2023, Completed document encompassing all of L8.4 content.

L8.4 Overview
The L8.4 update initially was intended to be a small update mainly focused on the last few bugs that

have been reported in various online forums. As work proceeded and additional bugs were added to

the L8.4 schedule, the L8.4 became more complicated as the L-8 code was more deeply investigated

especially during the analysis into the 255-Hits issue, and the PAPA lost super jackpot issue. Eventually

we determined the nature of the bugs, were able to reproduce the problems in a controlled

environment, and developed fixes where needed for the various coding issues.

After bugs were fixed, some time was spent adding new player-requested enhancements to the L8.4.

One complaint was that the super jackpot is too predictable. Players can easily get super jackpot solely

based on the position of the cannon during its swing. For L8.4 a new “Super Jackpot” adjustment was

added to provide different behaviors in the 5-bank target lamp movements during super jackpot, thus

adding to the challenge and excitement of game play. In order to make game play fair, the new super

jackpot lamp behaviors also ensure that all players in a multi-player game get to have the identical

experience, so that one player doesn’t get a more easier super jackpot attempt than another.

Since the PAPA super jackpot bug is considered a major reason that T2 was not a preferred tournament

game, and since the bug is now deemed as fixed, the L8.4 efforts also focused on how the game behaves

when Tournament Mode is enabled. With the L8.4 super jackpot code to give all players the same

experience for new super jackpot attempts, it made sense to extend the idea into Tournament Mode for

all game features so that all players in a multi-player game get the same experience, leveling the playing

field, or so to speak. For L8.4 when game is in tournament mode, all players get the same database

awards, video modes, 5-bank patterns for multiball and 5-bank lamp for jackpot.

Since a lot of tournaments forbid play of extra balls, initial consideration was given to also block extra

balls when Tournament Mode is enabled however it was later noticed that an existing adjustment is

already present. The “Max E.B. Count” adjustment can be set for no extra balls. It was noticed,

however, when the game is set this way, the game still teases the player with extra ball lit and

animations (while never actually giving it to the player) so L8.4 updates game behavior when the setting

is for no extra balls. No longer will the extra ball be lit or its animation be shown. The idea is that when

setting a game up for tournament mode, the operator should also set “Max E.B. Count” to no extra balls.

Lastly, for L8.4 some fun was added to attract mode, allowing prospective players to interact with the

game during attract mode similar to Indiana Jones. The gun trigger can be pulled to trigger some sound

effects and the start-button can also play some sounds (when zero or fractional credits). Like IJ, there is

a quiet period involved to prevent overuse of this feature.

At 571 hours logged into L8.4 engineering efforts and countless hours by our community of beta testers,

we are pleased to provide the pinball community with L8.4, setting a new standard for code quality,

player experience and tournament mode action!

Contents
Terminator 2 L8.4 .. 2

L8.4 Beta and Release Candidate ROM Image History ... 2

L8.4 Change Log .. 3

Document Revision History ... 3

L8.4 Overview ... 4

Pre-Menu report of the CPU U6 Checksum Value .. 9

Removal of the L8-3 Sound 05 Explicit Stop ... 15

Fix the L8.3 Function ID Overlap Issue .. 16

Survey of CancelAllCallbacksIdMaskParameterBytes() .. 18

Survey of SearchLinkedListAndMaskParameterBytes() .. 19

ROM Survey of New Function ID 00B1 ... 21

Code Change For Fixing Function ID Overlap Issue... 22

The Terminator 2 -- 255-Hits Issue ... 23

Computer Representation of 8-Bit Numbers .. 23

Analysis of L-8 Hits Remaining Code ... 24

Analysis of Older T2 ROMs .. 25

Reproducing the 255-Hits Issue in L-4 .. 27

Recipe for Reproducing the 255-Hits issue in L-4 ... 29

Reproduction Attempts of the 255-Hits Issue in L-8... 33

Summary of Observations from the 255-Hits Investigation ... 34

Hunter Ship 5-Bank Target Logic ... 35

Case 1: Lit target hit followed by another lit target hit .. 39

Case 2: Unlit target hit followed by a lit target hit.. 43

Case 3: Lit target hit followed by an unlit target hit ... 48

Case 4: Unlit target hit followed by unlit target hit .. 51

Hunter Ship 5-Bank Target Logic Summary .. 54

Hunter Ship 5-Bank Target Logic Summary Example 1 ... 55

Hunter Ship 5-Bank Target Logic Summary Example 2 ... 56

Hunter Ship 5-Bank Target L8.4 Updates .. 56

Fix the lit-lamp/targets remaining discrepancy problem ... 56

Add feature adjustment to restrict target hits to 1 per cannon shot ... 58

Hunter Ship 5-Bank Target L8.4 Code Changes .. 60

The PAPA Lost Super Jackpot Bug ... 69

PAPA Lost Super Jackpot Investigation and Analysis .. 69

PAPA Lost Super Jackpot Investigation Summary ... 81

PAPA Lost Super Jackpot Code Fixes ... 82

PAPA Lost Super Jackpot Logic Update: State Check 0x0A Animation Check 82

PAPA Lost Super Jackpot Logic Update: Timeout 0x48 Flag Retention .. 85

PAPA Lost Super Jackpot Code Fixes ... 87

PAPA Lost Super Jackpot Code Fix: Add Animation Wait to 0092 Function 87

PAPA Lost Super Jackpot Code Fix: Add Multiball Conditional To Timeout Function 88

Payback Time Insert Misalignment Bug .. 90

Payback Time Summary .. 90

Payback Time Security Levels Bug .. 93

Payback Time Security Levels Bug Recipe ... 93

Security Levels Code Design .. 94

Security Levels Bug Fix .. 100

Security Levels Bug Fix – Code Changes .. 102

Post-Tilt Bonus Multipliers Lamp Bug ... 105

Terminator 2 Bonus and Bonus Multipliers Logic ... 105

Terminator 2 Bonus and Bonus Multipliers Logic Flowcharts .. 109

Terminator 2 Bonus and Bonus Multipliers Bug ... 110

Terminator 2 Bonus and Bonus Multipliers Bug Fix .. 111

HSTD Table Update Investigation ... 113

HSTD Full Problem Statement ... 114

HSTD Code Walk Through ... 114

Adjustable Autofire Timer ... 138

Autofire Mode 00, Skill Shot ... 139

Autofire Timer Code .. 140

Autofire Timer Adjustment ... 142

Autofire Timer Adjustment – L8.4 Code Changes ... 143

Autofire Timer Adjustment – L8.4 Code Changes for Adjustment Management 143

Autofire Timer Adjustment – L8.4 Code Changes for Autofire Timer Startup 146

Text String Corrections L8.4 .. 148

Fix German Adjustment Menu Text For Abbreviated Seconds .. 148

Super Jackpot Lamp Movement Update for L8.4 ... 149

Super Jackpot Lamp Design Considerations for L8.4 .. 149

Super Jackpot Lamp Movement Possibilities .. 149

Super Jackpot Levels of Difficulty.. 149

Super Jackpot Multi-Player Considerations .. 149

Super Jackpot Variable Lamp Movements .. 150

Super Jackpot Lamp Enhancement for L8.4 .. 151

Super Jackpot L8.4 Configuration ... 152

Super Jackpot Adjustment – L8.4 Code Changes for Adjustment Management 154

Super Jackpot Lamp Movement – Original L-8 Code .. 157

Super Jackpot Lamp Movement – Bookkeeping Statistics To Derive Variable Lamp Behaviors 158

Multiball Auto-Fire Problem Fix L8.4 .. 168

Multiball Auto-Fire Code Analysis ... 169

Multiball Auto-Fire Code Correction ... 177

Tournament Mode Enhancements, L8.4 .. 179

Tournament Mode Enhancement: Database Award, L8.4 ... 179

Database Award Logic L-8 ... 179

Per-Player In-Game Statistics Analysis L-8 .. 187

Database Award Logic Enhancements for L8.4 ... 189

Database Award Logic Code Update for L8.4 ... 192

Tournament Mode Enhancement: Multiball Lamps, L8.4 .. 197

Multiball Lamps Logic Enhancements for L8.4 ... 197

Tournament Mode Enhancement: Jackpot Lamp, L8.4 .. 207

Tournament Mode Enhancement: Video Mode, L8.4 .. 212

Extra Ball Award Improvements for L8.4 .. 230

Extra Ball Award Improvement: No Extra Ball Animation .. 233

Extra Ball Award Improvement: No EB Lit at Bonus-X .. 235

Extra Ball Award Improvement: No EB Info in Flipper-Button Status-Report 239

Extra Ball Award Improvement: No Lit Consolidation Ball ... 240

Skill-Shot 5-Bank Failure Investigation, L8.4 ... 243

Attract Mode Improvements, L8.4 ... 243

Attract Mode Improvement: Adding “L8.4” Attract Mode Setting .. 246

Attract Mode Improvement: Overall Changes for Start-Button and Gun-Trigger 247

Attract Mode Improvement: Overall Changes: Identifying available RAM Bytes 247

Attract Mode Improvement: Overall Changes: Identifying 2 Function ID values 248

Attract Mode Improvement: Overall Changes: Initialize the RAM bytes at attract mode start 251

Attract Mode Improvement: Start-Button Handling .. 254

Attract Mode Improvement: Gun-Trigger Handling ... 261

Appendix ... 267

Indexed Display Effect Functions .. 267

ROM Image Changes ... 270

Corrections to the L8.3 Document .. 286

L8.4 Test/Verification .. 287

Pre-Menu report of the CPU U6 Checksum Value
For L8.4 the pre-menu report of game system information adds a new panel of information to report the

CPU board U6 checksum value. This will report the actual value from ROM location 0x7FFEE and

0x7FFEF. The “U6 CHECKSUM” text is shown this way regardless of game language selection.

This panel of information was added to aid in troubleshooting and to help beta-testing for L8.4 go easier

by allowing the checksum to be easily discovered to ensure correct/expected software is in use.

The report of checksum was added into the existing pre-menu report, as shown below. The new panel

of information is shown between the regular report of game ROM revision and sound board information.

In order to update the pre-menu report with the checksum, the existing pre-menu code was analyzed.

The existing logic for pre-menu is shown below.

The L-8 code that manages the pre-menu loop is depicted below. This code is located at $41CE,3A, ROM

offset 0x681CE. This is depicting the main loop of the flowchart with comments to describe what the

non-depicted functions are also doing.

;--;--

 ;

41CE: 34 02 PSHS A ;

 ;

41D0: 4F CLRA ; Reset button-press index to 0, no buttons pressed

 ;

41D1: 8D 74 BSR $4247 ; ReportGameTitleIdCpuRevision()

41D3: 8D 4E BSR $4223 ; SystemInfoDisplayPause() Hold-Time wait/button pushed

41D5: 24 08 BCC $41DF ; C-clear? No menu buttons pushed, do sound board info

41D7: 8D 5B BSR $4234 ; CoinDoorButtonPressIndexValidate() Check button press

41D9: 25 3B BCS $4216 ; C-set? goto escape/enter/start button handler

41DB: 8D 63 BSR $4240 ; CoinDoorMinusButtonPressCheck() Check minus press

41DD: 24 F2 BCC $41D1 ; C-clear? Re-show game title and cpu revision report

 ;

41DF: BD 42 A3 JSR $42A3 ; ReportSoundBoardRevision()

 Game Mode <or> Game-Over Mode

Pressed: Enter

Display Next-Message

1. Terminator 2 50013 L-8

2. Sound Rev L-3 SY 2.46 12/20/91

3. Press “Enter” For Main Menu

4. Press “Start” For Help

Hold Time Elapsed?

WPC Menu System

System, top level

Button Pushed?

yes

no

Hold-time = 2.5s

Next-Message = 1

no

Hold-time = 3.984375s
yes

Pressed: Escape?

yes

no

Button Pushed Logic

Escape: Exit the pre-menu back to Game-Over Mode

Minus: If Next-Message is greater than 1 then subtract 1

from it. Display Next-Message.

Plus: Add 1 to Next-Message. If past final message

number then enter the WPC Menu System, otherwise

Display Next-Message.

Enter: Enter the WPC Menu System

Start: Show the help messages for WPC menu system and

set Next-Message to “Press ‘Enter’ For Main Menu”.

Add 1 to Next-Message. If past final

message number then Next-Message = 1

41E2: 8D 3F BSR $4223 ; SystemInfoDisplayPause() Hold-Time wait/button pushed

41E4: 24 08 BCC $41EE ; C-clear? No menu buttons pushed, do "PRESS ENTER”...

41E6: 8D 4C BSR $4234 ; CoinDoorButtonPressIndexValidate() Check button press

41E8: 25 2C BCS $4216 ; C-set? goto escape/enter/start button handler

41EA: 8D 54 BSR $4240 ; CoinDoorMinusButtonPressCheck() Check minus press

41EC: 24 E3 BCC $41D1 ; C-clear? Go back to game title and cpu revision report

 ;

41EE: BD 89 F8 JSR $89F8 ; ReportTwoLinesSystemStatusInfo()

41F1: 80 FD 93 ; String index 0xFD "PRESS "ENTER"" / "FOR MAIN MENU"

 ; 0x93 = line 1/centered

41F4: 8D 2D BSR $4223 ; SystemInfoDisplayPause() Hold-Time wait/button pushed

41F6: 24 08 BCC $4200 ; C-clear? No menu buttons pushed, do "PRESS START”...

41F8: 8D 3A BSR $4234 ; CoinDoorButtonPressIndexValidate() Check button press

41FA: 25 1A BCS $4216 ; C-set? goto escape/enter/start button handler

41FC: 8D 42 BSR $4240 ; CoinDoorMinusButtonPressCheck() Check minus press

41FE: 24 DF BCC $41DF ; C-clear? Go back to display of sound board info

 ;

4200: BD 89 F8 JSR $89F8 ; ReportTwoLinesSystemStatusInfo()

4203: 81 02 9F ; String index 0x102 "PRESS "START"" / "FOR HELP"

 ; 0x9F = line 1/centered

4206: 8D 1B BSR $4223 ; SystemInfoDisplayPause() Hold-Time wait/button pushed

4208: 24 C7 BCC $41D1 ; C-clear? No menu buttons pushed, do title/CPU revision

420A: 8D 28 BSR $4234 ; CoinDoorButtonPressIndexValidate() Check button press

420C: 25 08 BCS $4216 ; C-set? goto escape/enter/start button handler

420E: 8D 30 BSR $4240 ; CoinDoorMinusButtonPressCheck() Check minus press

4210: 24 DC BCC $41EE ; C-clear? Go back to display "PRESS ENTER"...

4212: 1C FE ANDCC #$FE ; C-set = plus pushed, clear C and exit for main menu

4214: 20 0B BRA $4221 ; goto done

 ;

 ; Escape or Enter or Start was pressed, handle it here

4216: 81 04 CMPA #$04 ; A is 0x04 when Start was pressed

4218: 26 05 BNE $421F ; If it wasn't Start then go to end

421A: BD 42 F6 JSR $42F6 ; Display menu "help" information panels

421D: 20 CF BRA $41EE ; Help is done, now goto "PRESS ENTER FOR MAIN MENU"

421F: 81 01 CMPA #$01 ; Escape: returns c-set to return to Game-Over mode

4221: 35 82 PULS A,PC ; Enter: return c-clear to enter menu system

 ;

;--;--

To add a new panel to the pre-menu information, the code was updated in a way as to retain the same

logic except with an additional panel of information. The flowchart is effectively updated with a single

new entry in the following section. All existing flowchart logic remains the same:

The updated code replaces the first portion of the loop with a jump to previously unused code at the

end of bank $3A. The new/replaced code is highlighted in green. As shown below, the code now jumps

Display Next-Message

1. Terminator 2 50013 L-8

2. Terminator 2 U6 Checksum ####

3. Sound Rev L-3 SY 2.46 12/20/91

4. Press “Enter” For Main Menu

5. Press “Start” For Help

to a new function located at $7A0B,3A and the string “U6 CHECKSUM” is also added. The relocated

code left enough room for this text string that will be used when displaying the new checksum panel of

information. The new code will return to the $41DF,3A, bypassing this text string in the ROM image.

;--;--

 ;

41CE: 34 02 PSHS A ;

 ;

41D0: 4F CLRA ; Reset button-press index to 0, no buttons pressed

 ;

41D1: 7E 7A 0B JMP $7A0B ; Goto new logic to report game title then checksum

41D4: 55 36 20 43 ; "U6 CHECKSUM"

41D8: 48 45 43 4B ;

41DC: 53 55 4D ;

 ;

41DF: BD 42 A3 JSR $42A3 ; ReportSoundBoardRevision()

41E2: 8D 3F BSR $4223 ; SystemInfoDisplayPause() Hold-Time wait/button pushed

41E4: 24 08 BCC $41EE ; C-clear? No menu buttons pushed, do "PRESS ENTER”...

41E6: 8D 4C BSR $4234 ; CoinDoorButtonPressIndexValidate() Check button press

41E8: 25 2C BCS $4216 ; C-set? goto escape/enter/start button handler

41EA: 8D 54 BSR $4240 ; CoinDoorMinusButtonPressCheck() Check minus press

41EC: 24 E3 BCC $41D1 ; C-clear? Go back to game title and cpu revision report

 ;

41EE: BD 89 F8 JSR $89F8 ; ReportTwoLinesSystemStatusInfo()

41F1: 80 FD 93 ; String index 0xFD "PRESS "ENTER"" / "FOR MAIN MENU"

 ; 0x93 = line 1/centered

41F4: 8D 2D BSR $4223 ; SystemInfoDisplayPause() Hold-Time wait/button pushed

41F6: 24 08 BCC $4200 ; C-clear? No menu buttons pushed, do "PRESS START”...

41F8: 8D 3A BSR $4234 ; CoinDoorButtonPressIndexValidate() Check button press

41FA: 25 1A BCS $4216 ; C-set? goto escape/enter/start button handler

41FC: 8D 42 BSR $4240 ; CoinDoorMinusButtonPressCheck() Check minus press

41FE: 24 DF BCC $41DF ; C-clear? Go back to display of sound board info

 ;

4200: BD 89 F8 JSR $89F8 ; ReportTwoLinesSystemStatusInfo()

4203: 81 02 9F ; String index 0x102 "PRESS "START"" / "FOR HELP"

 ; 0x9F = line 1/centered

4206: 8D 1B BSR $4223 ; SystemInfoDisplayPause() Hold-Time wait/button pushed

4208: 24 C7 BCC $41D1 ; C-clear? No menu buttons pushed, do title/CPU revision

420A: 8D 28 BSR $4234 ; CoinDoorButtonPressIndexValidate() Check button press

420C: 25 08 BCS $4216 ; C-set? goto escape/enter/start button handler

420E: 8D 30 BSR $4240 ; CoinDoorMinusButtonPressCheck() Check minus press

4210: 24 DC BCC $41EE ; C-clear? Go back to display "PRESS ENTER"...

4212: 1C FE ANDCC #$FE ; C-set = plus pushed, clear C and exit for main menu

4214: 20 0B BRA $4221 ; goto done

 ;

 ; Escape or Enter or Start was pressed, handle it here

4216: 81 04 CMPA #$04 ; A is 0x04 when Start was pressed

4218: 26 05 BNE $421F ; If it wasn't Start then go to end

421A: BD 42 F6 JSR $42F6 ; Display menu "help" information panels

421D: 20 CF BRA $41EE ; Help is done, now goto "PRESS ENTER FOR MAIN MENU"

421F: 81 01 CMPA #$01 ; Escape: returns c-set to return to Game-Over mode

4221: 35 82 PULS A,PC ; Enter: return c-clear to enter menu system

 ;

;--;--

To complement the new code, a new function starting at previously unused ROM space $7A0B,3A, ROM

offset 0x6BA0B is added to handle the display of checksum information. Note, in L8.3 this portion of the

ROM image was used by the T05 Explicit Stop code. In L8.4 this T05 Explicit Stop code was removed. To

prevent gap of unused ROM bytes, this checksum code is placed here where the T05 Explicit Stop code

had previously resided.

;--;--

 ;

7A0B: 4D TSTA ; A = 0x00 = show initial "REV. L-8" message

7A0C: 26 15 BNE $7A23 ; A != 0x00 = minus button pressed, show csum message

7A0E: BD 42 47 JSR $4247 ; ReportGameTitleIdCpuRevision()

7A11: BD 42 23 JSR $4223 ; SystemInfoDisplayPause() Hold-Time wait/button pushed

7A14: 24 0D BCC $7A23 ; C-clear? No menu buttons pushed, report checksum

7A16: BD 42 34 JSR $4234 ; CoinDoorButtonPressIndexValidate() Check button press

7A19: 24 03 BCC $7A1E ;

7A1B: 7E 42 16 JMP $4216 ; C-set? goto escape/enter/start button handler

7A1E: BD 42 40 JSR $4240 ; CoinDoorMinusButtonPressCheck() Check minus press

7A21: 24 EB BCC $7A0E ; C-clear? Re-show game title and cpu revision report

 ;

7A23: BD 7A 3B JSR $7A3B ; ReportCpuChecksumMessage()

7A26: BD 42 23 JSR $4223 ; SystemInfoDisplayPause() Hold-Time wait/button pushed

7A29: 24 0D BCC $7A38 ; C-clear? No menu buttons pushed, do sound board info

7A2B: BD 42 34 JSR $4234 ; CoinDoorButtonPressIndexValidate() Check button press

7A2E: 24 03 BCC $7A33 ;

7A30: 7E 42 16 JMP $4216 ; C-set? goto escape/enter/start button handler

7A33: BD 42 40 JSR $4240 ; CoinDoorMinusButtonPressCheck() Check minus press

7A36: 24 D6 BCC $7A0E ; C-clear? Go back to game title and cpu revision report

 ;

7A38: 7E 41 DF JMP $41DF ; Jump back to regular message code, do sound board info

 ;

;--;--

 ;

 ; ReportCpuChecksumMessage()

 ;

7A3B: BD 42 4C JSR $424C ; ReportGameTitleString()

7A3E: 8D 03 BSR $7A43 ; ReportGameChecksumValue()

7A40: 8D 41 BSR $7A83 ; ReportGameChecksumText()

7A42: 39 RTS ;

 ;

;--;--

 ;

 ; ReportGameChecksumValue()

 ;

7A43: 34 36 PSHS Y,X,B,A ;

7A45: 32 7B LEAS $FFFB,S ; Make room for 5 bytes on stack, csum and null

7A47: B6 FF EE LDA $FFEE ; A get 1st checksum byte from ROM

7A4A: 8D 1C BSR $7A68 ; ConvertAHexToDAsciiNibbles()

7A4C: A7 E4 STA ,S ; Store first nibble of checksum

7A4E: E7 61 STB $0001,S ; Store second nibble of checksum

7A50: B6 FF EF LDA $FFEF ; A get 2nd checksum byte from ROM

7A53: 8D 13 BSR $7A68 ; ConvertAHexToDAsciiNibbles()

7A55: A7 62 STA $0002,S ; Store third nibble of checksum

7A57: E7 63 STB $0003,S ; Store fourth nibble of checksum

7A59: 6F 64 CLR $0004,S ; Null terminate the checksum string

 ;

7A5B: 31 E4 LEAY ,S ; Y gets pointer for checksum string

7A5D: BD 8A DA JSR $8ADA ;

7A60: 81 01 ; String index 0x101, "%SY" String pointer Y

7A62: 94 02 ; 94=line2, 02=right justified and clear line first

7A64: 32 65 LEAS $0005,S ; Restore stack pointer

7A66: 35 B6 PULS A,B,X,Y,PC ;

 ;

 ;

;--;--

 ;

 ; ConvertAHexToDAsciiNibbles()

 ;

7A68: 34 02 PSHS A ; Save a copy of the byte on the stack

7A6A: 8D 0B BSR $7A77 ; ConvertAHexLowNibbleToAscii()

7A6C: 1F 89 TFR A,B ; Put the low ASCII nibble into B

7A6E: 35 02 PULS A ; Restore the original byte from the stack

7A70: 8D 01 BSR $7A73 ; ConvertAHexHighNibbleToAscii()

7A72: 39 RTS ;

 ;

7A73: 44 LSRA ; ConvertAHexHighNibbleToAscii()

7A74: 44 LSRA ;

7A75: 44 LSRA ;

7A76: 44 LSRA ; Now A has the high nibble stored as a byte value 0..F

 ;

7A77: 84 0F ANDA #$0F ; ConvertAHexLowNibbleToAscii()

7A79: 81 09 CMPA #$09 ;

7A7B: 23 03 BLS $7A80 ;

7A7D: 8B 37 ADDA #$37 ; Make a..f values ASCII 'A'..'F'

7A7F: 39 RTS ;

7A80: 8B 30 ADDA #$30 ; Make 0..9 values ASCII '0'..'9'

7A82: 39 RTS ;

 ;

;--;--

 ;

 ; ReportGameChecksumText()

 ;

7A83: 34 36 PSHS Y,X,B,A ;

7A85: 32 74 LEAS $FFF4,S ; Make room for 12 bytes on the stack

7A87: BD 7A A0 JSR #$7AA0 ; GetGameChecksumTextStringIntoX()

7A8A: D6 11 LDB $11 ; Current bank into B

7A8C: 31 E4 LEAY ,S ; Y gets starting of the destination buffer on the stack

7A8E: 86 0B LDA #$0B ; A gets value 11, # of bytes to copy from ROM to stack

7A90: BD 91 39 JSR $9139 ; Copy 11 bytes from X to 12-byte buffer on the stack

7A93: 6F 6B CLR $000B,S ; Null terminate the string on the stack

7A95: BD 8A DA JSR $8ADA ;

7A98: 81 01 ; String index 0x101, "%SY" String pointer Y

7A9A: 94 09 ; 94=line2, 09=left justified and don't clear line first

7A9C: 32 6C LEAS $000C,S ; Fix stack back to normal, done with 12-byte buffer

7A9E: 35 B6 PULS A,B,X,Y,PC ;

 ;

;--;--

 ;

 ; GetGameChecksumTextStringIntoX()

 ;

7AA0: 8E 41 D4 LDX #$41D4 ; Address of pointer to "U6 CHECKSUM" in this rom bank

7AA3: B6 17 4D LDA $174D ; A gets Power-up status-byte. 00=good 01=checksum error

7AA6: 85 01 BITA #$01 ; Test if we had a checksum error on power-up

7AA8: 27 03 BEQ $7AAD ; If A 01 bit is not set, skip to the end, all is good

7AAA: 8E 7A AE LDX #$7AAE ; Address of pointer to "U6 BAD CSUM" in this rom bank

7AAD: 39 RTS ; Done

 ;

7AAE: 55 36 20 42 ; "U6 BAD CSUM"

7AB2: 41 44 20 43 ;

7AB6: 53 55 4D ;

 ;

;--;--

As evident by the code shown, the checksum report will use “U6 BAD CSUM” instead of “U6 CHECKSUM”

when the software has detected a checksum error such as depicted below.

When the software, at power up, detects a checksum failure it sets the 0x01 bit in RAM address $174D.

When this bit is set, the game will show the credit-dot and include the “U6 CKSUM ERROR” message in

the test report.

This new L8.4 pre-menu report will also check for the 0x01 bit in RAM $174D and use this to report the

fact that the game checksum is bad. This was done to reduce confusion when the pre-menu code is

reporting checksum value while the calculated checksum does not match the checksum contained in the

ROM image itself. In such case, instead of declaring the “U6 CHECKSUM” it will explicitly report “U6 BAD

CSUM” along with the checksum value contained in the ROM image. It will not report what the

checksum ‘should’ be. It only reports the 2 checksum bytes currently stored in the ROM image.

These strings “U6 CHECKSUM” and “U6 BAD CSUM” are used regardless of the language adjustment

value (adjustment A.1 21).

Removal of the L8-3 Sound 05 Explicit Stop

For L8.4 the code depicted in L8.3 as “Sound 05 Explicit Stop” has been removed. This returns the sound
test code back to L-8 where the sound test advancement from T05 (Database background) to T06 (100K
award) no longer has special code to ensure the T05 sound is stopped. Refer to “Sound 05 Explicit Stop”
section of the L8.3 documentation for historical details on this code change.

For L8.4 this change will un-do the L8.3 code changes, effectively restoring code back to original L-8 at
the following two locations:

 $6D95,3A JMP instruction returned back to original jump point, and
 $7A0B,3A Function/code is returned back to unused/available ROM region.

The $6D95,3A, ROM offset 0x6AD95, ROM change in L8.4 is depicted below, restoring the original L-8
JMP instruction:

---;---

 ;

 ; AdvanceNextSoundIndex()

 ; Either via plus button or during 'running'

6D87: 34 02 PSHS A ;

6D89: 8D 24 BSR $6DAF ; SoundTestTableEntryCountGetIntoA()

6D8B: 6C 41 INC $0001,U ; Increment sound test index

6D8D: A1 41 CMPA $0001,U ;

6D8F: 22 04 BHI $6D95 ;

6D91: 86 01 LDA #$01 ; Reset index to #1

6D93: A7 41 STA $0001,U ;

6D95: BD 7A 0B JSR $7A0B ; StopCurrentSound_BugFix() L8.3 code

6D95: BD 6D F3 JSR $6DF3 ; StopCurrentSound() L-8, L8.1, L8.2, L8.4 code

6D98: 81 02 CMPA #$02 ;

6D9A: 35 82 PULS A,PC ;

 ;

---;---

The new function at $7A0B,3A that was added in L8.3 is no longer included in L8.4. The function that is
removed from L8.4 is depicted below:

---;---

 ;

 ; StopCurrentSound_BugFix()

7A0B: 34 02 PSHS A ;

7A0D: BD 6D F3 JSR $6DF3 ; StopCurrentSound(), Call original „Stop‟ routine

7A10: A6 41 LDA $0001,U ; Get new/current sound test index

7A12: 81 06 CMPA #$06 ; Check if advanced to sound 06

7A14: 26 03 BNE $7A19 ; If not, then done.

7A16: BD C0 A5 JSR $C0A5 ; If so, Call Sound text exit (escape button pressed)

7A19: 35 82 PULS A,PC ;

 ;

---;---

The 16 bytes starting at $7A0B,3A, ROM offset 0x6BA0B are no longer needed since the code at
$6D95,3A no longer jumps here. These bytes are now considered unused ROM region in bank $3A. As
depicted in the L8.4 “Pre-Menu report of the CPU U6 Checksum Value” feature, this location is
repurposed for code used to support the display of the pre-menu game checksum report.

Fix the L8.3 Function ID Overlap Issue

The L8.3 software documentation, “Multiball-Start Drop-Target Action Adjustment Code Analysis”,

describes how the L8.3 code ended up using a function ID value for new drop-target ‘up’ logic that was

already being used during ball-search routine. This can potentially lead to unexpected behavior when

subsequent code goes to check for the running function or cancel the running function based on its

function ID value. For L8.4 this overlap issue is corrected. Below is the analysis and discovery of the

new function ID value that will be used to remove the overlap issue identified in L8.3.

Below is a list of some of the applicable function IDs and location of each function with the conflicting ID,

00B9, highlighted:

Function ID Function
WPC

Address

Function Purpose ROM

00 B2 $45D7,31 Kick a ball out of shooter lane and checks shooter-lane switch L-8, L8.1, L8.2, L8.3

00 B3 $6816,31 Reset drop-target up and checks drop-target switch L-8, L8.1, L8.2, L8.3

00 B5 $4A77,31 TBD, Called when left-loop lock shot is hit L-8, L8.1, L8.2, L8.3

00 B6 $4A28,31 TBD, Called when right-loop is hit L-8, L8.1, L8.2, L8.3

00 B7 $7894,3B Drop-Target Down, New Scheduled Function in L8.3 L8.3

00 B8 $6C80,31 TBD, Called as part of multiball startup L-8, L8.1, L8.2, L8.3

00 B9 $78B7,3B Drop-Target Up, New Scheduled Function in L8.3 L8.3

00 B9 $60B9,3B Ball-Search 3.5 second wait and drop-target scheduler L-8, L8.1, L8.2, L8.3

As shown, the issue is that in L8.3 there are two different functions that are both using the ID 00B9. The

ball-search code uses a function with ID 00B9, and the new L8.3 code elected to use function ID 00B9 in

the drop-target up function.

For L8.4, the code was surveyed for an available function ID that is not currently in use. The table below

shows the results of such survey, initially looking for an available function ID that is not already

referenced in bank $31. Once an unused function ID is identified in bank $31 then the rest of the ROM

will be checked to make sure the function ID is not in use anywhere in the ROM image.

Surveyed
Function ID

Function
WPC

Address

Function Purpose

00 B0 $48FA,31 Load the Gun countdown timer handler function.

00 B1 - Function ID 00 B1 not referenced anywhere in bank $31

00 B4 $61EF,31 Scheduled after gun solenoid is fired, possibly checks for hunter ship hit.

00 BA $45F0,31 Scheduled while handling gun-shooter switch, related to hunter ship/MB.

00 BB $4609,31 Scheduled while handling gun-shooter switch, related to hunter ship/MB.

00 BC $60CA,3B Referenced in bank $31 as a function ID. Details TBD.

00 BD $6675,31 Referenced in bank $31 as a function ID. Details TBD.

00 BE $634C,31 Referenced in bank $31 as a function ID. Details TBD.

00 BF $6553,31 Referenced in bank $31 as a function ID. Details TBD.

As shown above, the ID 00B1 is not immediately cited in bank $31 as a callback function. With the

notion that this could be an unused function identifier, a full search of the entire ROM was done, using

the various function signatures, to see if ID 00B1 is cited as a function ID. Below are the known

functions that reference function ID numbers and below is the results of the search for function ID 00B1

being used anywhere in the L-8 ROM image.

Function Name L-8 Function
Usage Signature

Description Search Result

ScheduleFunctionStart() BD 8B 77 xx xx yy yy yy Schedules function ID xx
xx to start at WPC Addr
yy yy yy

No occurrence of:
BD 8B 77 00 B1

SearchLinkedListForId() BD 86 90 xx xx Searches for scheduled
function ID xx xx

No occurrence of:
BD 86 90 00 B1

CancelScheduled
CallbackFunction()

BD 86 9E xx xx Cancels scheduled
function ID xx xx

No occurrence of:
BD 86 9E 00 B1

UpdateCurrentRunningSchedule BD 86 AC xx xx Sets currently running No occurrence of:

FunctionIDParameterBytes() function ID to xx xx BD 86 AC 00 B1

TBD() BD 86 BA xx xx TBD, where xx xx is
function ID

No occurrence of:
BD 86 BA 00 B1

CancelScheduledCallbackID
ParameterBytes()

BD 86 D0 xx xx Cancels scheduled ID xx
xx

No occurrence of:
BD 86 D0 00 B1

CancelAllCallbacksIdMask
ParameterBytes()

BD 8A 9A xx xx yy yy Cancels scheduled
functions matching ID
pattern of xx xx bitwise-
and yy yy

No occurrence of:
BD 8A 9A 00 Bx,
See further analysis, below

SearchLinkedListAndMask
ParameterBytes()

BD 8A AA xx xx yy yy Searches for schedule
functions matching ID
pattern of xx xx bitwise-
and yy yy

No occurrence of:
BD 8A AA 00 Bx
See further analysis, below

AddLinkedListEntry() BD 8B 3D xx xx yy yy
yy

Adds function yy yy yy to
linked list as ID xx xx

No occurrence of:
BD 8B 3D 00 B1

ScheduleFunctionStart() BD 8B 77 xx xx yy yy yy Schedules function yy yy
yy ID xx xx

No occurrence of:
BD 8B 77 00 B1

TBD() BD 8B 9D xx xx yy yy
yy

TBD, where xx xx is ID
and yy yy yy is addr.

No occurrence of:
BD 8B 9D 00 B1

ScheduleFunctionCallback() BD 8B C3 xx xx yy yy
yy

Schedules function yy yy
yy ID xx xx

No occurrence of:
BD 8B C3 00 B1

TBD() BD 8B F7 xx xx yy yy yy Schedules function yy yy
yy ID xx xx

No occurrence of:
BD 8B F7 00 B1

The inspection, above, shows there are no specific references to ID 00B1 as a function ID, thus adding to

the confidence that the ID 00B1 can be used to resolve the ID conflict from L8.3. To further this analysis,

the functions that accept ID and Mask values to cover multiple function IDs are surveyed and reported

below.

Survey of CancelAllCallbacksIdMaskParameterBytes()

This function takes as parameters function ID xxxx and mask yyyy. This function allows a range of

function IDs to be cancelled as a group. This might be useful when code has a group of functions that

might be running and they all need to be ended at the same time. For example, this could be done at

end of a timed feature where certain playfield or display sequences are running and need to be

cancelled at the same time.

To ensure the proposed function ID 00B1 safe to use, analysis is done here to see if any calls to this

cancel function might somehow apply to function ID 00B1 (but not apply to the other set of drop-target

related callback functions). The table below is the result of a survey of all occurrences of this function

call with signature BD 8A 9A, along with the xxxx and yyyy values in each function call.

It appears that all running function IDs are sampled, and those that have an ID that matches the set of

bits identified by xxxx AND yyyy are cancelled. This analysis is subject to further investigation/correction.

For each running function ID:

 IF <running ID> AND <yyyy> EQUALS <xxxx> AND <yyyy>, then function is cancelled.

ROM Offset ID
xxxx

Mask
yyyy

Applies to
ID 00B1?

Description, x-bit = don’t care

0x44593 00 85 01 FF No Cancels all function IDs that end with xxxx xxx0 1000 0101 (085)

0x44D78 00 85 01 FF No Cancels all function IDs that end with xxxx xxx0 1000 0101 (085)

0x45064 00 A8 01 FF No Cancels all function IDs that end with xxxx xxx0 1010 1000 (0A8)

0x4535A 00 89 01 FF No Cancels all function IDs that end with xxxx xxx0 1000 1001 (089)

0x46653 00 A5 01 FF No Cancels all function IDs that end with xxxx xxx0 1010 0101 (0A5)

0x46A6D 00 AB 01 FF No Cancels all function IDs that end with xxxx xxx0 1010 1011 (0AB)

0x46A74 00 8D 01 FF No Cancels all function IDs that end with xxxx xxx0 1000 1101 (08D)

0x46AB7 00 A6 01 FF No Cancels all function IDs that end with xxxx xxx0 1010 0110 (0A6)

0x606C9 00 00 08 00 Yes Cancels all function IDs that have xxxx 1xxx xxxx xxxx bit cleared

0x60751 00 00 10 00 Yes Cancels all function IDs that have xxx1 xxxx xxxx xxxx bit cleared

0x6078E 00 00 10 00 Yes Cancels all function IDs that have xxx1 xxxx xxxx xxxx bit cleared

0x6593E 00 00 20 00 Yes Cancels all function IDs that have xx1x xxxx xxxx xxxx bit cleared

0x7C808 00 60 01 FC No Cancels all function IDs that end with xxxx xxx0 0110 00xx (060)

0x7C967 00 60 01 FC No Cancels all function IDs that end with xxxx xxx0 0110 00xx (060)

0x7CAEE 00 60 01 FC No Cancels all function IDs that end with xxxx xxx0 0110 00xx (060)

As shown in the table above, the masked cancel function calls which affect the proposed ID 00B1 are

encompassing many functions including all of the existing function IDs that start with 00Bx. These are

likely functions that cancels all active functions at certain times such as tilt, slam-tilt and at menu-button

push, etc. These large-encompassing cancellations do not uniquely affect function ID 00B1 therefore

adding to the idea that ID 00B1 is a safe candidate for resolving the L8.3 function ID overlap.

Survey of SearchLinkedListAndMaskParameterBytes()

A secondary function also performs lookups of functions using the ID xxxx and Mask yyyy method

described in previous function analysis. This masked function lookup performs a group search of such

functions to determine if one or more matching functions are currently running. This function returns C-

bit clear when one or more such functions have been found in the scheduler queue.

Below is the result of a L-8 ROM survey of all such occurrences of this function, with the BD 8A AA

signature.

ROM Offset ID
xxxx

Mask
yyyy

Applies to
ID 00B1?

Description, x-bit = don’t care

0x4457C 00 86 01 FF No Finds function IDs that have xxxx xxx0 1000 0110 (086)

0x45187 00 93 01 FF No Finds function IDs that have xxxx xxx0 1001 0011 (093)

0x456B7 00 89 01 FF No Finds function IDs that have xxxx xxx0 1000 1001 (089)

0x458FF 00 91 01 FF No Finds function IDs that have xxxx xxx0 1001 0001 (091)

0x45909 00 A4 01 FF No Finds function IDs that have xxxx xxx0 1010 0100 (0A4)

0x45912 00 89 01 FF No Finds function IDs that have xxxx xxx0 1000 1001 (089)

0x4591B 00 A9 01 FF No Finds function IDs that have xxxx xxx0 1010 1001 (0A9)

0x46060 00 A2 01 FF No Finds function IDs that have xxxx xxx0 1010 0010 (0A2)

0x46125 00 86 01 FF No Finds function IDs that have xxxx xxx0 1000 0110 (086)

0x46692 00 AB 01 FF No Finds function IDs that have xxxx xxx0 1010 1011 (0AB)

0x4675E 00 A4 01 FF No Finds function IDs that have xxxx xxx0 1010 0100 (0A4)

0x4676A 00 86 01 FF No Finds function IDs that have xxxx xxx0 1000 0110 (086)

0x46780 00 86 01 FF No Finds function IDs that have xxxx xxx0 1000 0110 (086)

0x46866 00 90 01 90 Yes Finds function IDs that have xxxx xxx0 1xx1 xxxx

0x46A93 00 96 01 FF No Finds function IDs that have xxxx xxx0 1001 0110 (096)

0x46F9B 00 95 01 FF No Finds function IDs that have xxxx xxx0 1001 0101 (095)

0x47001 00 A4 01 FF No Finds function IDs that have xxxx xxx0 1010 0100 (0A4)

0x4708B 00 92 01 FF No Finds function IDs that have xxxx xxx0 1001 0010 (092)

0x51B98 00 89 01 FF No Finds function IDs that have xxxx xxx0 1000 1001 (089)

0x60740 80 00 80 00 No Finds function IDs that have 1xxx xxxx xxxx xxxx

0x6E67B 00 AA 01 FF No Finds function IDs that have xxxx xxx0 1010 1010 (0AA)

0x6E684 00 AB 01 FF No Finds function IDs that have xxxx xxx0 1010 1011 (0AB)

0x6E68D 00 86 01 FF No Finds function IDs that have xxxx xxx0 1000 0110 (086)

0x6E6C5 00 86 01 FF No Finds function IDs that have xxxx xxx0 1000 0110 (086)

0x6EFAE 00 40 01 F0 No Finds function IDs that have xxxx xxx0 0100 xxxx (04x)

0x6EFC4 00 40 01 F0 No Finds function IDs that have xxxx xxx0 0100 xxxx (04x)

0x6F031 00 40 01 F0 No Finds function IDs that have xxxx xxx0 0100 xxxx (04x)

0x6F62E 00 40 01 F0 No Finds function IDs that have xxxx xxx0 0100 xxxx (04x)

0x7C8DE 10 61 01 FF No Finds function IDs that have xxxx xxx0 0110 0001 (061)

0x7C97D 00 60 01 FC No Finds function IDs that have xxxx xxx0 0110 00xx (06x)

As highlighted in the table above, only one such lookup function will find the prospective function ID

00B1. This entry will also find the other 00Bx ID functions no differently than the existing L-8 and L8.3 so

it seems relatively benign as it applies to the use of ID 00B1 as the new function identifier.

The highlighted lookup at ROM offset 0x46866, $6866,31, is oddly looking for any function ID that have

only 3 bits matching the pattern of xxxx xxx0 1xx1 xxxx. Based on the other lookups it raises suspicion as

possible incorrect coding in the original L-8. More research into code in this ROM bank $31 is necessary

to say with any amount of certainty.

This unusual function ID lookup takes place in the drop-target down function responsible for tracking

the timed drop-target down period before automatically kicking it back up (and stopping its blinking

lamp). This is during a moment outside of multiball when the drop-target is hit and then becomes

subject to such timer that automatically kicks the target back up after a short period.

---;---

 ;

 ; DropTargetDownSwitchTimerLoop() function ID 00A6

 ;

684A: BD 85 B2 JSR $85B2 ;

684D: 10 ;

684E: 8E 06 18 LDX #$0618 ;

6851: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6854: 7E 68 57 JMP $6857 ;

6857: E6 84 LDB ,X ;

6859: D7 C7 STB $C7 ;

 ;

685B: BD 83 46 JSR $8346 ; -\ -\ Sleep()

685E: 40 ; | | 0x40 == 1 second

685F: BD 86 90 JSR $8690 ; | | SearchLinkedListForId() // c-bit clear = found

6862: 00 86 ; | | Search for 0x0086, c-clear = multiball running

6864: 24 19 BCC $687F ; | | C-clear, cancel the drop-target timer now

6866: BD 8A AA JSR $8AAA ; | | SearchLinkedListAndMaskParameterBytes()

6869: 00 90 ; | | ID 0090

686B: 01 90 ; | | Mask 0190

686D: 24 EC BCC $685B ; | -/ C-clear means search found a match go to $685B

 ; |

686F: 0A C7 DEC $C7 ; | Decrement number of seconds for drop-target

6871: 26 E8 BNE $685B ; -/

 ;

6873: BD 83 46 JSR $8346 ; Sleep()

6876: 20 ; 0x20 == 1/2 second

6877: BD 68 08 JMP $6808 ; ScheduleDropTargetUp()

687A: BD 87 22 JSR $8722 ; ClearLamp()

687D: 0E 40 ; Lamp 0x0E 0x40

687F: 7E 99 A2 JMP $99A2 ;

 ;

---;---

The unusual search, as shown above, keeps the drop-target down as long as any scheduled function is

running which matches the pattern xxxx xxx0 1xx1 xxxx (with x=don’t care bits). Interestingly, in bank

$31 there is a function with id 0090. Could it be that this highlighted code was intending to check if the

function ID 0090 was running but used incorrect function call parameters which capture a variety of

other function IDs as well? Certainly more study and analysis is needed to understand whether this

function ID search code was intentional or incorrect.

ROM Survey of New Function ID 00B1

Lastly, a survey of the L-8 ROM image for all occurrences of the 2 bytes 00B1 was done to see if, by

chance, the function ID 00B1 is used in any function not previously identified as a Function ID handler.

ROM Offset WPC Addr. Surrounding Bytes Analysis

0x43C4E $7C4E,30 C0 3D 10 25 00 B1 8D A3 This 00B1 is part of a LBCS instruction in attract-mode loop

0x488EB $48EB,32 00 60 74 04 00 B1 33 00 Not executable code. Data code (dmd/font data, other?)

0x49DE5 $5D35,32 BF F7 04 0A 00 B1 44 A9 Not executable code. Data code (dmd/font data, other?)

0x684A6 $44A6,3A C5 08 33 01 00 B1 34 46 Data table cited in prior function. Not likely a function id.

0x6E61E $661E,3B 00 B0 80 4C 00 B1 80 4D Data table cited in prior function. Not likely a function id.

As shown, there are only 5 occurrences in the entire L-8 ROM image of the 2-byte sequence “00 B1” and

only one such occurrence appears to be used directly in executable code but it is in the opcode of a LBCS

instruction. The other 4 occurrences of 00B1 are in data tables that are not likely to be related to the

use of a function ID since all other uses of function IDs are not in data tables, but in running code as

function parameter bytes.

This and the previous findings make it most likely that 00 B1 may safely be used as the new Function ID

for resolving the function ID overlap issue identified in the L8.3 document.

Code Change For Fixing Function ID Overlap Issue

The L8.3 code introduced two places in the code where the 00 B9 function ID was used for its new drop-

target up function. Both of these places are updated in L8.4 to use the new function ID 00 B1.

The new L8.3 function at $7FBA,31, ROM offset 0x47FBA, is shown below with the old L8.3 code

highlighted in red and the updated function ID for L8.4 highlighted in green. This is the L8.3 code that

schedules the drop-target up on behalf of the new L8.3 feature to have the drop-target reset to the up

position at the start of multiball.

---;---

7FBA: 34 04 PSHS B ;

7FBC: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

7FBF: 14 00 ; 0x14, FeatureAdjustment020, Drop Trgt. Broken

 ; C-bit set when not-equal

7FC1: 25 23 BCS $7FE6 ; Not-equal to 0x00 then dt broken is “yes”, we're done

 ;

7FC3: BD 83 0C JSR $830C ; Get8BitSettingIntoBParameterByte()

7FC6: 1A ; 0x1A, FeatureAdjustment026, MB Start DT Action

7FC7: 5D TSTB ;

7FC8: 27 1C BEQ $7FE6 ; If B is 0x00 then no action, return

7FCA: C1 01 CMPB #$01 ; Check if B is 0x01 “Down”

7FCC: 26 0A BNE $7FD8 ; If B is not 0x01, skip down to $7FD8

 ;

7FCE: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback()

7FD1: 00 B7 ; 0x00B7 Unique id for the target-down callback

7FD3: 78 94 3B ; WPC Address for drop-target-down callback

7FD6: 20 0E BRA $7FE6 ; Jump to done

 ;

7FD8: C0 02 SUBB #$02 ; Here when B is 0x02 or more, decrement it by 2.

7FDA: E1 84 CMPB ,X ; Compare B with X, number of MBs so far for cur player

7FDC: 2E F0 BGT $7FCE ; If B-register was greater than the MB, do target-down

 ;

7FDE: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback()

7FE1: 00 B9 ; 0x00B9 Unique id for the target-up callback

7FE1: 00 B1 ; 0x00B1 Unique id for the target-up callback

7FE3: 78 B7 3B ; WPC Address for drop-target-up callback

7FE6: 35 84 PULS B,PC ;

---;---

The secondary location of L8.3 code where the function ID 00B9 is cited is shown below. This function is

at $7FA2,31, ROM offset 0x47FA2. This is code that is used during the handling of the drop-target

switch whereby code will check if the drop-target ‘up’ function is scheduled and, if so, ignores the drop-

target switch with assumption that the switch may be ignored during the period of time that the drop-

target is being reset. This is to prevent the software from treating a drop-target switch closure as a

player-initiated drop-target hit during this period.

---;---

7FA2: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7FA5: 00 B7 ; 0x00B7 Drop target down function id

7FA7: 24 0E BCC $7FB7 ; Drop target “Down” is running, ignore the dt switch

 ;

7FA9: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

7FAC: 00 B9 ; 0x00B9 Drop target up function id

7FAC: 00 B1 ; 0x00B1 Drop target up function id

7FAE: 24 07 BCC $7FB7 ; Drop target “Up” is running, ignore the dt switch

 ;

7FB0: BD 84 8F JSR $848F ; ClearMemoryFlag()

7FB3: E3 ; 0xE3 cleared at dt-down-switch, set at dt-up

7FB4: 7E 67 22 JMP $6722 ; Go do regular drop-target switch code

 ;

7FB7: 7E 99 A2 JMP $99A2 ; Done with this switch handler, up/down is running

---;---

With these 2 changes of 00B9 to 00B1 in place, the function ID overlap issue is effectively resolved.

The Terminator 2 -- 255-Hits Issue
For L8.4, one goal was to fully understand the long-standing report of T2 reporting 255 Hits remaining

on the hunter ship to start multiball. This issue was mostly elusive and not something that has been

observed during the testing of L8.3. For L8.4 we want to identify (and correct) the coding issues or

determine whether such issues have already been fixed in prior T2 software updates. What we

discovered was a little bit of both (it was fixed in L-6 but there is a coding issue to fix in L8.4).

Computer Representation of 8-Bit Numbers
To understand the reason the game would report 255 hits remaining will require a little bit of

understanding in how computers store and interpret numbers in an 8-bit (byte) memory storage. The

table below shows how the numbers 5 through 0 are stored and how they are interpreted.

Bit Position Total Numeric
Value (signed)

Total Numeric
Value (unsigned) 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 1 5 5

0 0 0 0 0 1 0 0 4 4

0 0 0 0 0 0 1 1 3 3

0 0 0 0 0 0 1 0 2 2

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0

As hinted in the last two columns in the table above, the software can choose to read and represent a

number from memory as if it were a signed value or an unsigned value. A signed value means the code

is intentionally treating the piece of memory as a value that can contain negative value. An unsigned

value means the code is intentionally treating the piece of memory as a value that only represents

values 0 and above. When an 8-bit value is represented as a signed number, it can contain values in the

range of -128 to 127. When an 8-bit value is represented as an unsigned number, it can contain values

in the range of 0 through 255.

The number 255 enters the picture when the value zero is decremented by 1. The actual result of 0

minus 1 is always all 8 bits are set to 1. It is a matter of how the subsequent code accesses such

memory value is what depends on whether the number is treated as -1 or 255. Below is a continuation

of the table showing the interpreted values when the memory is decremented below 0.

Bit Position Total Numeric
Value (signed)

Total Numeric
Value (unsigned) 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 -1 255

1 1 1 1 1 1 1 0 -2 254

1 1 1 1 1 1 0 1 -3 253

1 1 1 1 1 1 0 0 -4 252

1 1 1 1 1 0 1 1 -5 251

With the above information, it is fairly evident that the game could report “255 Hits Remaining” on the

hunter ship due to the subtraction of 1 from an internal “hits remaining” counter while the value is zero.

This would result in a value being reported as 255 by code that treats the 8-bit “hits remaining” value as

an unsigned number. It is evident that the code that reports the “hits remaining” value would not have

considered the value being a negative value and, therefore, treats the memory location as an unsigned

value which is why it would report 255 hits remaining instead of -1 hits remaining.

Analysis of L-8 Hits Remaining Code
In order to understand whether the 255-hits issue could occur, an analysis of the L-8/L8.3 software was

done to see if it is possible for the L-8 to actually decrement the ‘Hits remaining’ value below zero.

What was discovered is that the “Hits remaining” value is specifically checked if it is non-zero prior to

decrementing. Below is an example of such code from L-8 that handles hunter ship hits at $4DCE,31,

ROM offset 0x44DCE.

4DCE: 8E 06 03 LDX #$0603 ; #$0603 is Hunter ship hits remaining for multiball

4DD1: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

4DD4: 7E 4D D7 JMP $4DD7 ; <nop>

4DD7: 6D 84 TST ,X ; Check value pointed to by X

4DD9: 27 02 BEQ $4DDD ; If value is zero, skip down to $4DDD

4DDB: 6A 84 DEC ,X ; Decrement per-player Hunter Ship Hits remaining

4DDD: 8E 05 FF LDX #$05FF ;

As shown in the code, above, the software gets the hunter ship hits remaining value from memory

location $0603. This is the starting address for player 1’s hits remaining. A function, $FB29, is called to

increment X by the current player number to get the unique value for the current player. The value in X

is then checked to be non-zero prior to decrementing it by 1. This means this code appears to have

been specially coded to ensure the “255 Hits” problem won’t occur.

Additionally, another piece of code was observed to be present in L-8 which may also be part of extra

code to help prevent the possibility of “255 Hits” problem. During the multiball startup code the

following code from L-8 is at $6C88,31.

6C88: 8E 06 03 LDX #$0603 ; #$0603 is Hunter ship hits remaining for multiball

6C8B: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6C8E: 7E 6C 91 JMP $6C91 ; <nop>

6C91: 6F 84 CLR ,X ; Ensure # of hunter ship hits is zero

The code, above, is specifically ensuring the per-player “hits remaining” value is specifically forced to

value 0 at multiball start. This code is possibly put in place to help reduce possibility of incorrect hits

being stored in memory and, possibly, part of a code enhancement in original T2 code to prevent

unexpected problems related to the “hits remaining” value.

Analysis of Older T2 ROMs

The two code sections, mentioned above, served as the basis for subsequent code searches in older T2

ROM images to see at what point the fixes may have been added, and as such, when the “255 Hits”

problem was most likely corrected. With assumption that each ROM revision likely used different

memory addresses, searches were done with wildcard bytes, represented below as ‘xx’, to match on any

byte values.

The discovered “xx xx” memory address identified with the 8E xx xx instruction in the “Decrement When

Non-Zero” is then used in the search pattern for “Reset To Zero at MB Start” search.

The pattern was found in L-6 with slightly different format, instead of a JSR to non-banked ROM

followed by JMP to next instruction, the L-6 has a JSR to the WPC banked function caller which means

the 7E xx xx is replaced with WPC address to the actual function where the memory value in X gets

incremented by the current player index.

ROM Search Search Pattern Search Result

L-8 Decrement When Non-Zero 8E xx xx BD xx xx 7E xx

xx 6D 84 27 02 6A 84
Found at ROM offset 0x44DCE w/8E 06 03

L-8 Reset To Zero at MB Start 8E 06 03 BD xx xx 7E xx

xx 6F 84 Found at ROM offset 0x46C88

L-6 Decrement When Non-Zero 8E xx xx BD xx xx xx xx

xx 6D 84 27 02 6A 84
Found at ROM offset 0x4D30 w/8E 05 D1

L-6 Reset To Zero at MB Start 8E 05 D1 BD xx xx xx xx

xx 6F 84 Found at ROM offset 0x6C27

L-4 Decrement When Non-Zero 8E xx xx BD xx xx xx xx

xx 6D 84 27 02 6A 84
Not found

L-4 Reset To Zero at MB Start 8E xx xx BD xx xx xx xx

xx 6F 84
Not found

L-3 Decrement When Non-Zero 8E xx xx BD xx xx xx xx

xx 6D 84 27 02 6A 84
Not found

L-3 Reset To Zero at MB Start 8E xx xx BD xx xx xx xx

xx 6F 84
Not found

L-2 Decrement When Non-Zero 8E xx xx BD xx xx xx xx

xx 6D 84 27 02 6A 84
Not found

L-2 Reset To Zero at MB Start 8E xx xx BD xx xx xx xx

xx 6F 84 Not found

The search results, above, would lead one to believe that the “255 Hits” bug was most likely fixed

starting in L-6. As we further explore, below, we discover this to be mostly a correct observation. Note

L-5 is not immediately available and, as such, was not checked as part of this exercise.

Comparison of code from L-4 to L-6

To demonstrate the code was fixed, starting in L-6, below are the comparisons of the two sections of

code mentioned above, between L-4 and L-6.

Shown below is the faulty code from L-4 where the number of hunter ship hits is allowed to decrement

by 1 regardless of its current value (compare with that shown, above, for L-8). This L-4 code is from

$4D30,31 (ROM offset 0x$4D30):

4D30: 8E 05 D3 LDX #$05D3 ; #$0D53 is Hunter ship hits remaining for multiball

4D33: BD 88 8B JSR $888B ; <calls the function specified in next 3 bytes>

4D36: FA BF FF ; IncrementXByPlayerIndexNumber()

4D39: 6A 84 DEC ,X ; Decrement per-player Hunter Ship Hits remaining

4D3B: 8E 05 CF LDX #$05CF ; Per-player target-map for hits remaining

As seen in the L-4 code, above, the number of hunter ship hits remaining is allowed to decrement no

matter what its current value might be. Below is the comparable section of code from L-6 at $4D30,31

(ROM offset 0x4D30) interestingly, location starts at the same WPC address and same ROM offset

between L-4 and L-6:

4D30: 8E 05 D1 LDX #$05D1 ; #$05D1 is Hunter ship hits remaining for multiball

4D33: BD 88 94 JSR $8894 ; <calls the function specified in next 3 bytes>

4D36: FB AB FF ; IncrementXByPlayerIndexNumber()

4D39: 6D 84 TST ,X ; Check value pointed to by X

4D3B: 27 02 BEQ $4D3F ; If value is zero, skip down to $4DDD

4D3D: 6A 84 DEC ,X ; Decrement per-player Hunter Ship Hits remaining

4D3F: 8E 05 CD LDX #$05CD ;

Next the second part of code that cites the ‘hunter ship hits remaining’ value, as described above for L-8,

is during multiball start where it was observed that this hits-remaining value is reset to 0 at start of

multiball. Below will compare this portion of code between L-8 and L-4.

In the L-8 code at multiball start, the clearing of the ‘hunter ship hits remaining’ value is preceded by a

function call to survey game state and branch to end if not ready for multiball. After the applicable code

is a call to system function with parameter bytes 00 1B, as shown below from L-8 starting at $6C83,31

(ROM offset 0x46C83):

6C80: BD F7 59 JSR $F759 ; Checks state variables. Z-set means okay to proceed.

6C83: 7E 6C 86 JMP $6C86 ; <nop>

6C86: 26 52 BNE $6CDA ; If Z-clear, branch to end of function

 ;

6C88: 8E 06 03 LDX #$0603 ; #$0603 is Hunter ship hits remaining for multiball

6C8B: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6C8E: 7E 6C 91 JMP $6C91 ; <nop>

6C91: 6F 84 CLR ,X ; Ensure # of hunter ship hits is zero

 ;

6C93: BD 88 D5 JSR $88D5 ; Call5253,39WithXParameterBytes()

6C96: 00 1B ;

Observing the corresponding code from L-4 reveals that, indeed, there is no such clearing of the ‘hunter

ship hits remaining’ value at this same location (nor can such clearing be found anywhere in the L-4

ROM image). Shown below is the same region of code from L-4 starting at $6C1B,31 (ROM offset

0x6C1B):

6C1B: BD 88 8B JSR $888B ; <calls the function specified in next 3 bytes>

6C1E: F6 E8 FF ; Checks state variables. Z-set means okay to proceed.

6C21: 26 4B BNE $6C6E ; If Z-clear, branch to end of function

 ;

6C23: 7F 05 D3 CLR $05D3 ; clear $05D3

 ;

6C26: BD 88 6B JSR $886B ; Calls function with 00 1B parameter bytes

6C29: 00 1B ;

As shown, above, the L-4 code had a single clearing of a single byte in ram at $05D3 where the L-8 code

(above) has the clearing of the per-player ‘hunter-ship-remaining’ value. It’s not immediately clear what

the $05D3 byte tracks but it certainly is not a per-player value since no function is called to select 1 of 4

bytes from the address. The L-4 just cleared $05D3 and this was replaced. There doesn’t appear to be

any corresponding single-byte clear in the L-8 around this same part of the code, so it seems evident

that this was clearly a coding bug that somebody replaced with the correct code we see in L-8. Below is

the corresponding code from L-6 at $6C1F,31 (ROM offset 0x6C1F):

6C1F: BD 88 94 JSR $8894 ; <calls the function specified in next 3 bytes>
6C22: F7 D4 FF ; Checks state variables. Z-set means okay to proceed.

6C25: 26 53 BNE $6C7A ; If Z-clear, branch to end of function

6C27: 8E 05 D1 LDX #$05D1 ; #$05D1 is Hunter ship hits remaining for multiball

6C2A: BD 88 94 JSR $8894 ; <calls the function specified in next 3 bytes>

6C2D: FB AB FF ; IncrementXByPlayerIndexNumber()

6C30: 6F 84 CLR ,X ; Ensure # of hunter ship hits is zero

6C32: BD 88 74 JSR $8874 ; Calls function with 00 1B parameter bytes

6C35: 00 1B ;

As shown above, the new code started in L-6 where the multiball start includes the reset of per-player

‘hunter ship hits remaining’ value to 0.

These examples also help show the reason why a lot of the L-8 code has “JMP” instructions that simply

jump to the very next instruction. The older code utilized the function that calls the function specified in

the following 3 bytes, however in cases where the following 3 bytes are in non-banked ROM, the code

can simply call such function directly instead of using the intermediate function. It seems the newer

code elected to leave the JMP instructions as placeholder instead of omitting such instructions entirely.

In conclusion, the text above demonstrates that the 255-Hits bug was corrected in L-6 and continues to

be fixed in L-8, and the subsequent s/w releases as well.

Reproducing the 255-Hits Issue in L-4
With the assumption being that the problem was most likely fixed starting in L-6, the goal shifted to

reproduction of the “255 Hits” issue in an L-4 ROM image. Once the problem can be reliably reproduced

in L-4 then the same procedure can be done on subsequent ROM images to support the conclusion that

the “255 Hits” issue no longer occurs on ROM images starting at L-6.

A description of the “255 Hits” problem came in with the best clues that eventually lead to discovery for

a way to reproduce the original problem. A big Thank You is deserved to the source of this information.

The description mentioned the idea that the hunter ship targets sometimes are not lit consistently as

compared with the reported number of targets remaining. It is when there are 2 targets lit while the

game reports 1 target remaining is when the trouble is most likely to occur. When there are 2 targets lit

but 1 target remaining, the targets remaining will report at 255 if at the next “fire at will” attempt both

of the 2 lit targets are hit at, seemingly, the same time.

After a lengthy period of reproduction failures and code analysis, it became apparent that the pinball

simulator, which was the primary sandbox where bug reproduction efforts were being attempted, was

most likely in need of modification in order to hit the issue. With analysis leading us to believe that the

problem was most likely due to hunter targets being hit soon after the initial, successful, hunter ship hit,

the simulator was modified in the following ways:

 The on-screen display reports which simulated hunter-target will be triggered when gun-trigger

is pulled. This makes it easier to “aim” the cannon on the simulator.

 Immediately after the gun-trigger pull, the two targets adjacent to the ‘hit’ target are then

repeatedly toggled, back and forth, for a few seconds (i.e. while the hunter ship explosion

animation is playing if ship was hit).

These modifications help expose bugs in the game code that occur when the ball, on a real machine, hits

the hunter ship targets immediately after hitting a lit target. For clarity, the modified simulator has the

following characteristics (where “T1” is the top-most target and “T5” is the bottom-most target):

Five-Bank Target
Hit from Cannon

Modified Simulator Behavior
After the intended Target-Hit from Cannon, the following behavior ensues

Top, T1 Targets T5 and T2 alternately are hit, 25 times each, over a period of a couple seconds

T2 Targets T1 and T3 alternately are hit, 25 times each, over a period of a couple seconds

T3 Targets T2 and T4 alternately are hit, 25 times each, over a period of a couple seconds

T4 Targets T3 and T5 alternately are hit, 25 times each, over a period of a couple seconds

Bottom, T5 Targets T4 and T1 alternately are hit, 25 times each, over a period of a couple seconds

With this modification in place, for example, after successfully hitting lit target T3, the two other targets

T2 and T4 automatically get hit, back and forth, rapidly over a couple seconds. This happens regardless

of the lit state of these two targets. The modified simulator is simulating a ball or human manually

hitting the other two targets very quickly after the initial hunter ship target had been hit. Although this

particular scenario is not realistic, it does appear to exercise the problematic code path which the real

game sometimes experiences with the ball hitting the hunter ship targets in such a way as to experience

the “255 Hits” issue on the real game (running L-4 or older) from time to time. Later it is evident that it

is the most immediate target hits that contribute to the problem so hitting the adjacent targets only 1

time instead of 25 times each should have been sufficient to reproduce the issue.

Recipe for Reproducing the 255-Hits issue in L-4

Although there are many possible combinations of targets and possible ways for the 5-bank targets to

be hit and likely encounter the problem, the following procedure was crafted using the modified pinball

simulator to repeatedly and predictably encounter the 255-Hits bug. This recipe could be used as the

basis for a real Terminator 2 machine to also hit the 5-bank targets so as to also cause the problem.

To hit the issue, you must be running L-4 or older software, such as shown below

Step 1. Reach the point of “5 Hits Remaining”

The problem could happen earlier than this, however it is easier to describe a procedure to reproduce

the issue starting at this point at the 5th multiball where the game reports that you need 5 hits to start

multiball.

Step 2. Cannon Shot 1: Shoot the Second, T2, Target

Refer to the modified image pulled from the T2 manual. Here all five target lamps are lit and the second

target ,T2, is hit for a successful hunter ship strike.

As previously described, immediately after the successful hunter ship hit on the T2 target, the simulator

will automatically toggle the target immediately above and below the hit target, rapidly, during the next

few seconds while the hunter ship explosion animation is playing.

Immediately after the above takes place, the game performs its usual report of targets remaining. In

this case, the result of the above activity is that the game reports 2 targets remaining. Since the

previous cannon shot hit target T2 and (with simulator mod) also hit T1 and T3, it is reasonable to expect

that the game registered 3 hit targets with 2 remaining.

Step 3. Cannon Shot 2: Shoot the Second, T2, Target (again)

When the cannon is reloaded for the 2nd shot attempt, the first sign of trouble appears. The game

reports “2 Targets Remaining” on the game display, however the actual lit targets show 3 lamps lit. In

this case, the game will light lamps for T2, T4, and T5. This is especially interesting since the first target

that was hit at cannon shot #1, was the target T2 but T2 is still lit. Further text in this document, below,

will explain why this happened (essentially, the game forgets that T2 was hit when a secondary lit target

is detected as being hit immediately afterwards).

For this step of the procedure, hit the (lit) target T2 with the cannon shot, again.

In this case, the modified pinball simulator repeatedly hits the targets immediately above and

immediately below the T2 target for a few seconds, however in this case the targets are not lit and no

perceivable effect occurs from these unlit target hits.

After this 2nd cannon shot strikes the T2 lit target (again) the display then reports 1 hit remaining.

Step 4. Cannon Shot 3: Shoot the Fourth, T4, Target

At the 3rd cannon load, the game reports, again, that 1 target hit remains before multiball will start. This

time, the game continues to show mismatch with the actual lit targets. In this case, the lit targets are

now the bottom two targets, T4 and T5.

It is worth noting that at this time the game is in the state that was previously described as the main

trigger for hitting the 255-hits problem. The game is reporting 1 hit remaining but showing two lit lamps.

The information that was provided is that hitting both of the lit targets at this point will cause the 255-

hits issue. Using the modified pinball simulator we will see that this is, indeed, the case. On a real game,

this is when the ball would strike both targets at the same time.

At this step, hit target T4 with the cannon shot.

After successfully hitting the lit T4 target, the game shows the hunter ship explosion while the modified

pinball simulator rapidly hits the target immediately above and below the T4 target. In this case, the

simulator hits T3 and T5 immediately after the T4 target was hit.

When the T4 target was hit, the game subtracted 1 from the hits remaining, taking the value to 0. When

the T5 target is hit immediately afterwards, the game subtracts 1, again, from the hits remaining which

takes it to value 255 since, as previously described, the game code treats the value as an unsigned 8-bit

number so we get the report of 255 instead of negative 1.

For this procedure, this is the end of the demonstration of the “255 hits” issue. A remaining step can

also be applicable for other scenarios in which the game might have reached this state, as described

next.

Step 5. Cannon Shot 4: Last Lit Lamp

In some scenarios when this problem occurs, there could be 1 lamp remaining lit. Loading the cannon

again may reveal one of the previously two lit targets is still lit. Shooting this remaining lit target will

cause the game to subtract 1 from the target-remaining counter and report the following:

Subsequent cannon loads reveal the futility of subsequent cannon loads since there are no longer any

more lit targets. The “hits remaining” value can no longer be reduced by using the cannon. For the

player to get their “hits remaining” value to reset back to normal value, they need to start a multiball

using the left loop or from the database award. After starting a multiball in these ways, the subsequent

multiballs via the cannon will then resume at a normal value at “5 Targets Remaining” in this case.

Reproduction Attempts of the 255-Hits Issue in L-8
With the procedure defined for hitting the problem in L-4, it can now be attempted on L-8. As

previously analysis has shown, it is not expected to ever see the “255 Targets Remaining” on any T2

running L-6 and above.

The attempts to reproduce the issue in L-8 using the same steps described for L-4 are shown in the table

below. These steps include the modified simulator that hits adjacent targets immediately after the

successful hunter ship hit.

Step Description Result

1 Reach the point of “5 Hits Remaining” Regular game play to reach this point. No problems.

2 Cannon Shot 1: Shoot the Second, T2, Target “2 Targets Remaining” Next lit targets T2, T4, T5, same as L-4

3 Cannon Shot 2: Shoot the Second, T2 Target (again) “1 Target Remaining” Next lit targets T4, T5, same as L-4

4 Cannon Shot 3: Shoot the Fourth, T4, Target Multiball starts, NO occurrence of the 255-hits problem.

As highlighted in the table above, it is immediately apparent that the game has fixed the problem where

the “hits remaining” value will no longer decrement below zero and, as such, never report “255 targets

remaining”. It is also apparent that there is still a separate bug whereby the number of lit targets are

not always consistent with the number reported in the “Targets Remaining” message. This issue exists

even in L-6, L-8, L8.1, L8.2 and L8.3.

Note, it took several attempts to adjust the pinball simulator to trigger the adjacent targets at precisely

the right moment in order to reproduce the issue. After several adjustments it was shown, as

highlighted above, that a coding problem can be exposed in L-8 where lit 5-bank lamps are not in sync

with the reported targets remaining.

It is evident in the code samples that the code was fixed to prevent the possibility that the counter could

decrement to 255. Because of this, multiball will always be achieved; however we have this obvious

remaining issue where the player can occasionally get incorrect and confusing set of lit targets.

Summary of Observations from the 255-Hits Investigation
The overall analysis into the 255-Hits problem investigation results in several distinct observations.

 Immediately after a successful hunter ship hit, there is a small window of time in which other lit

5-bank targets may also be hit which will reduce the “Targets Remaining” count. This certainly

appears to be intentionally designed this way. In L8.4 an adjustment is being added to make this

adjustable so that only a single hunter ship hit is allowed per cannon shot.

 Immediately after a hunter ship miss, the same small window of time exists where a successful

target hit can be detected which will proceed to be processed as a hunter ship hit. This behavior

is in all T2 software. This also appears to be intentionally coded this way to provide a little

benefit to the player and to add some fairness when an unlit target and a lit target are hit

seemingly simultaneously. Further analysis of this behavior will follow, below.

 Immediately after a successful hunter ship hit, the same small window of time exists where

subsequent 5-bank target hits can result in a mismatch between the number of lit targets and

the number reported for “Targets Remaining”. This issue presumably exists in all T2 software

through L8.3. It is subject to being corrected in L8.4 as a bug fix.

 The “Targets Remaining” counter was being allowed to decrement below zero. As shown above,

this issue has been corrected starting in L-6 and requires no further analysis or correction.

The following text will further analyze these issues and explore the code changes needed to address

them, as needed.

Hunter Ship 5-Bank Target Logic
In order to understand the nature of the observations that have been made as part of the 255-hits

investigation, the logic that is used in L-8 (and L8.1, L8.2 and L8.3) has been analyzed and is summarized

below.

For readers not interested in technical details, refer to the subsequent section “Hunter Ship 5-Bank

Target Logic Summary” for an abbreviated description of the 5-bank target logic.

Refer to the L8.3 document where the switch table is described where it is shown how each game

switch is associated with an 11-byte table entry where 3 of the bytes represent the WPC address where

code will call to handle such switch closure (or switch opening, or both in some cases). Shown below is

the part of the table corresponding to the 5-bank targets. This portion of the table is at $4BA7,3D, ROM

offset 0x74BA7:

4BA7: 00 08 ; SwitchTableEntry39, 71, Target 1 High

4BA9: 4B 93 31 ; SwitchMatrixHdlr_Target1High()

4BAC: 3C 11 80 ;

4BAF: 40 00 04 ;

 ;

4BB2: 00 08 ; SwitchTableEntry3A, 72, Target 2

4BB4: 4B 95 31 ; SwitchMatrixHdlr_Target2()

4BB7: 3C 12 80 ;

4BBA: 40 00 04 ;

 ;

4BBD: 00 08 ; SwitchTableEntry3B, 73, Target 3

4BBF: 4B 97 31 ; SwitchMatrixHdlr_Target3()

4BC2: 3C 13 80 ;

4BC5: 40 00 04 ;

 ;

4BC8: 00 08 ; SwitchTableEntry3C, 74, Target 4

4BCA: 4B 99 31 ; SwitchMatrixHdlr_Target4()

4BCD: 3C 14 80 ;

4BD0: 40 00 04 ;

 ;

4BD3: 00 08 ; SwitchTableEntry3D, 75, Target 5 Low

4BD5: 4B 9B 31 ; SwitchMatrixHdlr_Target5Low()

4BD8: 3C 15 80 ;

4BDB: 40 00 04 ;

As highlighted in the table portion, above, the WPC address for each of the 5 switches is a function

located in bank $31 at closely addressed functions: $4B93,31, $4B95,31, $4B97,31, $4B99,31 and

$4B9B,31. These correspond to ROM offsets 0x44B93, 0x44B95, 0x44B97, 0x44B99 and 0x44B9B,

respectively.

Shown later in this section, these all end up calling a common switch handler function. It’s unclear why

these 5 switches don’t use the exact same address of the switch handler function. All switch handler

functions are called with indicator of which switch has been closed so that a common switch handler can

be called. The switch handler itself can then discover which switch closure is responsible for the

invocation of that function.

Shown here is a simplified flowchart depicting what happens in $4B9B,31 when a 5-bank target is hit.

The logic depicted above shows how the handler for the 5-bank has a few memory flags and scheduled

function ID lookups to determine how to proceed. Refer to the legend, below for details.

Resource Description

Memory Flag $CA Set when skill shot is being attempted

Memory Flag $48 Set when cannon shot is being attempted during multiball

Function ID 0087 Function that awards skill shot hit

Function ID 0084 Short lived function that runs when cannon is fired tracking time until target hit or timeout/miss

Function ID 0085 Function that runs when cannon shot ‘miss’ has been determined, plays “you missed”, etc.

Function ID 00E1 Function that surveys hits results and reports “Targets Remaining” or starts Multiball

Function ID 0088 Function that handles hit target, decrements counter, awards Jackpot/Super Jackpot as needed

$4B9B,31 Common Switch

Handler for all of the 5-bank

target switch closures.

ID 0084 or 00E1

scheduled?

Flag $CA set?
Save hit target number in $D2

Lit target hit?

ID 00E1

scheduled?

done
Schedule ID 0085

“you missed”

Lit target hit?

Checking for

“Fire at will”

Checking for

Skillshot

Schedule ID 0087

skillshot award

Ordinary target-hit

Schedule ID 0088

5-bank hits auditor

Flag $48 set?

Schedule ID 00E1

5-bank hit during

regular gameplay result

award

Checking for shot

during MB

Checking if another

5-bank target was

recently hit

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

Flowchart:

Switch

Handler

To understand how the various “255-hits” observations could happen, further understanding into some

of the scheduled functions is needed. As depicted, during a “Fire at will” when a lit target is hit, the

function ID 0088 is first scheduled. In the L-8 software this function is located at $4DA1,31, ROM Offset

0x44DA1. Depicted below is an abbreviated version of its logic with some logic steps bundled together

as such details are not imperative for the purpose of illustrating the “255-hits” observations.

Next, the function ID 0085 is depicted below to show the scheduled function logic for when a 5-bank

target is missed. As indicated in the 5-bank handler flowchart, there are multiple ways in which the

0085 function can be scheduled. There is an added detail in that the L-8 code has multiple functions

that get called with the ID value 0085, depending on from where the function is scheduled (such as from

skill shot miss or hunter ship miss). The ID 0085 function depicted in the following flowchart is from the

logic path where the hunter ship miss takes place while trying to start multiball or while trying to get

jackpot or super-jackpot. This is the most relevant version of the 0085 function depiction as it applies to

the “255-Hits” observations.

$4DA1,31 Function ID 0088

5-Bank Hits Auditor

Cancel Function ID 0085

“you missed”

Cancel Function ID 0084

cannon-shot period

Flag $48 set?

Checking for shot

during MB

Award jackpot or super jackpot

as needed. Clear $48 flag.

done

Decrement the per-player hunter ship hits

remaining at $05A1 - $05A4.

L-6 and newer: Only if currently non-zero

Load hit target number from $D2 and use it

to clear a lamp/bit from the per-player 5-

bank target-lit map at $05FF - $0602.

yes

no

Flowchart:

0088

As shown, for the 0085 function the “you missed” handler performs a small sleep followed by the

cancellation of the 0085, 00B4 and 0084 functions along with other cleanup and “you missed” speech

call. The important part of this function as it relates to the “255-Hits” observations is the small window

of time in which the function sleeps. During this sleep is when other scheduled functions are allowed to

run.

Lastly the ID 00E1 function logic is depicted below as it also plays a role in how the various “255-Hits”

observation can take place:

The sleep that takes place at the start of the 00E1 function plays a role in how the various logic scenarios

can take place. This sleep gives time for other scheduled functions to perform their work.

$4F70,31 Function ID 0085

5-Bank Miss Handler

During attempt to start multiball

or jackpot or super-jackpot

Sleep 0.046875 seconds (46.875mS)

Cancel Function ID 0085

“you missed”

Cancel Function ID 00B4

Related to music that plays

when cannon is fired

Cancel Function ID 0084

cannon-shot period

Remaining work: Play “you missed”

speech, extinguish 5-bank lamps, etc.

done

$4C54,31 Function ID 00E1

5-bank hit during regular

gameplay result

Sleep 0.0625 seconds (62.5 mS)

Survey the “Hits Remaining” value and report it.

Play speech for “Nice shot”, explosion

animation, start multiball as needed.

done

Flowchart:

0085

Flowchart:

00E1

With the above logic now established, each of the “255-Hits” observations can now be described in

terms of how and when the previously described functions are invoked. Below is a summary of thee

following cases and scenarios. Scenarios involve specific delays, in milliseconds, between the 1st and 2nd

target hits.

 Case 1: Lit target hit followed by lit target hit

o Scenario 1: Second target detected 0mS after first target

o Scenario 2: Second target detected 50mS after first target

o Scenario 3: Second target detected 75mS after first target

 Case 2: Unlit target hit followed by lit target hit

o Scenario 1: Second target detected 0mS after first target

o Scenario 2: Second target detected 25mS after first target

o Scenario 3: Second target detected 46.875mS after first target

o Scenario 4: Second target detected 50mS after first target

 Case 3: Lit target hit followed by unlit target hit

o Scenario 1: Second target detected 0mS after first target

o Scenario 2: Second target detected 50mS after first target

o Scenario 3: Second target detected 75mS after first target

 Case 4: Unlit target hit followed by unlit target hit

o Scenario 1: Second target detected 0mS after first target

o Scenario 2: Second target detected 25mS after first target

o Scenario 3: Second target detected 50ms after first target

After the following detailed analysis, a summary will be provided to simply describe the timing windows

and behaviors that the L-8 software provides with regard to simultaneous target hits.

In all such cases and scenarios, timing differences could be simply due to the switch gaps on the standup

targets causing slightly longer period of time between each target hit, or perhaps due to a ball hitting

one target more predominantly before hitting the second target, or even a rapid ricochet of the ball

from the first target to a playfield post and back to the second target.

Some notes about function schedule behavior:

 Function ID 0088 is allowed to schedule multiple instances in the scheduler, simultaneously

 Function ID 0088 gets scheduled at the top of the schedule list, in front of the line.

 Function ID 00E1 gets scheduled in a way where existing 00E1 is cancelled first.

o This means only a single 00E1 function is ever in the scheduler at a time.

 Function ID 0085 gets scheduled in a way where existing 0085 is cancelled first.

o This means only a single 0085 function is ever in the scheduler at a time.

Case 1: Lit target hit followed by another lit target hit

In this case, the ball hits both lit targets at, seemingly, the same time causing 2 switch closures to be

registered and processed back-to-back. Depending on the timing, the result can be:

 The player’s “hits remaining” value is decremented for both lit target hits.

 The lit lamps for the remaining hits may become inconsistent with reported “hits remaining”.

For this case, imagine a case where the top three targets are lit, T1, T2, T3 and 3 hits are remaining for

multiball. In this scenario the ball hits between T1 and T2 causing the game software to detect T1

followed by switch T2.

There are multiple ways in which the sequence can go, depending on timing of how quickly the software

detects the secondary hit of switch T2. The text below will go over multiple timing scenarios:

 Scenario 1: Second target detected 0mS after first target

 Scenario 2: Second target detected 50mS after first target

 Scenario 3: Second target detected 75mS after first target

Scenario 1: Second target detected 0mS after first target

In this scenario, the secondary hit on switch T2 is detected immediately after the switch T1 was

processed. In this case, the game processes the 5-bank switch handler for switch T2 before any of the

scheduled functions that were set up during the T1 switch handling had a chance to start:

1. The 5-bank switch-handler called on behalf of T1 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T1 switch number into $D2 as the hit target

c. Detected a lit target was hit, add function ID 0088 to the scheduler

Flowchart:

Switch

Handler

d. Flag $48 is not set, add function ID 00E1 to the scheduler

2. The 5-bank switch-handler called on behalf of T2 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T2 switch number into $D2 as the hit target, overwriting T1 that was in $D2.

c. Detected a lit target was hit, add function ID 0088 to the scheduler

d. Flag $48 is not set, add function ID 00E1 to the scheduler

i. Since step 1.d already added it, the same 00E1 function gets re-scheduled.

3. The ID 0088 Function is called due to the T1 switch handler logic at step 1.c.

a. There is currently no function ID 0085 running (no ID 0085 to cancel)

b. The function ID 0084 is cancelled from the scheduler (cannon shot period)

c. Flag $48 is not set:

i. Decrement the per-player “hits remaining” value from 3 to 2

ii. Load hit target number from $D2 and clear its lamp from per-player 5-bank map

In this case, due to Step 2.b, this clears lamp for target T2 and not T1

4. The ID 0088 Function is called due to the T2 switch handler logic at step 2.c.

a. There is currently no function ID 0085 running (no ID 0085 to cancel)

b. The ID 0084 was cancelled at step 3.b (no ID 0084 to cancel)

c. Flag $48 is not set:

i. Decrement the per-player “hit remaining” from 2 to 1

ii. Load hit target number from $D2 and clear its lamp from per-player 5-bank map

In this case, due to step 3.c.ii, the lamp for the value at $D2 was already cleared

5. The ID 00E1 Function is called due to step 2.d.i

a. Sleep for 0.0625 seconds starts and completes

b. Function reports “1 Hit Remaining”

For readers who are following along, it should be evident from the above scenario how it is that the

game can get into a situation where the reported “Hits remaining” doesn’t match the set of lit targets.

The game saves the hit target number in ram address $D2 allowing multiple target hits to overwrite the

value at $D2 before the value of $D2 has been processed by the 0088 function. The above sequence

results in the player “hits remaining” to reach value 1 but the player’s 5-bank target lit-map only

extinguished the lamp for T2, which means the lamps for T1 and T3 are still illuminated at the next

cannon shot attempt.

Scenario 2: Second target detected 50mS after first target

In this scenario, the secondary hit on switch T2 is detected 50mS after the switch T1 was processed.

Prior to this 2nd target hit on T2, the game had already completed the 0088 function which was added to

the scheduler by the T1 switch hit. This scenario demonstrates the logic that allows multiple target hits

to count during the same cannon shot without incurring any mismatch on the 5-bank lit target map.

1. The 5-bank switch-handler called on behalf of T1 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T1 switch number into $D2 as the hit target

Flowchart:

0088

Flowchart:

0088

Flowchart:

00E1

Flowchart:

Switch

Handler

Flowchart:

Switch

Handler

c. Detected a lit target was hit, add function ID 0088 to the scheduler

d. Flag $48 is not set, add function ID 00E1 to the scheduler

2. The ID 0088 Function is called due to the T1 switch handler logic at step 1.c.

a. There is currently no function ID 0085 running (no ID 0085 to cancel)

b. The function ID 0084 is cancelled from the scheduler (cannon shot period)

c. Flag $48 is not set:

i. Decrement the per-player “hits remaining” value from 3 to 2

ii. Load hit target number from $D2 and clear its lamp from per-player 5-bank map

In this case, due to Step 1.b, this clears lamp for target T1, as expected

3. The ID 00E1 Function is called, it was originally scheduled at step 1.d

a. Sleep for 0.0625 seconds (62.5 mS) starts

4. Approximately 50mS elapses

5. The 5-bank switch-handler called on behalf of T2 switch closure

a. ID 0084 is NOT found in the scheduler, was cancelled at step 2.b (cannon shot period)

b. ID 00E1, however, is found in the scheduler, added at step 1.d

c. Save T2 switch number into $D2 as the hit target

d. Detected a lit target was hit, add function ID 0088 to the scheduler

e. Flag $48 is not set, add function ID 00E1 to the scheduler

i. Since step 1.d already added it, the same single function is re-scheduled.

ii. The existing 00E1 from step 3 is cancelled and new one is scheduled to begin.

6. The ID 0088 Function is called due to the T2 switch handler logic at step 5.d.

a. There is currently no function ID 0085 running (no ID 0085 to cancel)

b. The ID 0084 was cancelled at step 2.b (no ID 0084 to cancel)

c. Flag $48 is not set:

i. Decrement the per-player “hit remaining” from 2 to 1

ii. Load hit target number from $D2 and clear its lamp from per-player 5-bank map

Due to step 5.c, this clears lamp for target T2, as expected

7. The ID 00E1 Function is called, it was scheduled at step 5.e.ii.

a. Sleep for 0.0625 seconds starts and completes

a. Function reports “1 Hit Remaining”

The scenario above shows the case when a player hits multiple targets with a single cannon shot. The

result is the correct number of “hits remaining” and a correct lit target map on the subsequent cannon

shot attempt. The most interesting part of this depiction is the highlighted step that reveals the

secondary lit target hit effectively restarts the 62.5mS timer during which a subsequent lit target could

be registered and counted against the hits remaining.

Scenario 3: Second target detected 75mS after first target

In this scenario, the secondary hit on switch T2 is detected 75mS after the switch T1 was processed.

Prior to this 2nd target hit on T2, the game had already completed the 0088 function which was added to

the scheduler by the T1 switch hit. Additionally, since 75mS elapsed, the 00E1 function was also allowed

Flowchart:

Switch

Handler

Flowchart:

0088

Flowchart:

0088

Flowchart:

00E1

Flowchart:

00E1

to run to completion. This scenario is provided out of completeness to show how the sequence would

occur in the case where the second target hit was delayed (such as a ball hitting first T1 target then

bouncing off a post to come back and hit the secondary target T2).

1. The 5-bank switch-handler called on behalf of T1 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T1 switch number into $D2 as the hit target

c. Detected a lit target was hit, add function ID 0088 to the scheduler

d. Flag $48 is not set, add function ID 00E1 to the scheduler

2. The ID 0088 Function is called due to the T1 switch handler logic at step 1.c.

a. There is currently no function ID 0085 running (no ID 0085 to cancel)

b. The function ID 0084 is cancelled from the scheduler (cannon shot period)

c. Flag $48 is not set:

i. Decrement the per-player “hits remaining” value from 3 to 2

ii. Load hit target number from $D2 and clear its lamp from per-player 5-bank map

In this case, due to Step 1.b, this clears lamp for target T1, as expected

3. The ID 00E1 Function is called due to step 2.d

a. Sleep for 0.0625 seconds starts and completes

b. Function reports “2 Hits Remaining”

4. Approximately 75mS elapses

5. The 5-bank switch-handler called on behalf of T2 switch closure

a. ID 0084 is not found in the scheduler, was cancelled at step 2.b (cannon shot period)

b. ID 00E1 is not found in the scheduler, it ran and completed after step 3

c. Target T2 hit is treated as an ordinary game-play target hit

The example shown above shows how the delayed 5-bank hit is simply treated as an ordinary target hit

after the 00E1 function, after having been scheduled due to T1 target hit, has been given its chance to

run to completion. The follow-up hit on target T2 gets doesn’t count toward “hits remaining” and is

treated as a regular target hit that happens during game play.

Case 2: Unlit target hit followed by a lit target hit

In this case, the ball hits two targets at, seemingly, the same time, one is unlit and the other is lit. The

game software detects the unlit target first followed by the lit target hit.

In this case the result can be:

 The player’s “hits remaining” value is decremented for the lit target hit.

This scenario is worth examining because it shows how the game technically detected a ‘miss’ at first

however it allows for a tiny period of time for the second hit on a lit target to get counted as a successful

target hit.

Flowchart:

Switch

Handler

Flowchart:

Switch

Handler

Flowchart:

00E1

Flowchart:

0088

Imagine a case where the bottom two targets are lit, T4 and T5 and 2 hits are remaining for multiball. In

this scenario the ball hits between T3 and T4 causing the game software to detect hit on unlit T3

followed by lit target T4.

There are multiple ways in which the sequence can go, depending on timing of how quickly the software

detects the secondary hit of switch T4. The text below will go over multiple timing scenarios:

 Scenario 1: Second target detected 0mS after first target

 Scenario 2: Second target detected 25mS after first target

 Scenario 3: Second target detected 46.875mS after first target

 Scenario 4: Second target detected 50mS after first target

Scenario 1: Second target detected 0mS after first target

In this scenario, both targets are hit at seemingly the same time and the game processes the unlit target

T3 immediately followed by processing of the lit target T4.

1. The 5-bank switch-handler called on behalf of T3 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T3 switch number into $D2 as the hit target

c. Detected a lit target was NOT hit, ID 00E1 is not scheduled

Flowchart:

Switch

Handler

i. Add function ID 0085 to the scheduler for “you missed”

2. The 5-bank switch-handler called on behalf of T4 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T4 switch number into $D2 as the hit target

c. Detected a lit target was hit, add function ID 0088 to the scheduler

d. Flag $48 is not set, add function ID 00E1 to the scheduler

3. The ID 0088 Function is called due to the T4 switch handler logic at step 2.c.

a. There IS currently function ID 0085 “you missed’ scheduled and it is cancelled.

b. The function ID 0084 is cancelled from the scheduler (cannon shot period)

c. Flag $48 is not set:

i. Decrement the per-player “hits remaining” value from 2 to 1

ii. Load hit target number from $D2 and clear its lamp from per-player 5-bank map

In this case, due to Step 2.b, this clears lamp for target T4, as expected

4. The ID 00E1 Function is called due to step 2.d

d. Sleep for 0.0625 seconds starts and completes

e. Function reports “1 Hit Remaining”

The sequence above shows how the initial “miss” gets overruled by the immediate “hit” that takes place

afterwards. This allows for a ball strike that hits two targets at seemingly the same time, gives

preference to the lit target.

Scenario 2: Second target detected 25mS after first target

In this scenario, both targets are hit a seemingly the same time and the game processes the unlit target

T3 shortly followed by processing of the lit target T4 25mS later. In this scenario the T4 target is

detected after the 0085 “you missed” function is started but not completed. The secondary hit on T4

takes place during the sleep that occurs at the start of the 0085 “you missed” function.

1. The 5-bank switch-handler called on behalf of T3 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T3 switch number into $D2 as the hit target

c. Detected a lit target was NOT hit, ID 00E1 is not scheduled

i. Add function ID 0085 to the scheduler for “you missed”

2. The ID 0085 Function is called due to the T3 switch handler logic at step 1.c.i

a. The 0.046875 sleep is started

3. Approximately 25mS elapses

4. The 5-bank switch-handler called on behalf of T4 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T4 switch number into $D2 as the hit target

c. Detected a lit target was hit, add function ID 0088 to the scheduler

d. Flag $48 is not set, add function ID 00E1 to the scheduler

5. The ID 0088 Function is called due to the T4 switch handler logic at step 4.c.

a. There IS currently function ID 0085 “you missed’ scheduled and it is cancelled.

Flowchart:

Switch

Handler

Flowchart:

0088

Flowchart:

00E1

Flowchart:

Switch

Handler

Flowchart:

0085

Flowchart:

Switch

Handler

Flowchart:

0088

b. The function ID 0084 is cancelled from the scheduler (cannon shot period)

c. Flag $48 is not set:

i. Decrement the per-player “hits remaining” value from 2 to 1

ii. Load hit target number from $D2 and clear its lamp from per-player 5-bank map

In this case, due to Step 4.b, this clears lamp for target T4, as expected

6. The ID 00E1 Function is called due to step 4.d

a. Sleep for 0.0625 seconds starts and completes

b. Function reports “1 Hit Remaining”

The scenario depicted above has same result as previous scenario. In this scenario the 0085 “you

missed’ function was allowed to start but during its sleep period, the subsequent T4 target hit was

processed and handled which resulted in the cancellation of the 0085 function and subsequent

treatment of T4 as the hit target.

Scenario 3: Second target detected 46.875mS after first target

This scenario explores what seemed, at first, to be potential trouble area that could happen if the timing

was made slightly longer between the unlit target T3 and the subsequent lit target T4 hit.

In this scenario, both targets are hit at seemingly the same time and the game processes the unlit target

T3 shortly followed by processing of the lit target T4, 46,875mS later. In this scenario the T4 target is

detected after the 0085 “you missed” function is started but not completed. The secondary hit on T4

takes place during the sleep that occurs at the start of the 0085 “you missed” function. In this case the

timing is such that the 0085 function awakens from its sleep after the secondary T4 target hit is

processed and before the 0088 function is allowed to run. Upon further analysis it turns out that this

situation cannot happen, as described below.

1. The 5-bank switch-handler called on behalf of T3 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T3 switch number into $D2 as the hit target

c. Detected a lit target was NOT hit, ID 00E1 is not scheduled

i. Add function ID 0085 to the scheduler for “you missed”

2. The ID 0085 Function is called due to the T3 switch handler logic at step 1.c.i

a. The 0.046875 sleep is started

3. Approximately 46.875mS elapses

4. The 5-bank switch-handler called on behalf of T4 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T4 switch number into $D2 as the hit target

c. Detected a lit target was hit, add function ID 0088 to the scheduler

d. Flag $48 is not set, add function ID 00E1 to the scheduler

5. The ID 0085 Function sleep is completed and its function resumes

a. Cancel function ID 0085 (cancels any other scheduled 0085 functions)

b. Cancel function ID 00B4

Flowchart:

00E1

Flowchart:

Switch

Handler

Flowchart:

0085

Flowchart:

Switch

Handler

Flowchart:

0085

c. Cancel function ID 0084 (cannon shot period)

d. Plays the “you missed” speech and extinguishes 5-bank lamps.

6. The ID 0088 Function is called due to the T4 switch handler logic at step 4.c.

d. There is no 0085 “you missed” scheduled, nothing to cancel

e. The function ID 0084 was cancelled at step 5.c, nothing to cancel

f. Flag $48 is not set:

i. Decrement the per-player “hits remaining” value from 2 to 1

ii. Load hit target number from $D2 and clear its lamp from per-player 5-bank map

In this case, due to Step 4.b, this clears lamp for target T4, as expected

7. The ID 00E1 Function is called due to step 4.d

a. Sleep for 0.0625 seconds completes

b. Function reports “1 Hit Remaining”

In the depicted scenario, the game detected the target miss and plays the “you missed’ speech however

the 0088 and 00E1 are subsequently allowed to proceed which will treat it as a target hit.

Upon further analysis it was found that the way in which the 0088 is added to the scheduler, it is

inserted into the top of the list and, because of this, if the 0085 function is about to wake up from its

sleep, the 0088 function will still be allowed to run prior to 0085. When 0088 runs prior to 0085, the

0088 function will cancel the 0085 function, thus preventing the possibility of the game declaring “you

missed”. Due to this subsequent analysis, the circle-slash symbol is put over the steps above that will

not actually take place. The actual flow will be the same a previously depicted scenario.

Scenario 4: Second target detected 50mS after first target

In this scenario, the unlit target T3 is hit and its code is allowed to run to completion and the lit target T4

is detected 50mS after the unlit target T3 was hit and processed. This scenario is shown for

completeness and to depict how subsequent target hits are treated simply as ordinary 5-bank hits.

1. The 5-bank switch-handler called on behalf of T3 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T3 switch number into $D2 as the hit target

c. Detected a lit target was NOT hit, ID 00E1 is not scheduled

i. Add function ID 0085 to the scheduler for “you missed”

2. The ID 0085 Function is called due to the T3 switch handler logic at step 1.c.i

a. The 0.046875 sleep is started and completes.

b. Cancel function ID 0085 (cancels any other scheduled 0085 functions)

c. Cancel function ID 00B4

d. Cancel function ID 0084 (cannon shot period)

e. Plays the “you missed” speech and extinguishes 5-bank lamps.

3. Approximately 50mS after the first switch hit T3 has elapsed

4. The 5-bank switch-handler called on behalf of T4 switch closure

a. ID 0084 is not running due to step 2.d having cancelled it

b. ID 00E1 is not running due to not having been added to scheduler

Flowchart:

0088

Flowchart:

00E1

Flowchart:

Switch

Handler

Flowchart:

0085

Flowchart:

Switch

Handler

c. Treat T4 hit as an ordinary target hit.

This scenario is essentially a single ‘miss’ followed by a regular game-play target hit of T4. No

unexpected behaviors take place in this scenario.

Case 3: Lit target hit followed by an unlit target hit

In this case, the ball effectively hits two targets at the same time, one is lit and the other is unlit. The

game software detects the lit target first followed by the unlit target.

In this case the result can be:

 The player’s “hits remaining” value is decremented for the lit target hit.

This case is examined for completeness and in contrast to the previous case. In this case the first lit

target hit wins as opposed to the previous case where the first unlit target hit was overruled by the

follow-up lit target hit. Both cases are in favor of awarding the player a hit. In the previous case this is

true even though the game detected a ‘miss’ at first.

Imagine a case where the bottom two targets are lit, T4 and T5 and 2 hits are remaining for multiball. In

this scenario the ball hits between T3 and T4 causing the game software to detect lit T4 followed by unlit

switch T3.

There are multiple ways in which the sequence can go, depending on timing of how quickly the software

detects the secondary hit of switch T3. The text below will go over multiple timing scenarios:

 Scenario 1: Second target detected 0mS after first target

 Scenario 2: Second target detected 50mS after first target

 Scenario 3: Second target detected 75mS after first target

Scenario 1: Second target detected 0mS after first target

In this scenario, both targets are hit at seemingly the same time and the game processes the lit target T4

immediately followed by processing of the unlit target T3.

 Depending on the timing, the result can be:

 The player’s “hits remaining” value is decremented for the lit target hit.

 The lit lamps for the remaining hits may become inconsistent with reported “hits remaining”.

This scenario is interesting because it depicts another way in which the lit lamps can become

inconsistent with the reported “hits remaining” value.

1. The 5-bank switch-handler called on behalf of T4 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T4 switch number into $D2 as the hit target

c. Detected a lit target was hit, add function ID 0088 to the scheduler

d. Flag $48 is not set, add function ID 00E1 to the scheduler

2. The 5-bank switch-handler called on behalf of T3 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T3 switch number into $D2 as the hit target, overwriting the T1 value in $D2

c. Detected a lit target was NOT hit, ID 00E1 is not scheduled

i. Add function ID 0085 to the scheduler for “you missed”

3. The ID 0088 Function is called due to the T4 switch handler logic at step 1.c.

a. There IS currently function ID 0085 “you missed’ scheduled (step 2.c.i) and it is cancelled.

b. The function ID 0084 is cancelled from the scheduler (cannon shot period)

c. Flag $48 is not set:

i. Decrement the per-player “hits remaining” value from 2 to 1

ii. Load hit target number from $D2 and clear its lamp from per-player 5-bank map

In this case, due to Step 2.b, this re-clears lamp for target T3 instead of the lit T4.

4. The ID 00E1 Function is called due to step 1.d

a. Sleep for 0.0625 seconds starts and completes

b. Function reports “1 Hit Remaining”

The sequence above shows how the initial “hit” is sustained and not overruled by the immediate “miss”

that takes place afterwards. This allows for a ball strike that hits two targets at the same time, giving

preference to the lit target.

Flowchart:

Switch

Handler

Flowchart:

0088

Flowchart:

00E1

Flowchart:

Switch

Handler

The result of this, also, is that the two lamps T4 and T5 are still lit at the next cannon shot even though

the reported hits remaining is now 1. As in the previous case/scenario where this happened, this is

because the game allows multiple switch handlers to overwrite the hit target value at $D2 before the

stored value in $D2 is processed by the 0088 function. This means the 0088 function only processes

whatever was the most recent target hit as it updates the player’s 5-bank lit-lamp map.

Scenario 2: Second target detected 50mS after first target

In this scenario, both targets are hit at seemingly the same time and the game processes the lit target T4

followed by processing of the unlit target T3 approximately 50 mS later. The purpose of this scenario is

to show how a delayed secondary hit to an unlit target can get discarded and not even processed as a

regular target hit.

1. The 5-bank switch-handler called on behalf of T4 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T4 switch number into $D2 as the hit target

c. Detected a lit target was hit, add function ID 0088 to the scheduler

d. Flag $48 is not set, add function ID 00E1 to the scheduler

2. The ID 0088 Function is called due to the T4 switch handler logic at step 1.c.

a. There is no 0085 “you missed” scheduled, nothing to cancel

b. The function ID 0084 is cancelled from the scheduler (cannon shot period)

c. Flag $48 is not set:

i. Decrement the per-player “hits remaining” value from 2 to 1

ii. Load hit target number from $D2 and clear its lamp from per-player 5-bank map

In this case, due to Step 1.b, this clears lamp for target T4, as expected

3. The ID 00E1 Function is called due to step 1.d

a. Sleep for 0.0625 seconds starts

4. Approximately 50mS elapses

5. The 5-bank switch-handler called on behalf of T3 switch closure

a. ID 0084 is not found in the scheduler, was cancelled at step 2.b (cannon shot period)

b. ID 00E1 IS found in the scheduler, it was scheduled at step 1.d and is currently in sleep

c. Save T3 switch number into $D2 as the hit target

d. Detected a lit target was NOT hit, ID 00E1 IS currently scheduled, so no further work

6. The ID 00E1 Function, scheduled at step 1.d, awakes from its sleep

a. The sleep started at step 3.a completes

b. Function reports “1 Hit Remaining”

The sequence above shows how the initial “hit” is sustained and not overruled by the immediate “miss”

that takes place afterwards. This allows for a ball strike that hits two targets at the same time, gives

preference to the lit target.

Flowchart:

0088

Flowchart:

00E1

Flowchart:

Switch

Handler

Flowchart:

Switch

Handler

Flowchart:

00E1

This scenario is interesting because it shows that subsequent target misses are discarded and not

treated as an ordinary target hit if they are received during the window of time in which the 00E1 is

performing its sleep.

Scenario 3: Second target detected 75mS after first target

In this scenario, both targets are hit at seemingly the same time and the game processes the lit target T4

followed by processing of the unlit target T3 approximately 75 mS later. The purpose of this scenario is

to show how a delayed secondary hit to an unlit target can get treated as an ordinary target hit.

1. The 5-bank switch-handler called on behalf of T4 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T4 switch number into $D2 as the hit target

c. Detected a lit target was hit, add function ID 0088 to the scheduler

d. Flag $48 is not set, add function ID 00E1 to the scheduler

2. The ID 0088 Function is called due to the T4 switch handler logic at step 1.c.

a. There is no 0085 “you missed” scheduled, nothing to cancel

b. The function ID 0084 is cancelled from the scheduler (cannon shot period)

c. Flag $48 is not set:

i. Decrement the per-player “hits remaining” value from 2 to 1

ii. Load hit target number from $D2 and clear its lamp from per-player 5-bank map

In this case, due to Step 1.b, this clears lamp for target T4, as expected

3. The ID 00E1 Function is called due to step 1.d

a. Sleep for 0.0625 seconds starts and completes

b. Function reports “1 Hit Remaining”

4. Approximately 75mS after the first switch hit T4 has elapsed

5. The 5-bank switch-handler called on behalf of T3 switch closure

a. ID 0084 is not found in the scheduler, was cancelled at step 2.b (cannon shot period)

b. ID 00E1 is not found in the scheduler, it ran to completion after step 3

c. Process the T4 hit as an ordinary target hit.

This scenario depicts what is effectively an ordinary subsequent hit to an unlit target T3 after having

been awarded the successful hit on target T4. There is nothing out of the ordinary in this scenario.

Case 4: Unlit target hit followed by unlit target hit

In this case, the ball effectively hits two targets at the same time, both are unlit.

This case is being analyzed out of completeness and to, perhaps, determine if any potential troubles are

present in this part of the game code.

Imagine a case where the bottom two targets are lit, T4 and T5 and 2 hits are remaining for multiball. In

this scenario the ball hits between T1 and T2 causing the game software to detect unlit T1 followed by

unlit switch T2.

Flowchart:

0088

Flowchart:

Switch

Handler

Flowchart:

Switch

Handler

Flowchart:

00E1

There are multiple ways in which the sequence can go, depending on timing of how quickly the software

detects the secondary hit of target T2. The text below will go over multiple timing scenarios:

 Scenario 1: Second target detected 0mS after first target

 Scenario 2: Second target detected 25mS after first target

 Scenario 3: Second target detected 50ms after first target

Scenario 1: Second target detected 0mS after first target

In this scenario, both targets are hit at seemingly the same time and the game processes the unlit target

T1 immediately followed by processing of the unlit target T2.

1. The 5-bank switch-handler called on behalf of T1 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T1 switch number into $D2 as the hit target

c. Detected a lit target was NOT hit, ID 00E1 is not scheduled

i. Add function ID 0085 to the scheduler for “you missed”

2. The 5-bank switch-handler called on behalf of T2 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T2 switch number into $D2 as the hit target

c. Detected a lit target was NOT hit, ID 00E1 is not scheduled

i. Re-add function ID 0085 to the scheduler for “you missed” (re-schedules 0085)

Flowchart:

Switch

Handler

Flowchart:

Switch

Handler

3. The ID 0085 Function is called due to the T2 switch handler logic at step 2.c.i.

a. The 0.046875 sleep is started and completes.

b. Cancel function ID 0085 (cancels any other scheduled 0085 functions)

c. Cancel function ID 00B4

d. Cancel function ID 0084 (cannon shot period)

e. Plays the “you missed” speech and extinguishes 5-bank lamps.

The sequence above is fairly uneventful except to note that the 0085 “you missed” function gets re-

scheduled when the secondary hit to unlit target T2 takes place. The way in which the 0085 gets

scheduled, it will first cancel any existing 0085 and then add the new 0085 function to the scheduler.

Scenario 2: Second target detected 25mS after first target

In this scenario, both targets are hit at seemingly the same time and the game processes the unlit target

T1 followed by processing of the unlit target T2 25mS later. In this case, the 0085 “you missed” function

is allowed to start and the hit to unlit target T2 happens while the 0085 function is performing its sleep.

1. The 5-bank switch-handler called on behalf of T1 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T1 switch number into $D2 as the hit target

c. Detected a lit target was NOT hit, ID 00E1 is not scheduled

i. Add function ID 0085 to the scheduler for “you missed”

2. The ID 0085 Function is called due to the T2 switch handler logic at step 1.c.i.

a. The 0.046875 sleep is started

3. Approximately 25mS elapses

4. The 5-bank switch-handler called on behalf of T2 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T2 switch number into $D2 as the hit target

c. Detected a lit target was NOT hit, ID 00E1 is not scheduled

i. Re-add function ID 0085 to the scheduler for “you missed” (re-schedules 0085)

ii. The re-schedule will cancel existing 0085 which is sleeping, and start a new 0085.

5. The ID 0085 Function is called due to the T2 switch handler logic at step 4.c.i.

a. The 0.046875 sleep is started and completes.

b. Cancel function ID 0085 (cancels any other scheduled 0085 functions)

c. Cancel function ID 00B4

d. Cancel function ID 0084 (cannon shot period)

e. Plays the “you missed” speech and extinguishes 5-bank lamps.

The sequence above is interesting because it shows how the secondary hit to unlit target T2 effectively

restarted the period in which subsequent target hits will be accepted as a possible hit or miss on the

hunter ship. The hit on unlit target T2 caused the existing sleep from step 2 to get cancelled and such

time period is restarted at step 5.a.

Flowchart:

0085

Flowchart:

Switch

Handler

Flowchart:

Switch

Handler

Flowchart:

0085

Flowchart:

0085

Scenario 3: Second target detected 50mS after first target

In this scenario, both targets are hit at seemingly the same time and the game processes the unlit target

T1 followed by processing of the unlit target T2 50mS later. In this case, the 0085 “you missed” function

is allowed to start and complete before the secondary hit to unlit target T2 happens.

1. The 5-bank switch-handler called on behalf of T1 switch closure

a. ID 0084 is found in the scheduler (cannon shot period)

b. Save T1 switch number into $D2 as the hit target

c. Detected a lit target was NOT hit, ID 00E1 is not scheduled

i. Add function ID 0085 to the scheduler for “you missed”

2. The ID 0085 Function is called due to the T2 switch handler logic at step 1.c.i.

a. The 0.046875 sleep is started and completes.

b. Cancel function ID 0085 (cancels any other scheduled 0085 functions)

c. Cancel function ID 00B4

d. Cancel function ID 0084 (cannon shot period)

e. Plays the “you missed” speech and extinguishes 5-bank lamps.

3. Approximately 50mS after the until T1 switch closure has elapsed.

4. The 5-bank switch-handler called on behalf of T2 switch closure

a. ID 0084 is not found in the scheduler, was cancelled at step 2.d (cannon shot period)

b. ID 00E1 is not found in the scheduler

c. Treat T2 hit as an ordinary target hit.

The sequence above effectively depicts a single target miss followed by an ordinary hit on another unlit

target afterwards. The secondary hit is handled as an ordinary target hit during gameplay since the

initial “miss” has already been handled in full.

Hunter Ship 5-Bank Target Logic Summary
The previous analysis boils the logic of 5-bank hunter ship hit/miss to the following:

 After an initial “hit” there is a 62.5mS window for subsequent target hits/misses.

o Each “hit” during the 62.5mS window restarts the window for another 62.5mS period.

o Any “miss” hits during the 62.5mS window is discarded.

 After an initial “miss” there is a 46.875mS window for subsequent target hits/misses.

o Subsequent “miss” hits during the 46.875mS window cause the window to restart.

o Any “hit” during the 46.875mS window overrides the “miss”, starting a 65.5mS window

 Subsequent “hit” or “miss” are handled per the case of initial “hit”, above.

The set of rules the software appears to be enforcing can be described as follows:

 During a cannon shot attempt, the game allows for the possibility of the ball to hit multiple

targets in the same shot.

 There is a very small window of time the game allows for such multiple target hits to be

detected by the software.

Flowchart:

Switch

Handler

Flowchart:

Switch

Handler

Flowchart:

0085

 If any of the hit targets during this window are lit, then the game will award the hunter ship

strike (even if the first hit target was not lit).

 Any lit targets that are hit during this window count against the “hits remaining” value to start

multiball.

Furthermore:

 Additional target hits during the window can restart the window, increasing its overall time.

 A coding flaw can result in multiple target hits during this window to result in mismatch in the

remaining lit targets as compared to the reported “hits remaining” value. Will be fixed in L8.4.

It is worth pointing out that when you consider how the game will read and process switches in a given

column, there is always a chance that the order in which the switches are processed may not be the

same as the order in which 2 switches have physically closed. Additionally, the switch contact gaps can

affect which of two simultaneously hit targets gets detected as closed first. Because of this, the use of

this window mechanism provides for some fairness in the benefit of the player by awarding the hit even

if an unlit target may have, technically, been hit first.

Hunter Ship 5-Bank Target Logic Summary Example 1

The timeline example below shows the case of an initial hit with subsequent hits/misses.

Summary:

 At T=0, the first lit 5-bank target is hit, game will award a hunter ship hit.

 10mS, A secondary lit 5-bank target is hit, game restarts 62.5mS window.

 70mS, A third 5-bank target is it, it is an unlit target. This “miss” is discarded.

 72.5mS, The (restarted) 62.5mS timer expired and the game awards hunter ship hit (2 target hits)

 80mS, Another 5-bank target is hit, it is an unlit target and is handled as ordinary gameplay hit.

Lit target “hit”, huntership “hit” to be awarded

Lit target “hit”, huntership “hit” to be awarded

Unlit target “miss” discarded

Unlit target “miss” ordinary target hit

62.5mS window

T=0mS 10 72.5 70 80

Hunter Ship 5-Bank Target Logic Summary Example 2

The timeline below shows the case of an initial miss with subsequent hits/misses.

Summary:

 At T=0, the first unlit 5-bank target is hit, game set to declare a hunter ship miss.

 10mS, A secondary lit 5-bank target is hit, game starts a 62.5mS window and will award a hit.

 70mS, A third 5-bank target is it, it is an unlit target. This “miss” is discarded.

 72.5mS, The 62.5mS timer expired and the game awards hunter ship hit (1 target hit)

 80mS, Another 5-bank target is hit, it is an unlit target and is handled as ordinary gameplay hit.

Hunter Ship 5-Bank Target L8.4 Updates
Based on the information presented above, the changes for L8.4 regarding the hunter ship 5-bank

targets are as follows:

 Fix the lit-lamp/targets remaining discrepancy problem

 Add feature adjustment to restrict target hits to 1 per cannon shot

Each of these changes are described in more detail, below.

Fix the lit-lamp/targets remaining discrepancy problem

The problem with lit-lamps not matching the reported “Targets Remaining” is being fixed in L8.4 as a

distinct bug fix. A fairly minimal code change is being added to update the previously depicted switch

handler flowchart for the 5-bank targets.

Lit target “hit”, huntership “hit” will be awarded

Unlit target “miss”, huntership “miss” to be indicated

Unlit target “miss” discarded

Unlit target “miss” ordinary target hit

46.875mS window

T=0mS 10 72.5 70 80

62.5mS window

The updated logic will always result in correctly lit target lamps since the 0088 function will always be

ensured to process the correct target-hit value in the $D2 memory location. The updated flowchart

depicting the bug fix is shown below.

$4B99,31 Common Switch

Handler for all of the 5-bank

target switch closures.

ID 0084 or 00E1

scheduled?

Flag $CA set?
Save hit target number in $D2

Lit target hit?

ID 00E1

scheduled?

done
Schedule ID 0085

“you missed”

Lit target hit?

Checking for

“Fire at will”

Checking for

Skillshot

Schedule ID 0087

skillshot award

Ordinary target-hit

Schedule ID 0088

5-bank hits auditor

Flag $48 set?

Schedule ID 00E1

5-bank hit during

regular gameplay result

award

Checking for shot

during MB

Checking if another

5-bank target was

recently hit

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

L8.4 Lit

Lamp Fix

ID 0088

scheduled?

Been checking

 > 62.5mS ?

Flag $48 set?

no

no

yes

no

yes

yes

Flowchart:

Switch

Handler

The updated logic, as highlighted in green in the flowchart above, will check if the 0088 function is in the

scheduler and, if so, repeatedly check until the 0088 function is no longer in the scheduler. This will only

take place if the $48 flag is not set since the $48 flag is set when the cannon shot is during multiball (for

jackpot or super jackpot attempt). The $48 flag is clear for cannon shots that are being done not during

multiball. The $48 flag clear is when cannon shots are in progression towards multiball. The problem

with lit-lamp mismatch is only for non-multiball cannon shot attempts, and as such, the fix logic is only

done when $48 flag is clear.

Not depicted in the flowchart is that the code will perform small sleep of 15.625mS between each check

of whether function 0088 is in the scheduler. This will attempt 4 times before giving up which is why the

flowchart indicates it will wait up to 62.5mS before giving up. The smallest sleep period allowed is

15.625mS which is why the total wait time is 62.5mS.

The new logic will ensure that the 0088 function, if currently scheduled, is allowed to run to completion

before the current switch handler code will proceed. This means the 0088 function will be ensured to

process the $D2 value and update the lamp map prior to the current switch handler update of $D2 with

the new target number. When the switch handler code is allowed to proceed, it loads $D2 with the

currently hit target number at a moment after the 0088 function had finished reading the previous $D2

value.

In testing on the simulator, the rare times that the 0088 function is in the scheduler during processing

of a 5-bank target, after only a single 15.625mS sleep, is when the subsequent check determines that

the 0088 function is no longer in the scheduler (meaning it had ran to completion so the current switch-

handler can proceed). In the event that the 0088 function is in the scheduler for the entire 62.5mS wait,

then the logic will simply discard the current target hit. It will not accumulate any points. Since the

0088 function is in the scheduler from a previous lit target hit, this discarded target-hit would not be

detrimental to the player since a hit is being awarded (the discarded target hit, in this case, is a

secondary target hit that came in after the initial target hit). The analysis of the 0088 function doesn’t

show any potentially lengthy function run times in this scenario. It is not expected that the 0088

function will be in the scheduler for the full 62.5mS in this scenario and, as such, it is not expected that a

target hit will be discarded by this mechanism.

Add feature adjustment to restrict target hits to 1 per cannon shot

As an enhancement to L8.4, a new adjustment is added in L8.4 to allow the cannon shot to only

accumulate, at most, a single hunter ship strike per cannon shot attempt. This is being added for game

operators who want to increase the difficulty of acquiring multiballs and for players who want to add an

extra level of challenge to the game play.

The inclusion of this new adjustment into the switch handler logic adds new logic to the flowchart, as

depicted below.

$4B99,31 Common Switch

Handler for all of the 5-bank

target switch closures.

ID 0084 or 00E1

scheduled?

Flag $CA set?
Save hit target number in $D2

Lit target hit?

ID 00E1

scheduled?

done
Schedule ID 0085

“you missed”

Lit target hit?

Checking for

“Fire at will”

Checking for

Skillshot

Schedule ID 0087

skillshot award

Ordinary target-hit

Schedule ID 0088

5-bank hits auditor

Flag $48 set?

Schedule ID 00E1

5-bank hit during

regular gameplay result

award

Checking for shot

during MB

Checking if another

5-bank target was

recently hit

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

ID 0088

scheduled?

Been checking

 > 62.5mS ?

Flag $48 set?

no

no

yes

no

yes

yes

L8.4 Lit

Lamp Fix

Flowchart:

Switch

Handler

L8.4

Cannon

1-Shot

00E1 scheduled

<and> Cannon

1-Shot Adj. is “on”

yes

no

The logic for limiting each cannon shot to a single target hit is highlighted in the blue addition to the

switch handler flowchart, above.

As indicated, the logic checks whether the 00E1 function is in the scheduler and, if so, if the new

adjustment for single cannon hit is ‘on’ then the target hit is discarded and no points awarded. If the

00E1 function is not in the scheduler or if the single cannon hit is ‘off’ then logic advances to the

previously described logic to ensure the 0088 function runs to completion.

The 00E1 function is only added to the scheduler when a cannon shot has been attempted during

regular game play outside of multiball and such cannon shot had hit a lit target, thus scheduling the

00E1 function to tally the target hits and report to the user the remaining number of targets for

multiball or launching multiball when all of the lit targets have been hit.

Because of this logic in how 00E1 is used, this updated logic can simply check if a previously scheduled

00E1 function is in the scheduler and, if so, this means that the current switch handler routine is for

purposes of potentially accumulating a subsequent target hit to bundle along with the existing target hit.

If the desire is to not allow subsequent hunter ship hits then the new logic simply needs to discard the

target hit when 00E1 is already running.

Hunter Ship 5-Bank Target L8.4 Code Changes

Shown below is the original L-8 switch handler function for the 5-bank targets. As previously mentioned,

each of the 5-bank targets calls a slightly different starting point into this function but they all end up

running the same code that starts at $4B9B,31, ROM offset 0x44B9B. The following function is mostly,

but not fully annotated.

---;---

 ;

 ;

4B93: 20 06 BRA $4B9B ; SwitchMatrixHdlr_Target1High() A=0x11 B=0x39 top

4B95: 20 04 BRA $4B9B ; SwitchMatrixHdlr_Target2() A=0x12 B=0x3A

4B97: 20 02 BRA $4B9B ; SwitchMatrixHdlr_Target3() A=0x13 B=0x3B

4B99: 20 00 BRA $4B9B ; SwitchMatrixHdlr_Target4() A=0x14 B=0x3C

 ; SwitchMatrixHdlr_Target5Low() A=0x15 B=0x3D bottom

 ;

4B9B: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

4B9E: CA ; 0xCA == Skill Shot

4B9F: 25 2C BCS $4BCD ;

 ; Get here when 0xCA flag is set (C-bit was clear)

 ; This happens during skill shot

4BA1: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4BA4: 00 83 ; ID 0083 (TBD)

4BA6: 24 03 BCC $4BAB ; The c-bit is clear (0083 is running) during skill shot

 ;

4BA8: BD 45 47 JSR $4547 ;

 ;

4BAB: C0 39 SUBB #$39 ; B=sw idx. Subtract 0x39 makes it 0-based target 0..4

4BAD: F1 05 FA CMPB $05FA ; $05FA has skill shot winning index, compare hit target

4BB0: 27 11 BEQ $4BC3 ; If skill shot is hit, branch to $4BC3

 ;

 ; Skill shot was missed

4BB2: F6 05 FA LDB $05FA ; B gets actual winning target

4BB5: CB 11 ADDB #$11 ; Add 0x11 to winning target

4BB7: 1F 01 TFR D,X ; Put result into X

4BB9: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

4BBC: 00 85 ; ID 0085 == This is the "you missed" scheduled function

4BBE: 4D 74 31 ;

4BC1: 20 08 BRA $4BCB ;

 ;

 ; Skill shot was hit, give award

4BC3: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

4BC6: 00 87 ;

4BC8: 4C E5 31 ;

4BCB: 20 79 BRA $4C46 ; Branch to the end, all done handling switch

 ;---

 ;---

 ; Here handling hunter ship hit and check if we're in

 ; a "fire at will" period.

 ;---

 ;---

 ;

4BCD: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4BD0: 00 84 ; ID 0084 Ball-gun-to-Target-Period function is running

4BD2: 24 07 BCC $4BDB ; If 0084 is running = Fire-At-Will mode

 ; Otherwise, if 0084 isn't running then check if 00E1

 ;

4BD4: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4BD7: 00 E1 ; ID 00E1 Hunter ship hit scheduled handler

4BD9: 25 57 BCS $4C32 ; If 00E1 is not running then ordinary target hit

 ; If 00E1 is running then Fire-At-Will mode

 ;

 ; Here when hunter ship crosshairs is running.

 ;

4BDB: C0 39 SUBB #$39 ; Make B 0-based index of hit target 0..4

4BDD: D7 D2 STB $D2 ; Store hit-target in $D2

4BDF: 34 02 PSHS A ;

4BE1: 96 D3 LDA $D3 ;

4BE3: 81 FF CMPA #$FF ; $D3 == 0xFF means we're going for super jackpot.

4BE5: 35 02 PULS A ; Moving target bit is in $05F9

4BE7: 26 07 BNE $4BF0 ;

4BE9: F1 05 F9 CMPB $05F9 ;

4BEC: 27 1C BEQ $4C0A ; If B target index = super jackpot target, we have hit

4BEE: 20 07 BRA $4BF7 ; Super Jackpot missed, go to $4BF7

 ;

 ; --

 ; Here for "fire at will" check target hit

 ; --

4BF0: C6 40 LDB #$40 ;

4BF2: BD 9E DD JSR $9EDD ; Call function that checks if target was hit

4BF5: 24 13 BCC $4C0A ; If c-clear, Go to hunter ship hit, had a genuine hit

 ; --

 ; --

 ;

 ; When Super-Jackpot is missed we land here

 ; When genuine hunter ship miss happens, we land here

4BF7: 1F 89 TFR A,B ;

4BF9: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4BFC: 00 E1 ;

4BFE: 24 30 BCC $4C30 ;

4C00: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

4C03: 00 85 ; ID 0085 == This is the "you missed" scheduled function

4C05: 4F 70 31 ; Sleep 03, Cancels 0085, 00B4, 0084, Clears 0x48 flag

4C08: 20 26 BRA $4C30 ; Done handling hunter ship miss, branch down to return

 ;

 ;

 ; ---------------------------

 ; --== SUPER JACKPOT HIT ==--

 ; ---------------------------

 ; ------------------------------

 ; --== ORDINARY JACKPOT HIT ==--

 ; ------------------------------

4C0A: BD 8B 3D JSR $8B3D ; AddLinkedListEntry()

4C0D: 00 88 ; ID 0088 == 5-bank hits auditor

4C0F: 4D A1 31 ;

4C12: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-clear when flag set

4C15: 48 ; Cannon shot during multiball when flag set (c-clear)

 ; 0x48 bit is 0x08 bit of flags starting at $0328.

 ; So this is 0x80 bit of $0328.

4C16: 24 18 BCC $4C30 ; Branch when c-clear, when flag is set, multiball

4C18: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart() $48 flag is clear (C is set)

4C1B: 00 E1 ;

4C1D: 4C 54 31 ; Hunter ship multiball determinator

4C20: BD 48 8D JSR $488D ;

4C23: BD 48 9E JSR $489E ; Lock2StateSet()

4C26: 86 04 LDA #$04 ;

4C28: C6 01 LDB #$01 ;

4C2A: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4C2D: 6E 5A 3B ;

4C30: 20 14 BRA $4C46 ; Branch to the end, all done handling switch

 ;

 ;---

 ; Here for ordinary target-hit during game play

 ;---

4C32: BD FA A8 JSR $FAA8 ;

4C35: 7E 4C 38 JMP $4C38 ; <nop>

4C38: BD 85 1F JSR $851F ;

4C3B: 38 ;

4C3C: BD 50 DA JSR $50DA ;

4C3F: 80 11 SUBA #$11 ;

4C41: 8B 2D ADDA #$2D ;

4C43: BD CC 3A JSR $CC3A ;

4C46: 7E 99 A2 JMP $99A2 ;

 ;

 ;

---;---

In order to add new logic to the switch handler code, existing code is replaced with a single call to new

function that will handle the new logic. Since there is no available space in the same bank $31 for new

code, the new function is located in bank $3A and called using the WPC function to call function located

in another bank. The changes to the above function are highlighted below:

---;---

 ;

 ;

4B93: 20 06 BRA $4B9B ; SwitchMatrixHdlr_Target1High() A=0x11 B=0x39 top

4B95: 20 04 BRA $4B9B ; SwitchMatrixHdlr_Target2() A=0x12 B=0x3A

4B97: 20 02 BRA $4B9B ; SwitchMatrixHdlr_Target3() A=0x13 B=0x3B

4B99: 20 00 BRA $4B9B ; SwitchMatrixHdlr_Target4() A=0x14 B=0x3C

 ; SwitchMatrixHdlr_Target5Low() A=0x15 B=0x3D bottom

 ;

4B9B: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

4B9E: CA ; 0xCA == Skill Shot

4B9F: 25 2C BCS $4BCD ;

 ; Get here when 0xCA flag is set (C-bit was clear)

 ; This happens during skill shot

4BA1: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4BA4: 00 83 ; ID 0083 (TBD)

4BA6: 24 03 BCC $4BAB ; The c-bit is clear (0083 is running) during skill shot

 ;

4BA8: BD 45 47 JSR $4547 ;

 ;

4BAB: C0 39 SUBB #$39 ; B=sw idx. Subtract 0x39 makes it 0-based target 0..4

4BAD: F1 05 FA CMPB $05FA ; $05FA has skill shot winning index, compare hit target

4BB0: 27 11 BEQ $4BC3 ; If skill shot is hit, branch to $4BC3

 ;

 ; Skill shot was missed

4BB2: F6 05 FA LDB $05FA ; B gets actual winning target

4BB5: CB 11 ADDB #$11 ; Add 0x11 to winning target

4BB7: 1F 01 TFR D,X ; Put result into X

4BB9: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

4BBC: 00 85 ; ID 0085 == This is the "you missed" scheduled function.

4BBE: 4D 74 31 ;

4BC1: 20 08 BRA $4BCB ;

 ;

 ; Skill shot was hit, give award

4BC3: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

4BC6: 00 87 ;

4BC8: 4C E5 31 ;

4BCB: 20 79 BRA $4C46 ; Branch to the end, all done handling switch

 ;---

 ;---

 ; Here handling hunter ship hit and check if we're in

 ; a "fire at will" period.

 ;---

 ;---

 ;

4BCD: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4BD0: 00 84 ; ID 0084 Ball-gun-to-Target-Period function is running

4BD2: 24 07 BCC $4BDB ; If 0084 is running = Fire-At-Will mode

 ; Otherwise, if 0084 isn't running then check if 00E1

 ;

4BD4: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4BD7: 00 E1 ; ID 00E1 Hunter ship hit scheduled handler

4BD9: 25 57 BCS $4C32 ; If 00E1 is not running then ordinary target hit

 ; If 00E1 is running then Fire-At-Will mode

 ;---

 ;---

 ; Call new L8.4 function to fix lamp mismatch, etc

 ;---

;--;---

4BCD: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4BD0: 7A B9 3A ; $7AB9,3A == ROM offset 0x6BAB9

4BD3: 25 5D BCS $4C32 ; C-set == treat it as ordinary target hit.

4BD5: 27 59 BEQ $4C30 ; C-clr and Z-set == silently discard the hit.

4BD7: 7E 4B DB JMP $4BDB ; C-clr and Z-clr == check for hunter ship hit.

4BDA: 12 NOP ; filler instruction

;--;---

 ;---

 ;

 ; Here when hunter ship crosshairs is running.

 ;

4BDB: C0 39 SUBB #$39 ; Make B 0-based index of hit target 0..4

4BDD: D7 D2 STB $D2 ; Store hit-target in $D2

4BDF: 34 02 PSHS A ;

4BE1: 96 D3 LDA $D3 ;

4BE3: 81 FF CMPA #$FF ; $D3 == 0xFF means we're going for super jackpot.

4BE5: 35 02 PULS A ; Moving target bit is in $05F9

4BE7: 26 07 BNE $4BF0 ;

4BE9: F1 05 F9 CMPB $05F9 ;

4BEC: 27 1C BEQ $4C0A ; If B target index = super jackpot target, we have hit

4BEE: 20 07 BRA $4BF7 ; Super Jackpot missed, go to $4BF7

 ;

 ; --

 ; Here for "fire at will" check target hit

 ; --

4BF0: C6 40 LDB #$40 ;

4BF2: BD 9E DD JSR $9EDD ; Call function that checks if target was hit

4BF5: 24 13 BCC $4C0A ; If c-clear, Go to hunter ship hit, had a genuine hit

 ; --

 ; --

 ;

 ; When Super-Jackpot is missed we land here

 ; When genuine hunter ship miss happens, we land here

4BF7: 1F 89 TFR A,B ;

4BF9: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4BFC: 00 E1 ;

4BFE: 24 30 BCC $4C30 ;

4C00: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

4C03: 00 85 ; ID 0085 == This is the "you missed" scheduled function.

4C05: 4F 70 31 ; Sleep 03, Cancels 0085, 00B4, 0084, Clears 0x48 flag

4C08: 20 26 BRA $4C30 ; Done handling hunter ship miss, branch down to return

 ;

 ;

 ; ---------------------------

 ; --== SUPER JACKPOT HIT ==--

 ; ---------------------------

 ; ------------------------------

 ; --== ORDINARY JACKPOT HIT ==--

 ; ------------------------------

4C0A: BD 8B 3D JSR $8B3D ; AddLinkedListEntry()

4C0D: 00 88 ; ID 0088 == 5-bank hits auditor

4C0F: 4D A1 31 ;

4C12: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-clear when flag set

4C15: 48 ; Cannon shot during multiball when flag set (c-clear)

 ; 0x48 bit is 0x08 bit of flags starting at $0328.

 ; So this is 0x80 bit of $0328.

4C16: 24 18 BCC $4C30 ; Branch when c-clear, when flag is set, multiball

4C18: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart() $48 flag is clear (C is set)

4C1B: 00 E1 ;

4C1D: 4C 54 31 ; Hunter ship multiball-determinator

4C20: BD 48 8D JSR $488D ;

4C23: BD 48 9E JSR $489E ; Lock2StateSet()

4C26: 86 04 LDA #$04 ;

4C28: C6 01 LDB #$01 ;

4C2A: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4C2D: 6E 5A 3B ;

4C30: 20 14 BRA $4C46 ; Branch to the end, all done handling switch

 ;

 ;---

 ; Here for ordinary target-hit during game play

 ;---

4C32: BD FA A8 JSR $FAA8 ;

4C35: 7E 4C 38 JMP $4C38 ; <nop>

4C38: BD 85 1F JSR $851F ;

4C3B: 38 ;

4C3C: BD 50 DA JSR $50DA ;

4C3F: 80 11 SUBA #$11 ;

4C41: 8B 2D ADDA #$2D ;

4C43: BD CC 3A JSR $CC3A ;

4C46: 7E 99 A2 JMP $99A2 ;

 ;

 ;

---;---

As shown in the highlighted code addition, above, the new code takes place at the start of non-skill shot

handling where it is about to check for whether or not “Fire at will” mode is in effect. The code replaces

the 0084 and 00E1 scheduler lookup with a call to function at WPC address $7AB9,3A at ROM offset

0x6BAB9.

This new function can return 3 different states to control subsequent code flow:

 Returning C-bit set causes code to treat target hit as ordinary non-multiball 5-bank hit.

 Returning C-bit clear and Z-bit set causes the target hit to be silently discarded.

 Returning C-bit clear and Z-bit clear mean “Fire at Will” mode and game proceeds accordingly

The new function at $7AB9,3A, ROM offset 0x6BAB9, is as follows:

;--;--

 ;

 ; Hunter ship hit mode determinator

 ;

 ; Return c-set to proceed with ordinary 5-bank hit

 ; Return c-clr and z-set to have hit silently discarded

 ; Return c-clr and z-clr to proceed with hunter ship hit

 ;

7AB9: 34 12 PSHS X,A ; $7AB9,3A == ROM offset 0x6BAB9

 ;

7ABB: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

7ABE: 00 E1 ; ID 00E1 Hunter ship hit scheduled handler

7AC0: 25 09 BCS $7ACB ; If c-set then hit-period not running, check for 0084

 ;

 ;---

 ; Getting here means the 00E1 function is running which

 ; means a hit has already been registered during this

 ; period. We can now allow normal code to proceed

 ; and allow additional hits to accumulate, OR if the new

 ; adjustment is set to allow only a single hit per

 ; cannon shot, then discard this target hit by

 ; returning C-clr and Z-set.

 ;---

7AC2: BD 86 5B JSR $865B ; LookupGameAdjParameter1andCheckIfEqualsParameter2()

7AC5: 1C 00 ; 0x1C, $1BF1:$1BF2 FeatureAdj028, Cannon 1 Hit Adj=0x1C

7AC7: 27 09 BEQ $7AD2 ; If adj is OFF then allow multiple hits per cannon shot

7AC9: 20 23 BRA $7AEE ; Adjustment is ON, single-hit mode, skip down to return

 ; C-clr and Z-set to discard target hit

 ;---

 ;

7ACB: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

7ACE: 00 84 ; ID 0084 Ball-gun-to-Target-Period function is running

7AD0: 25 20 BCS $7AF2 ; If C-set we are NOT in Fire-At-Will mode,

 ; Return C-set to caller to proceed with ordinary 5-bank

 ; target hit during game play

 ;

 ;---

 ; We are in a "fire at will" mode. Normally code loads

 ; the hit target index into $D2 at this point but here

 ; is where the fix code will wait until 0088, if found

 ; in the scheduler, runs to completion before this code

 ; proceeds. This will fix problem where the $D2 value

 l could be overwritten with different target number

 ; before the 0088 function had a chance to process it

 ; (to clear lamp from map).

 ;---

7AD2: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

7AD5: 48 ; 0x48 flag is set when gun is loaded during multiball

 ; flag 0x48 is RAM $0328 bit 0x80

7AD6: 24 12 BCC $7AEA ; If c-clr then 0x48 flag is set, branch to code that

 ; returns c-clr and z-clr for normal hunter ship hit.

 ; This is done since 0x48 flag being set means the 0088

 ; function won't care about the value of $D2

 ;

 ; Getting here means the 0088 function WILL care about

 ; the value of $D2 so we need to make sure there are no

 ; 0088 functions in the scheduler before proceeding.

 ; This will perform a simple look to wait for the 0088

 ; function to finish its work before proceeding.

 ;

7AD8: 86 04 LDA #$04 ; Will loop this many times waiting for function 0088 to

 ; complete, 62.5mS worth of sleeps

 ;

7ADA: BD 86 90 JSR $8690 ; -\ SearchLinkedListForId() // c-clear = ID is found

7ADD: 00 88 ; | ID 0088 == Cleanup function at multiball start

7ADF: 25 09 BCS $7AEA ; | C-set means 0088 not running, so proceed normally,

 ; | C-clr means 0088 running, wait for it to complete

7AE1: 4A DECA ; |

7AE2: 27 0A BEQ $7AEE ; | For some reason 0088 took longer than expected.

7AE4: BD 83 46 JSR $8346 ; | Sleep()

7AE7: 01 ; |

7AE8: 20 F0 BRA $7ADA ; -/ Keep checking

 ;

 ; Only get here when 0088 is absolutely not currently

 ; scheduled/running and "fire at will" target hit

 ; handler can proceed

 ;

7AEA: 1C FA ANDCC #$00FA ; Return c-clr and z-clr to proceed with hunter ship hit

7AEC: 20 04 BRA $7AF2 ;

 ;

7AEE: 1C FA ANDCC #$00FA ; Return c-clr and z-set to discard the target hit

7AF0: 1A 04 ORCC #$0004 ; This is for paths where the target hit is ignored

 ;

 ;

7AF2: 35 92 PULS A,X,PC ;

 ;

 ;

;--;--

As a reminder, the applicable function IDs for this code change are as follows:

 0084 is the function that is scheduled when cannon is shot. Cannon-to-target period function.

 00E1 is the function that is scheduled to tally hit targets and report remaining or start multiball

 0088 is the function that is scheduled when a target is hit, decrements counter & updates lamps

The new L8.4 code, shown above, performs the following tasks:

 Checks if 00E1 function is in the scheduler:

o If 00E1 is in the scheduler then the Cannon 1 Hit adjustment is checked, if ‘on’ then the

code returns C-clear and Z-set which will cause the target hit to be discarded.

o If 00E1 is NOT in the scheduler then code proceeds to next check.

 Checks if 0084 function is in the scheduler:

o If 0084 is NOT in the scheduler then the code returns C-set to cause the target hit to be

treated as an ordinary game play 5-bank target hit.

o If 0084 is in the scheduler then code proceeds to the next check.

 Checks if 0088 function is in the scheduler:

o If 0088 is in the scheduler then code will wait until it is not in the scheduler or give up

waiting. The wait consists of 4 loops, each consisting of a brief 15.625mS sleep followed

by another check if 0088 is in the scheduler. This loop happens for 4 passes for a wait

up to 62.5mS. If the 0088 is in the scheduler after 62.5mS then code returns C-clear and

Z-set to cause the target hit to be discarded.

o If 0088 is not in the scheduler or the previous loop discovered the 0088 is no longer in

the scheduler then code returns C-clear and Z-clear to allow the target hit to be

processed as a hunter ship hit or miss by the original calling code depicted earlier.

This logic in the new function, above, effectively implements the updated switch handler flowchart

previously depicted. The end result of this added logic is:

 The lit-lamp problem will no longer take place, and

 If the new adjustment is set to ‘on’ the game will only allow a single hit per cannon shot.

 If the new adjustment is set to ‘off’ the game will allow multiple hits per cannon shot which is

the same as the original T-2 code, allowing the player to more rapidly reach multiball with

multiple target hits by a single cannon shot.

Hunter Ship 5-Bank Target L8.4 New Adjustment

Refer to the original text from L8.3 document describing The L-8 Adjustments Memory Map. The table

with all adjustments is updated to accommodate the new L8-4 adjustment as highlighted in the table

portion, below:

Overall
Index

SRAM Bytes Table-and-Index WPC Menu Name WPC Lookup
Index

0x63 (99) $1BE3:$1BE4 FeatureAdjustment021 DrpTrgt Dwn Mlti 0x15

0x64 (100) $1BE5:$1BE6 FeatureAdjustment022 *Profanity 0x16

0x65 (101) $1BE7:$1BE8 FeatureAdjustment023 *Attract Mode 0x17

0x66 (102) $1BE9:$1BEA FeatureAdjustment024 *Animation Code 0x18

0x67 (103) $1BEB:$1BEC FeatureAdjustment025 *Lamp Driver 0x19

0x68 (104) $1BED:$1BEE FeatureAdjustment026 *Mb Start Dt Actn 0x1A

0x69 (105) $1BEF:$1BF0 FeatureAdjustment027 *Timed 3Bank Lamp 0x1B

0x6A (106) $1BF1:$1BF2 FeatureAdjustment028 **Cannon 1 Hit 0x1C

0x6B (107) $1BF3:$1BF4 FeatureAdjustment029 <unused> 0x1D

0x6D (108) $1BF5:$1BF6 FeatureAdjustment030 <unused> 0x1E

0x6E (109) $1BF7:$1BF8 FeatureAdjustment031 <unused> 0x1F

N/A $1BF9:$1BFA <Adjustments Checksum>

* New adjustments in L8.3 shown for reference.

** New L8.4 adjustment (additional new L8.4 adjustments are depicted later in this document)

The Feature Adjustments Metadata table is updated as indicated in the abbreviated table content,

below. Below is depicted the increased table size and new content. Additional updates in L8.4 will add

additional adjustments causing the resulting L8.4 table size to also increase so ‘xx’ is depicted here.

;---;--

7000: 00 xx, Incremented by 1 ; Table entries is xx (xx entries), Incremented by 1

7002: 0C ; Bytes per table entry is 0C (12 bytes)

...

70FF: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.21, Drptrgt Dwn Mlti

 ; NEW ADJUSTMENT METADATA BELOW

710B: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.22, Profanity

7117: 00 02 00 00 00 02 00 01 00 65 7C 3D ; Feature Adjustments, A2.23, Attract Mode

7123: 00 01 00 00 00 01 00 01 00 65 C5 3D ; Feature Adjustments, A2.24, Animation Code

712F: 00 00 00 00 00 01 00 01 00 65 F3 3D ; Feature Adjustments, A2.25, Lamp Driver

713B: 00 00 00 00 00 05 00 01 00 66 54 3D ; Feature Adjustments, A2.26, MB Start DT Action

7147: 00 00 00 00 00 01 00 01 00 65 3D 3D ; Feature Adjustments, A2.27, Timed 3Bank Lamp

7153: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.28, Cannon 1 Hit

715F: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.29, <placeholder>

716B: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.30, <placeholder>

7177: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.31, <placeholder>

;---;--

The metadata table, above, is located at $7000,3D, ROM offset 0x77000 and is updated with the new

Boolean adjustment to utilize existing ‘On/Off’ text and appropriately translated German/French texts

the same as other Boolean adjustments. The name of this new adjustment is added to the existing

English, German, and French menu string tables as indicated in the table below.

 Table Start New Pointer Bytes New String Address New String Value

English $6700,3D $673B,3D $68EB,3D “CANNON 1 HIT”

German $6A00,3D $6A3B,3D $6B7F,3D “KANONE 1 TREFFER”

French $6D00,3D $6D3B,3D $6ED4,3D “CANON 1 COUP”

With all of the above changes in place, the L8.4 has a fully implemented new feature adjustment and

corrected bug-fix for the lit-lamp mapping at the 5-bank targets.

The PAPA Lost Super Jackpot Bug
For L8.4 another goal is to understand and fix the bug referred to here as the PAPA Lost Super Jackpot

bug. This bug was recorded on video and, at time of this writing, available through a simple online

search. This occurred during the PAPA 14 event which took place August 11-14, 2011. In a online video

titled “PAPA 14 World Pinball Championships Final Round – Terminator 2” at roughly 6:00 into the 30:34

video, what is shown is an obvious bug where the Super Jackpot was not awarded when it should have

been.

For readers not interested in technical details, refer to the section “PAPA Lost Super Jackpot

Investigation Summary” later in this document for a brief summary of the problem.

PAPA Lost Super Jackpot Investigation and Analysis

For L8.4 a close examination of the code was done along with various attempts to reproduce the issue

on a pinball simulator. Eventually the nature of the problem became apparent. The problem and the

solution are being documented here for posterity and for future refinement as needed.

To describe what leads up to the problem, some high level flowcharts are shown depicting the various

logic that takes place when the ball lands in the ball popper. The focus on these descriptions is the case

where the ball is launched into the popper for purposes of scoring a super jackpot although this may

also be applicable to cases where the ball is shot into the popper at other times during game play.

Shown below is some logic when ball lands in the ball-popper:

$7244,3B

Gun Loaded, Left Lock, Top

Lock, Ball Popper

 Switch Handler

Switch Opened?

Ball Popper State Check: 0x07

done

Perform work when switch has

opened (ball kicked out of ball-

popper). (Details not part of

this discussion.)

$6FAB,3B

Common End-Of-Switch

Processing Game State Handler

yes

no

The simplified flowchart, above, shows how the ball-popper handler, when switch is closed (ball landed

on ball popper switch), performs a state check 0x07 (details further below) followed by a $6FAB,3B end

of switch processing. This end-of-switch processing is actually called from a variety of sources as

depicted below. This common function then spawns a separate function to perform further work as

described below.

$6FAB,3B

Common End-Of-Switch

Processing Game State Handler

$6F3B,3B

TBD

$6F8C,3B

Scheduled Function

$70CC,3B

Trough Left/Center/Right

 Switch Handler

$715E,3B

TBD

$7244,3B

Gun Loaded, Left Lock, Top

Lock, Ball Popper

 Switch Handler

$73B5,3B

TBD

$76A8,3B

TBD

Schedules $6F8C,3B

done

As shown above, the common function schedules the $6F8C,3B to finish the work. This is probably done

this way to prevent the single switch handler from taking too much time doing its tasks.

The $6F8C,3B function appears to lookup a function pointer from table $75AF,3B and then call the

function at index [2]. Initial analysis seems that this [2] is always the function that gets called.

Somebody can correct this observation if wrong but it appears code looks at $75AF,3B table and uses its

data-size value as the index to use. Since the table $75AF,3B always reports a table entry size of 2 (2

bytes per table entry for each 16-bit address of a function), this is the value used as index into the array.

The $7306,3B function then performs the remaining work as part of the end-of-switch processing.

There is an array in RAM that tracks additional state information which is not fully analyzed and part of

this analysis. For purposes of explaining the PAPA Lost Super Jackpot bug a simplified description of

what the $7306,3B function does while processing the ball-popper prior to super jackpot is shown next.

Function Callback Table $75AF,3B

Index Use

[0] $8EBC

[1] $8EBC

[2] $7306,3B Always called

[3] $744C,3B

[4] $778D,3B

[5] $8EBC

[6] $8EBC

[7] $72D7,3B

[8] $7429,3B

[9] $776F,3B

$6F8C,3B

Sleep 15.625mS

$6F95,3B

Calls row [2] with

switch index in A

$7306,3B
Survey of $6F8C,3B and its call of $6F95,3B appears that

entry [2] of the table is always called. It’s not clear under

what circumstances the other rows are used.

As shown, above, when the ball popper switch goes through the end-of-switch processing and gets into

the $7306,3B scheduled function, there are 3 additional state checks that are done: 0x0A, 0x0D, and

0x0B. These three state checks are performed after the initial state check 0x07, described earlier when

the ball popper switch was initially closed. Details on this ball popper state check are to follow. Also,

note the term ‘state check’ is informally used here as the function call purpose rather informally. It is

merely a call to a function with a given reference number.

A survey of the total state checks that are done for various ball-popper activities were observed and

recorded in the table below. These findings include the address from where the state check was

initiated in the bank $3B.

Ball Popper Activity Ball Popper State Checks

Ball popper hit during ordinary game play in
advancement towards starting a multiball

State check: 0x07, from $7293,3B

State check: 0x0A, from $734E,3B

State check: 0x0D, from $735E,3B

State check: 0x0B, from $73AD,3B

Ball popper hit during multiball where ball is
retained in popper in anticipation for a jackpot
shot when other balls are locked or drained

State check: 0x07, from $7293,3B

State check: 0x08, from $72C8,3B

Ball popper switch opens when locked ball is
kicked from ball-popper to cannon for a
jackpot attempt

State check: 0x05, from $727A,3B

State check: 0x0A, from $734E,3B

State check: 0x0D, from $735E,3B

State check: 0x0B, from $73AD,3B

Ball popper hit during multiball and a super
jackpot is to be attempted.

State check: 0x07, from $7293,3B

State check: 0x0A, from $734E,3B

$7306,3B

Ball Popper State Check: 0x0A

Ball Popper State Check: 0x0D

Ball Popper State Check: 0x0B

done

Pulse ball popper solenoid

State check: 0x0D, from $735E,3B

State check: 0x0B, from $73AD,3B

With regard to the PAPA Lost Super Jackpot bug, the above analysis shows how there are 4 state checks

that are performed when the ball popper is hit when a super jackpot is about to be attempted. As

shown, these same 4 state checks are also performed when ball popper is hit during ordinary game play,

while attempting to advance towards a multiball.

To give a little more detail to what happens when this state check is called, below are some additional

high level flowcharts and drawings to help give additional clarity.

The $FDFC function in unbanked ROM region is interesting because it makes a direct function call to

$70B4 without any notion of bank switching. This means the caller to this function must have a function

in its bank at $70B4 for this to work. In this case, the callers of $FDFC are from bank $3B so this will

work as there exists the subsequent lookup function at $70B4,3B.

This lookup function takes in an index at register A and uses it as lookup into a table located at $7513,30

to perform the state check. In the case of ball-popper, the register A has value 0x04 (from the switch

handling function) so the function at $6F4D,31 is called to handle the requested state check.

In the case of ball-popper switch-hit for super jackpot (and ordinary hit in advancement toward multiball)

this $6F4D,31 function is called once for each state check:

 $6F4D,31 called for state check 0x07

 $6F4D,31 called for state check 0x0A

Function Callback Table $7513,30

Index Use Function

[0] $7F22,30 TBD/unused(?) $8EBC

[1] $7F26,30 Shooter (?) $461B,31

[2] $7F31,30 Left Lock $5133,31

[3] $7F3B,30 Top Lock $58BA,31

[4] $7F45,30 Ball Popper $6F4D,31

[5] $7F4F,30 Gun Loaded $6A5E,31

$FDFC State

Check Function

Call function $70B4 (,3B)

(assume to be in bank $3B already)

Lookup $7513,30 Table for the

current switch index register A and

call its Function

done

This table will be cited later as the “Gun

Loaded” switch will also be discussed

briefly. The “Gun Loaded” will have a

similar way of handling the state check as

described here for the “Ball Popper” switch.

 $6F4D,31 called for state check 0x0D

 $6F4D,31 called for state check 0x0B

The $6F4D,31 function, ROM offset 0x46F4D, is the dispatch function for the various state checks that

might be performed. Each handled state check and its associated function are shown in the table below:

State Check Function for “Ball Popper” Switch, at $6F4D,31

State Purpose Function

0x07 Ball popper switch closed $6F8D,31

0x08 Ball popper switch is remaining closed (ball locked) $6F75,31

0x05 Advancing to cannon for jackpot(?) $6F86,31

0x0A Advancing to cannon (1/3) $707F,31

0x0D Advancing to cannon (2/3) $7050,31

0x0B Advancing to cannon (3/3) $70F7,31

0x04 Error state handler(?) $6F70,31

The table, above, shows the different functions that get called on behalf of the ball-popper switch

closure for each of the previously described state checks. Each of the called functions are designed to

handle the different state check, setting up the game for the imminent “fire at will”, ball lock, jackpot or

super jackpot shot attempt.

Regarding the PAPA Lost Super Jackpot problem the following state check functions are briefly described

at least in part where they contribute to the bug:

 State check 0x07 at $6F8D,31

 State check 0x0A at $707F,31

 State check 0x0B at $70F7,31

The simplified flowcharts below highlight the interesting part of these functions as they apply to the

PAPA Lost Super Jackpot bug.

The logic for the ball popper state check 0x07 function is depicted above, greatly simplified. The

important part in relation to the PAPA Lost Super Jackpot bug is the fact that the 0x07 state check

function will schedule the helper function ID 0095 that sets the 0x48 flag when the 0086 function is in

the scheduler. The 0086 function is the multiball loop function that maintains multiball state. This

means that the 0x48 flag is set when the ball popper is hit during multiball and, as such, the 0x48 flag

means that the imminent cannon shot is during multiball and is going to be for jackpot or super jackpot.

Observant readers may also notice references to this 0x48 flag in previous descriptions and code

samples related to the 255-Hits problem description and analysis. While handling the 5-bank hunter

ship targets the 0x48 flag is checked as part of determining what actions to take. When the flag is set,

the game knows the ball-popper was hit during multiball. This and other game state information is then

used to determine whether to award a jackpot or super jackpot or declare a target miss, as appropriate.

Shown next is flowchart logic depicting the ball popper state check 0x0A function.

$6F8D,31

State Check

Function 0x07

Schedule function ID

0095 at $6FA6,31

Sleep 62.5mS

ID 0095 in

scheduler?

done

yes

no

Function ID

0095 $6FA6,31

Various state checks,

flag set logics

ID 0086 in

scheduler?
Set flag 0x48

Various state checks,

flag set logics

done

yes

no

Award extra ball if lit,

starting its animation

The ball popper state check 0x0A function, above, schedules a helper function ID 0092 which performs

various logic as part of the imminent transition of the ball from the ball popper to the cannon. For the

PAPA Lost Super Jackpot bug, the important part is how this helper function then adds another function

to the scheduler with ID 00AA starting at $716D,31. After doing this, the 0092 function then waits for

any animations that are currently playing to complete before continuing (this will be discussed in more

detail as part of the solution analysis).

The ball-popper state check 0x0B function is depicted below.

$707F,31

State Check

Function 0x0A

Schedule function ID

0092 at $7095,31

Sleep 62.5mS

ID 0092 in

scheduler?

done

yes

no

Function ID

0092 $7095,31

Schedule function ID

00AA at $716D,31

Perform various other logics

and state checks and sets.

Report “Targets for multiball”,

play sound effect 0x04.

done

$70F7,31

State Check

Function 0x0B

Schedule function ID

00E9 at $716D,31

done
Function at $716D,31

described next.

Wait for animations to finish

As the previous ball popper state check flowcharts have depicted, there are two occasions where the

$716D,31 function is added to the scheduler:

 During state-check 0x0A the $716D,31 is added to the scheduler with ID 00AA

 During state-check 0x0B the $716D,31 is added to the scheduler with ID 00E9

The logic of this function is depicted below:

The function depicted above appears to be a timeout handler. This function sets a timer of 5.859375
seconds before proceeding with what appears to be an attempt for code to handle the scenario where
the timer expires. In normal scenarios, the timeout is never reached. As further shown below, these
function IDs 00AA and 00E9 normally get cancelled during their 5.859375 sleep period and removed
from the scheduler by subsequent code that takes place as part of the Gun Loaded switch handler.

In a scenario where the timeout DOES happen, it is shown here that the 0x48 flag gets unconditionally
cleared. The clearing of this 0x48 flag due to the 5.859375 second timeout of is why the subsequent

Set current function

ID to 008B

Sleep 5.859375

seconds

Call function:

$6636,3B

Clear flag 0x48

Gun Loaded

switch bad?

Schedule Function ID

00EA at $6A9E,31

Popper-to-gun function

done

Function ID 00AA

Function ID 00E9

at $716D,31
Normal Logic

timer starts

Timeout Logic

Timer expired, ball-

popper solenoid bad or

gun loaded switch bad

yes

no

cannon shot is not treated as a super jackpot shot and, as such, is the reason for the PAPA Lost Super
Jackpot bug.

This timeout could happen if, for example, the ball popper solenoid is not working or if the Gun Loaded
switch is not working (game does not detect the ball in the cannon). The original L-8 software has this
mechanism to make an attempt to recover in such a situation in some form of a predictable manner,
allowing the game to proceed as best it can.

This timeout should only happen in a situation of mechanical failure. The PAPA Lost Super Jackpot bug
shows that, instead, the timeout can also occur while the game is free of mechanical failures. When
such timeout takes place when the game is otherwise functioning normally, the result is that the cannon
shot is treated as an ordinary cannon shot instead of a jackpot or super jackpot shot attempt. In theory
this problem can happen for both jackpot or super jackpot attempts. Also, depending on conditions, it is
also possible that instead of “Targets Remaining” the game could seemingly restart multiball (this seems
to happen if the problem occurs more than once during the same ball in play).

In the case of the PAPA video, the ball was shot into the popper when:

 The game starts the extra ball award animation
 The ball-trough was handling the previously drained ball, and,
 The game may have been processing the long flipper hold time for “Status Report” to display

In the pinball simulator the exact sequence to trigger the exact scenario of the PAPA Lost Super Jackpot
hasn’t been reproduced. It is seemingly an extremely rare sequence of events that happened to take
place during the PAPA tournament. The bug, however, can be reproduced by a different method. In
simulator, the 5.859375 second timeout can occur by scoring the super jackpot and then immediately
locking the ball into the popper again. In this scenario, the game is playing the lengthy super jackpot
animation sequence. If the ball was shot into the ball popper at the very start of this animation
sequence, it is possible for the 5.859375 second timer to expire which causes the next cannon shot, if
successful, to report the “Targets Remaining” message instead of awarding another super jackpot.

The following text continues the description of the behavior that normally takes place as part of the ball
popper handling. Shown above was the point in which the ball popper switch handling caused the pulse
of the ball popper solenoid during the $7306,3B function between the state check 0x0D and 0x0B. As
mentioned, the cannon switch (aka the “gun loaded” switch) closure is what is responsible for ensuring
the 5.859375 second timeout functions are cancelled before they expire.

The “gun loaded” switch actually shares the same switch handler callback. As depicted in the
information above the same set of functions is called for “gun loaded” switch as for the “ball popper”
switch. There are some checks that take place during the switch handling so that only certain logic is
executed depending on the hit switch.

Also, shown previously was a function callback table located at $7513,30 which contains a function
address that depends on which switch is being processed. The table is depicted below with the “gun
loaded” row highlighted.

For the “gun loaded” switch, the corresponding state check function is $6A5E,31, ROM offset 0x46A5E.
This function is called with the same set of state check values as previously described for the ball popper
switch handler. An analysis of this function shows similar set of calls into this function:

 When ball first enters the cannon, state check 0x07
 When ball is shot from the cannon, state check 0x0A
 When ball is shot from the cannon, state check 0x0D
 When ball is shot from the cannon, state check 0x0B

A more detailed survey of code would be needed to fully understand how all of the switch handler code
behaves however it is evident that the game uses this mechanism to allow common code and function
callback tables as an effective and neat way to implement the game logic.

For the “gun loaded” switch, as shown in the table above, the function $6A5E,31 gets called for state
checks. This function is called with the state indicator number as mentioned above. Examination of the
$6A5E,31 function reveals that it only has a handler for two of the states. The others are ignored with
no particular work taking place for that state on behalf of the “gun loaded” switch. The handled states
are indicated in the table below.

State Check Function for “Gun Loaded” Switch, at $6A5E,31

State Purpose Function

0x07 Gun loaded switch closed $6A85,31

0x08 <not used> <none>

0x05 <not used> <none>

0x0A After ball is shot from cannon (1/3) <none>

0x0D After ball is shot from cannon (2/3) <none>

0x0B After ball is shot from cannon (3/3) <none>

0x04 Error state handler(?) $6A67,31

As shown, only two handlers are in use for the “gun loaded” switch. The other states are listed in the
table for completeness and for comparison with the similar table previously shown for the “ball popper”
switch.

Function Callback Table $7513,30

Index Use Function

[0] $7F22,30 TBD/unused(?) $8EBC

[1] $7F26,30 Shooter (?) $461B,31

[2] $7F31,30 Left Lock $5133,31

[3] $7F3B,30 Top Lock $58BA,31

[4] $7F45,30 Ball Popper $6F4D,31

[5] $7F4F,30 Gun Loaded $6A5E,31

The $6A85,31 function at ROM offset 0x46A85 handles the “gun loaded” switch closure. This function is
where the game is certain that the ball is now in the cannon and may therefore engage the gun motor
and prepare for pulsing of the cannon solenoid, etc.

Where it is applicable to the PAPA Lost Super Jackpot problem, this function is where the 00AA and 00E9
timeout functions are cancelled, thus preventing the unexpected clearing of the 0x48 flag that would
occur if the timeout was allowed to take place (and what actually happens in the case of the PAPA Lost
Super Jackpot bug).

Depicted in the flowcharts below is the logic of the $6A85,31 “gun loaded” state 0x07 function:

$6A85,31

State Check

Function 0x07

Schedule function ID

0096 at $6A9E,31

Sleep 62.5mS

ID 0096 in

scheduler?

done

yes

no

Function ID

0096 $6A9E,31

Cancel ID 00AA

Show “Pull trigger”

animation as necessary

Play “Get the jackpot” or

“take your best shot”, etc

as appropriate

done

00AA or 00E9

in scheduler?

ID 0086 in

scheduler?

Set flag 0x48

Cancel ID 00E9

Enable cannon motor

Play windup sound

Misc logic for dealing

with cannon sequence

Misc logic for dealing

with timeout recovery

yes

no

Genuine timeout recovery

logic attempting to

proceed with correct

cannon shot sequence

yes

no

The state check 0x07 for the “gun loaded” switch, as shown in the flowchart above, performs a lot of
logic related to initialization of the cannon sequence and subsequent cannon shot. Related to the PAPA
Lost Super Jackpot problem, the key takeaways are:

 The “gun loaded” switch handler cancels the 00AA and 00E9 functions from the scheduler.
These two functions are what run 5.859375 second timers which, if not cancelled, would
timeout and clear the 0x48 flag which is what leads to the lost super jackpot problem.

 The “gun loaded” switch handler does have some logic for dealing with genuine timeouts. This
logic will only be applied if the 00AA and 00E9 functions are NOT currently in the scheduler. The
idea is that the functions must have expired and are no longer in the scheduler so, therefore, a
genuine timeout took place.

o Perhaps the ball popper switch is broken and ball-search kicked ball to the cannon.
o Perhaps the habitrail is blocked or for some other reason the ball very slowly gets from

the ball popper to the cannon.

PAPA Lost Super Jackpot Investigation Summary

With all of the logic presented, a summary of events that leads up to a lost super jackpot is as follows:

 Ball popper is hit.

 A 5.859375 second timer is started at state check 0x0A.

 Game is busy playing animations and/or busy handling other switches.

 The 5.859375 second timer expires.

 Timer expiration results in clearing of the 0x48 flag (indicator of ball popper loaded during MB).

 Animations are finished.

 A 5.859375 second timer is started at state check 0x0B.

 Game reports “Shoot for super jackpot”

 Game pulses the ball popper solenoid.

 Ball reaches the cannon.

 Gun loaded switch handler observes the 5.859375 timer is running, no timeout recovery.

 Player pulls trigger to hit a lit 5-bank target.

 Game gives award but, due to lack of 0x48 flag, assumes cannon was loaded outside of multiball.

The logic flow, above, is a high level summary of how the problem can happen. This description is based

on observations made with the simulator and observing the actual problem taking place by locking the

ball in the popper immediately after scoring a super jackpot. While the super jackpot animation is

playing and the ball is in the popper, the first timeout occurs which clears the 0x48 flag which essentially

makes the game forget that the ball was loaded during multiball. The subsequent cannon loading takes

place during the secondary timer which is still running and then cancelled shortly later during the

handling of the “gun loaded” switch closure.

It seems the timeout logic that currently exists is mainly about handling cases of faulty hardware and not

faulty software which seems to be the case with faulty logic and/or improperly timed timeout that

reaches expiration in some normal game play scenarios.

PAPA Lost Super Jackpot Code Fixes
Some low impact code changes can be added to the code to effectively resolve the PAPA Lost Super

Jackpot bug with the following goals:

 Minimal code changes. Retain as much original code as possible.

 Prevent a lengthy animation in progress from contributing to a timeout condition.

 In the event a timeout does take place, retain the jackpot or super jackpot attempt.

After some code analysis it is found that the solution may be reduced two code changes:

 Have the ball popper state check 0x0A wait for animations to complete before doing its work.

 Prevent the timeout handler from clearing the 0x48 flag if multiball is in progress.

The following sections will go into details about the code changes.

PAPA Lost Super Jackpot Logic Update: State Check 0x0A Animation Check

As shown above, the crux of the problem is that the 0092 function sets a 5.859375 second timer (which

appears to be for measuring time from popper to cannon) and then waits for animations that are

currently in progress to complete before actually firing the ball from popper to cannon. Shown below

are the 0092 and 00AA (reduced) flowcharts from above.

Function ID

0092 $7095,31

Schedule function ID

00AA at $716D,31

Perform various other logics

and state checks and sets.

Report “Targets for multiball”,

play sound effect 0x04.

done

Wait for animations to finish
Sleep 5.859375

seconds

Function ID 00AA

Function ID 00E9

at $716D,31

Timeout condition

handling

done

To prevent the animation (that might be in progress) to cut into the 5.859375 second timer period, the

updated logic involves simply having the ball popper state check 0x0A helper function 0092 wait for any

animations in progress to complete prior to launching the function 00AA which starts the timer. This

way, any animations that might be in progress at the time the ball popper is hit will be allowed to play to

completion prior to the ball popper switch handler starting any of its own animations or timers. Also,

since the extra ball award animation is started by the ball popper state check 0x07, its animation is

included in this check so that the extra ball animation runs to completion before the 0090 function

proceeds with starting the timer and completing its work.

The updated flowchart logic is shown below with the new L8.4 logic highlighted in green.

The insertion of a “Wait for animations to finish” simply makes a function call to the same wait functions

that are already called by the same function after the 00AA function gets scheduled. By also having the

code wait for animations to finish prior to the scheduling of 00AA, any existing animation that is in

progress (such as extra ball animation) will be allowed to finish in its entirety before the ball popper

handling code will proceed. In doing this, the 5.859375 second timer that is started will only apply

towards new work that is done in handling the ball popper switch and not towards any existing

animations that might have been playing while the ball was first shot into the ball popper (this includes

the extra ball animation that is initiated by the ball-popper switch closed handler).

Function ID

0092 $7095,31

Schedule function ID

00AA at $716D,31

Perform various other logics

and state checks and sets.

Report “Targets for multiball”,

play sound effect 0x04.

done

Wait for animations to finish

New L8.4 logic

Sleep 5.859375

seconds

Function ID 00AA

Function ID 00E9

at $716D,31

Timeout condition

handling

done

Wait for animations to finish

An analysis of exactly what it means to wait for animation to complete is in order.

The existing code that waits for animation to complete is listed as a single element in the previously

depicted flowchart. What actually takes place in the 0092 code at $7095,31, is depicted below:

The process of the 0092 function waiting for animation to complete in existing L-8 code is depicted

above. The code makes two wait attempts, 62.5mS apart. Each wait attempt consists of read of

memory location $0481 and, if its byte value is greater than 0x10, sleep 62.5mS and check again,

indefinitely.

A brief examination into the $0481 byte value was done to see that, indeed, it is loaded with a value

greater than 0x10 during animation sequences and cleared to 0x00 at the end of the animation. It was

also observed with the simulator that this wait in function 0092 is the reason that the ball-popper

handling waits before advancing the ball towards the cannon (and, as such, the reason a timeout can

occur and lost jackpot or super jackpot can take place as previously described).

For L8.4, the 0092 function will make a single new call to $FB77 prior to scheduling the 00AA timeout

function. As depicted above, a single call to the $FB77 function will cause the software to repeatedly

poll the value of $0481 until it contains a value less than or equal to 0x10. This will effectively cause the

code to wait until any existing animation that is in progress to complete before the ball-popper code

proceeds with its usual activities.

The L8.4 code changes for this fix are described further below.

Wait for animations to finish

Call $FB77

Sleep 62.5mS

Call $FB77

Call $CA8C to read

byte from $0481

Is $0481 byte

<= 0x10 ?

$FB77 Function

Sleep 62.5mS

done

yes

no

PAPA Lost Super Jackpot Logic Update: Timeout 0x48 Flag Retention

As previously described, the timeout function, after experiencing the 5.859375 second timeout, clears

the 0x48 flag as part of its timeout handling. It is evident that the original L-8 design has the “gun

loaded” switch handler code re-set the 0x48 flag when it discovers that the timeout function is not

running (meaning timeout occurred) and multiball is running. It is also evident that the original design

flaw is how there are two 5.859375 timeout functions (during state check 0x0A and again during state

check 0x0B). In the problem scenario the first timeout occurs which clears the 0x48 flag but the second

timeout function is still running when the “gun loaded” switch handler code is invoked. In this case, the

multiball is still in progress however the timeout function is still running and, as such, the 0x48 flag does

not get reset in the “ball popper” switch handler code (as it appears was the intent of the original

flawed design).

For L8.4 the intent is not to try to re-craft the overall design in order to implement new design without

the flaw. The goal is to patch the code to overcome the flaw and, therefore, the timeout logic which

takes place when the timer expires is being updated to prevent the problem of lost jackpot or lost super

jackpot.

Shown below is the flowchart from the timeout function copied from above, for reference:

Set current function

ID to 008B

Sleep 5.859375

seconds

Call function:

$6636,3B

Clear flag 0x48

Gun Loaded

switch bad?

Schedule Function ID

00EA at $6A9E,31

Popper-to-gun function

done

Function ID 00AA

Function ID 00E9

at $716D,31
Normal Logic

timer starts

Timeout Logic

Timer expired, ball-

popper solenoid bad or

gun loaded switch bad

yes

no

For L8.4 the logic in the timeout handler is updated as shown in the updated flowchart below.

As highlighted in the flowchart above. The L8.4 will simply add a check if function ID 0086 is running and,
if not, then clear the 0x48 flag. The 0086 function is the multiball loop function which existing L-8 code
uses as the determining factor for whether to set the 0x48 flag in the first place. This simple update to
the logic will prevent a timeout condition from clearing the 0x48 flag when the 0x48 flag state should be
retained. By retaining the state of the 0x48 flag, the subsequent cannon shot and 5-bank target hit will
be properly treated as a jackpot or super jackpot, as appropriate, in the unlikely situation where a
timeout does occur.

Set current function

ID to 008B

Sleep 5.859375

seconds

Call function:

$6636,3B

Clear flag 0x48

Gun Loaded

switch bad?

Schedule Function ID

00EA at $6A9E,31

Popper-to-gun function

done

Function ID 00AA

Function ID 00E9

at $716D,31 Normal Logic

timer starts

Timeout Logic

Timer expired, ball-

popper solenoid bad or

gun loaded switch bad

yes

no

ID 0086

scheduled?

no

yes

New L8.4 logic

Prior to implementing the new logic, proof of concept code has been tested to confirm that the lack of
0x48 flag clearing during the timeout handler will allow the subsequent super jackpot to be awarded
where it, previously, would have encountered the PAPA Lost Super Jackpot bug. This new logic, along
with the previously described function 0092 animation wait, effectively hardens the code protecting it
from experiencing a lost jackpot or lost super jackpot.

Simply put, the L8.4 will update code to reduce the likelihood of hitting the timeout and even if a
timeout does happen, it will not result in the lack of jackpot or super jackpot at the subsequent cannon
shot that takes place after the ball moves from the ball popper to the cannon.

PAPA Lost Super Jackpot Code Fixes

As depicted above, the code fixes for the PAPA Lost Super Jackpot bug are localized to:

 The 0092 ball popper state check 0x0A function where a new animation wait is added, and

 The timeout function, where a multiball in progress condition is added to the 0x48 flag clearing.

PAPA Lost Super Jackpot Code Fix: Add Animation Wait to 0092 Function

The ball popper state check 0x0A function, as previously described, schedules the ID 0092 function

which then schedules the timeout function. As previously described this function is being augmented so

it waits for animation completion prior to scheduling the timeout function.

The 0092 function is shown below along with the L-8 code removal and L8.4 code addition.

---;---

 ;

 ; Ball popper state check 0x0A

 ; Scheduled Callback Function

 ; ID 0092

 ;

7095: BD 68 B6 JSR $68B6 ;

7098: BD F7 59 JSR $F759 ; ChecksGameMode(), if game in progress, z-bit set

709B: 7E 70 9E JMP $709E ; <nop>

7098: BD FB 77 JSR $FB77 ; WaitForAnimationToComplete()

709B: BD F7 59 JSR $F759 ; ChecksGameMode(), if game in progress, z-bit set

709E: 26 50 BNE $70F0 ;

70A0: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

70A3: 00 AA ; ID 00AA Ball-In-Popper

70A5: 71 6D 31 ; Timeout function

70A8: BD 56 9C JSR $569C ;

70AB: 86 0A LDA #$0A ;

70AD: BD CF 4B JSR $CF4B ;

70B0: BD FB 77 JSR $FB77 ; WaitForAnimationToComplete()

70B3: 7E 70 B6 JMP $70B6 ; <nop>

70B6: BD 83 46 JSR $8346 ; Sleep()

70B9: 04 ;

70BA: BD FB 77 JSR $FB77 ; WaitForAnimationToComplete()

70BD: 7E 70 C0 JMP $70C0 ; <nop>

70C0: BD 86 90 JMP $8690 ; SearchLinkedListForId() // c-clear means ID is found

70C3: 00 86 ; Search for 0x0086, C-clear means multiball is running

70C5: 24 06 BCC $70CD ;

70C7: BD 84 AD JSR $84AD ; GetMemoryFlag() // c-clear means flag is set

70CA: 48 ; 0x48 == Huntership hit

70CB: 25 06 BCS $70D3 ; If C-set, meaning flag not set, skip the following

70CD: BD 84 80 JSR $8480 ; SetMemoryFlag()

70D0: 48 ; 0x48 == ball popper hit during multiball

New

L8.4

code

70D1: 8D 32 BSR $7105 ;

 ;

70D3: BD 86 90 JSR $8690 ; -\ SearchLinkedListForId() // c-clear = ID found

70D6: 00 ED ; |

70D8: 25 06 BCS $70E0 ; |

70DA: BD 83 46 JSR $8346 ; | Sleep()

70DD: 03 ; |

70DE: 20 F3 BRA $70D3 ; -/

 ;

70E0: BD 85 B2 JSR $85B2 ;

70E3: 05 ;

70E4: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte()

70E7: 29 ; "X Target for multiball" or "Get the super jackpot" or

 ; whatever message is needed at cannon laod.

70E8: BD 83 46 JSR $8346 ; Sleep()

70EB: 10 ; 1/4 second

70EC: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

70EF: 04 ; 0x04 Waszhwawawawu

70F0: BD 84 8F JSR $848F ; ClearMemoryFlag()

70F3: D7 ;

70F4: 7E 99 A2 JMP $99A2 ;

 ;

---;---

The highlighted code, above, shows that for L8.4 the code was slightly re-arranged so that the $FB77

function is called prior to a CheckGameMode() function call. This is easy inclusion since the original code

consisted of the CheckGameMode() followed by dummy JMP instruction. For L8.4 the dummy JMP is

removed and its freed space allows for the inclusion of a JSR to the $FB77 instruction. The L-8 code has

several such dummy JMP instructions that occur after a JMP to a function in non-banked ROM. This

appears to be a design approach that can make it easier to move a function from non-banked ROM to

somewhere in banked ROM in which case the dummy JMP instruction can then be used to facilitate the

call to the function in banked ROM.

PAPA Lost Super Jackpot Code Fix: Add Multiball Conditional To Timeout Function

The timeout function, as described, is augmented in L8.4 so that it will only perform its clearing of flag

0x48 if the game is not currently in multiball (as determined by lack of 0086 function in the scheduler).

The timeout function is shown below with new code for L8.4 highlighted.

---;---

 ;

 ; Function ID 00AA via ball-popper state check 0x0A

 ; Function ID 00E9 via ball-popper state check 0x0B

 ;

 ; State Check Timeout Function when ball is in popper

 ;

716D: BD 86 79 JSR $8679 ; SleepPlusURegisterSave()

7170: 01 77 ; 5.859375 second sleep time

 ;

7172: 10 8E 00 8B LDY #$008B ; ID 008B

7176: BD 9B 83 JSR $9B83 ; UpdateCurrentRunningScheduleFunctionIDY()

7179: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

717C: 66 36 3B ;

717F: BD 84 8F JSR $848F ; ClearMemoryFlag()

7182: 48 ; Clear 0x48

 ; 0x48 bit is 0x08 bit of flags starting at $0328

 ; So this is 0x80 bit of $0328

717F: BD 7F 8F JSR $7F8F ; L84ConditionalFlag48Clear()

7182: 12 NOP ;

 ;

7183: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = broken

7186: 19 ; SwitchTableEntry19, 31, Gun Loaded

 ;

7187: 25 08 BCS $7191 ; if (GunLoaded switch is broken)

 ; {

7189: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback()

718C: 00 EA ;

718E: 6A 9E 31 ; $6A9E,31 is gun loaded switch handler

 ; }

7191: 7E 99 A2 JMP $99A2 ; Done

 ;

---;---

The timeout function, as shown above, is updated so that upon a timeout, the code that normally

unconditionally clears the 0x48 flag now makes a call to function $7F8F,31 to conditionally clear the

0x48 flag. The 0x48 parameter byte is replaced with a NOP instruction to ensure correct code flow.

Complementing the above code change, is the addition of the new function at $7F8F,31, ROM offset

0x47F8F. This is located in a small region of unused ROM space near the end of bank $31.

---;---

 ;

7F8F: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clr means ID is found

7F92: 00 86 ; Search for 0x0086

7F94: 24 04 BCC $7F9A ; C-bit clear means multiball is running so skip over

 ; the 0x48 flag clear. Skip over next 4 bytes.

 ;

7F96: BD 84 8F JSR $848F ; ClearMemoryFlag()

7F99: 48 ; Clear 0x48

 ; 0x48 bit is 0x08 bit of flags starting at $0328

 ; So this is 0x80 bit of $0328

7F9A: 39 RTS ;

 ;

---;---

The new function above simply checks if the 0086 function is running and, if so, skips over the clearing of

flag 0x48. This simple logic by itself effectively fixes the PAPA Lost Super Jackpot bug. This change,

along with the animation wait described previously, effectively ensures that the timeout situation

should not happen and even if it were to occur, the timeout won’t result in the lost jackpot or lost super

jackpot if the imminent cannon shot successfully hits a lit target.

New

L8.4

code

New

L8.4

code

Payback Time Insert Misalignment Bug

For L8.4, an existing L-8 bug related to the playfield insert lamp states for Payback Time is being
corrected. A summary of Payback Time and the bug that is being fixed is described below.

Payback Time Summary

The payback time is a short period of game play in which 5 main shots of the game are worth 5 million
points each. There is no order or limit on the ways in which the 5 shots may be hit. The augmented
image from the T2 manual is shown below for reference:

Security Level

Lamps

CPU Lit

Vault Key

Silent Alarm

Pass Code

Check Point

The way in which the payback time is started is by completing (illuminating) the 10 “Security Level”
lamps as depicted in the manual page, above. There are 5 lamps for each ramp and the lamps must be
lit by the player in alternating progressive order going from bottom up.

The game is designed so that both “Check Point” lamps are lit before player can light a “Pass Code” lamp.
Then both “Pass Code” lamps must be lit before player can light a “Silent Alarm” lamp. This progresses
upward until both “CPU Lit” lamps get lit which starts Payback Time.

The game employs some simple rules to ensure the logic is as described above, namely:

 The starting point is zero lit security level lamps and both red arrows are lit, one at each ramp.
 When a ramp with a red arrow is successfully hit:

o If the ramp’s red arrow is blinking, an extra 1 million points is awarded.
o The next security level lamp for that ramp is illuminated.

 If this caused “CPU Lit” to illuminate then the other ramp’s “CPU Lit” is set to a
blinking state.

o The red arrow for the ramp is turned off.
o The red arrow for the other ramp is illuminated (if not already lit).
o The red arrow for the other ramp is also set to blink for the next few seconds. After the

blinking period is over, its lamp will then go back to being solidly lit.
 The start of Payback Time will reset the lamps:

o All 10 of the security level lamps are turned off
o Both ramps red arrows are set to be illuminated

 These states are briefly overridden during the Payback Time mode but these
lamp states will reveal themselves after Payback Time is done.

 The game also offers a “Security Pass” award:
o May be awarded via Escape Route or Database.
o Causes the security level to increase by 1 for the left ramp and by 1 for the right ramp.
o Depending on which ramp has a red arrow lit, the award will either:

 Advance security level on left then right if the left ramp arrow is lit, or
 Advance security level on right then left if the left ramp arrow is not lit.

o Payback Time may initiate after the 1st or after the 2nd security level advancement.
 If Payback Time started after 1st security level advancement, the second security

level advancement will carry over. After Payback Time completes there will be
one lit security level lamp (a “Check point” lamp) for one of the ramps.

 The nature of the bug is because of how both ramp arrows are lit in this carry
over scenario and described in more detail, below.

 At the start of every ball, if the left and right security levels are identical then both left and right
ramp arrows are lit.

The following page from the Terminator 2 manual also describes the Payback Time feature in the
manufacturer’s words:

As mentioned, in addition to using the ramps to advance the security level lamps for each ramp, there
are two additional methods to advance the lit security level lamps:

 Escape Route (left loop) awarding Security Pass, or
 Database (left lock) awarding Security Pass

When the “Security Pass” is awarded from either of these two mechanisms, the game will add a new lit
lamp to the left ramp security level lamps and it will add a new lit lamp to the right ramp security level

lamps. This effectively gives the player 2 of the 10 security lamps needed for advancement toward
Payback Time. To further describe the “Security Pass” award, some additional details are worth noting:

 If the left and right ramps have the same number of lit security level lamps, the “Security Pass”
will advance both left and right ramp security level lamps evenly.

 If the left and right ramps have uneven number of lit security level lamps, the “Security Pass”
will maintain such unevenness by adding a new lit security lamp to the left set of lamps and
adding a new lit security lamp to the right set of lamps.

It is this “Security Pass” award that is the main contributor to the problem that is being fixed in L8.4.
Details on the bug are described next.

Payback Time Security Levels Bug
The problem with the payback time security levels occurs when the “Security Pass” award is given at the

period in which only a single remaining security level lamp remains to be lit (to start Payback Time).

When there is only a single security level lamp remaining for Payback Time (which would have to be one

of the two “CPU Lit” lamps) and “Security Pass” is awarded the game will start Payback Time as one

would expect. Once payback time is finished the game reveals that the “Security Pass” award has rolled

over into the next round (the next round of 10 security level lamps that must be lit for another Payback

Time). As a reasonable person would expect, there is 1 lit security level lamp (which is one of the two

“Check Point” lamps) which is from the “Security Pass” award that was awarded to start the previous

Payback Time.

The problem, however, is that although there is a lit security level lamp, the game is showing both

ramps with red arrows. This, alone, goes against the previously described logic in which the game is

supposed to ensure a sequential build-up of the security level lamps. The game is not supposed to allow

a lamp to have its arrow lit if it has a security level lamp lit while at the same time the opposite ramp’s

corresponding security level is unlit.

By having both red arrows lit after the Payback Time in this manner, the player can get the build-up of

security level lamps out of sequence. This can result in a confusing start of the next Payback Time as

one ramp can have 2 unlit lamps while the other has all 5 security level lamps lit. This can happen if,

after the Payback time with both ramps with red arrows, the player shots the ramp which already has

the lit “Check Point” lamp. In doing this, that ramp will then light the “Pass Code” lamp even though the

opposite ramp has zero lamps lit.

Payback Time Security Levels Bug Recipe

If this description is unclear or confusing, refer to the following recipe to reproduce the problem:

o Start a game, shoot ball onto playfield

o Shoot left ramp, illuminating its “Check Point” lamp

o Shoot right ramp, illuminating its “Check Point” lamp

o Shoot left ramp, illuminating its “Pass Code” lamp

o Shoot right ramp, illuminating its “Pass Code” lamp

o Shoot left ramp, illuminating its “Silent Alarm” lamp

o Shoot right ramp, illuminating its “Silent Alarm” lamp

o Shoot left ramp, illuminating its “Vault Key” lamp

o Shoot right ramp, illuminating its “Vault Key” lamp

o Shoot left ramp, illuminating its “CPU Lit” lamp

o Shoot Escape Route (left loop) to get the “Security Pass” award, starts Payback Time

o Allow Payback Time to complete

At this time bug reveals itself:

o The left ramp “Check Point” security level lamp is lit (expected)

o The right ramp has no security level lamps lit (expected)

o The left ramp red-arrow is lit (unexpected)

o The right ramp red-arrow is lit (expected)

Continuing the recipe, the lamps get out of sequence by, in this example, shooting the

left ramp next.

o Shoot left ramp, illuminating its “Pass Code” lamp

After this the right ramp arrow is flashing and left ramp arrow is off, as expected

o Shoot right ramp, illuminating its “Check Point” lamp

o Shoot left ramp, illuminating its “Silent Alarm” lamp

o Shoot right ramp, illuminating its “Pass Code” lamp

o Shoot left ramp, illuminating its “Vault Key” lamp

o Shoot right ramp, illuminating its “Silent Alarm” lamp

o Shoot left ramp, illuminating its “CPU Lit” lamp

After this the left ramp has all 5 security level lamps lit while the right ramp has only 3 of

the 5 security level lamps solidly lit. It would seem there are 2 more shots needed on

right ramp to light the remaining two security level lamps in order to start Payback Time,

however we see here this is not the case in the next step.

o Shoot right ramp, Starts Payback Time.

o Allow Payback Time to complete

At this time, there are no security lamps lit & both ramp red arrows are lit, as expected

Security Levels Code Design
In order to develop the correct fix for the Payback Time Security Levels Bug, the L-8 software design

related to the advancement of security level lamps has been investigated and is documented here. The

flowcharts, below, depict the various software elements related to the security level lamps and where

they get cleared and set during the handling of various playfield switches and awards.

The depicted logic is simplified, depicting code as it relates to the security level lamps. Other code

elements are not detailed in the following flowcharts.

The ramp ‘made’ switch handlers both call an individual function for advancing the security level on

behalf of the ramp shot. The details of these ‘advance security level’ functions will be provided below.

The important takeaway from this logic is how, after advancing the ramp security level, a check is done

to see if Payback Time had been triggered (as a result of such security level advancement) and, if so, skip

the management of the ramp arrows. As will be shown below, the start of payback time will set both

ramp arrows on, so this logic is important to ensure the arrows are not turned off immediately

afterwards.

If Payback Time was not triggered by the security level advancement, then this was an ordinary

advancement towards payback time. In such case, after advancing the security level then the ramp

arrow for the hit ramp is cleared and the ramp arrow for the opposite ramp is lit. Also as part of the

‘other logic’ the other ramp is also made to blink for a short period.

Switch Handler:

Right Ramp Made

Switch Handler:

Left Ramp Made

Advance Security Level:

 Left

Advance Security Level:

 Right

Payback Time

Triggered?

Payback Time

Triggered?

Clear Ramp Arrow:

Left Ramp

Clear Ramp Arrow:

Right Ramp

Set Ramp Arrow:

Right Ramp

Set Ramp Arrow:

Left Ramp

Other logic, scoring,

cleanup, animation, etc

Other logic, scoring,

cleanup, animation, etc

done done

yes yes

no no

Details on these

functions further

below

The left and right security level advancement functions are depicted above. Since the code utilizes
distinct functions for the left and right security advancements, there two separate flow charts depicted
above.

These security advancement functions increment a per-player, per side (left/right) counter for the
current security level for the player on each side. After advancing the current side’s counter, the
opposite side’s security level lamps are checked to see if all five of its lamps are lit and, if so, calls
function to start Payback Time. If the opposite side’s security level lamps are not all lit, then the
function will check if the current side’s “CPU Lit” lamp is now lit and, if so, causes the opposite side’s
“CPU Lit” to start blinking.

An abbreviated flowchart is shown below for “Start Payback Time”. The important part of the function
is how it deals with the lamp arrows and, as such, this is the part depicted in the following flowchart.

Advance Security Level:

Left

Per-player left level

counter +1

Security level

lamps all lit:

Right side

Start

Payback

Time

“CPU Lit” lamp

lit: Left

Set “CPU Lit” lamp to

blinky mode: Right

done

yes

yes

no

no

Advance Security Level:

Right

Per-player right level

counter +1

Security level

lamps all lit:

Left side

Start

Payback

Time

“CPU Lit” lamp

lit: Right

Set “CPU Lit” lamp to

blinky mode: Left

done

yes

yes

no

no

More info on the

“Start Payback Time”

function further below

Return

indication

to function

caller that

Payback

Time was

triggered

Return

indication

to function

caller that

Payback

Time was

triggered

The “Start Payback Time” function, as depicted in the flowchart above, performs some basic
housekeeping and schedules a separate function to maintain the Payback Time state. The housekeeping,
as shown, includes specifically setting the left and right ramp red arrows as well as extinguishes the left
and right security level lamps.

With the logic presented thus far, it is not unreasonable for the “Start Payback Time” function to set the
lamps in this way. With assumption that payback time is initiated the instant that the final “CPU Lit”
lamp is lit, then it is reasonable for the “Start Payback Time” function to set both lamp red arrows back
to an illuminated state in anticipation for the next round of 10 security level completions for the next
Payback Time.

Note that although this logic ‘sets’ the ramp arrows as part of Payback Time startup, the actual lit arrows
are not revealed on the playfield until after the current Payback Time mode is complete. The Payback
Time mode essentially overrides the playfield lamp states for the period of the Payback Time mode.
When the mode is complete, the ‘normal’ playfield lamps are restored, including the 2 red ramp arrows
as set in this “Start Payback Time” function.

Start Payback Time

Misc startup logic, setting ram values,

starting timers, scheduling Payback

Time maintenance loop, etc.

Set Ramp Arrow:

Left Ramp

Set Ramp Arrow:

Right Ramp

Clear per-player left and

right security level counters

Turn off all security level

lamps on left and right sides

done

With the above logic established, the “Security Pass” award can now be included into the discussion.
The reason the security level lamp mismatch bug occurs will become apparent.

Shown above is the simplified logic for the Escape Route and Database award handlers. As one would
expect, there are separate functions that handle the awards however the key takeaway in these
flowcharts is the fact that both award handlers end up invoking the same “Award Security Pass” function.
The “Award Security Pass” function is described next.

Escape Route / Left Loop

Award Handler

Database / Left Lock

Award Handler

Award is Security

Pass?

Award is Security

Pass?

Process the other award

as appropriate

Process the other award

as appropriate

done done

Award

Security

Pass

Award

Security

Pass

More info on the

“Award Security Pass”

function further below

yes yes

no no

The flowchart for the “Award Security Pass” function is depicted above. This function simply checks if
left ramp arrow is lit and uses it to decide whether to advance the security levels in the order of left
then right or in the order of right then left. After advancing the security levels, there is some logic to
determine whether to display an animation before finishing.

For readers following along, it should become apparent, with all of the logic presented thus far, how the
security level lamp mismatch problem can happen. These security level advancements will immediately
start Payback Time after either the first advancement or after the second advancement, or as in most
cases, the Payback Time is not started at all if both the left and right “CPU Lit” lamps did not get lit as a
result of the Security Pass award.

If the Payback Time starts after the first (of the two) advancements, the previous logic has shown how
the Payback Time startup will light both left and right ramp arrows. Subsequent to such startup of
Payback Time, the secondary advancement of security will take place which will simply increment the
per-player left or right security level counter and then set the left or right “Check Point” lamp. In this
case, the left and right ramp arrows remain lit as they were set during the “Start Payback Time” function
and has not encountered any logic that otherwise clears the left or right ramp arrows.

Award Security Pass

Is Left Ramp Arrow

Lit?

Advance Security Level:

 Left

Advance Security Level:

 Right

Advance Security Level:

 Right

Advance Security Level:

 Left

Display animation as

necessary

no yes

The “Advance Security Level”

functions were previously

described, above

done

Payback Time can potentially start

after the first advancement (which is

when the bug happens) or after the

second security level advancement,

or not at all (as in most cases).

Before considering the fix for this problem, an additional L-8 game design element should be mentioned.
At the start of every ball one of the many things the game does is to check the security level for left and
right ramps. If both security levels are equal then the game lights both left and right ramp arrows.
Simplified logic for this behavior is as follows:

With the application of all of the logic presented thus far, an implied behavior takes place which will be
important to retain with the L8.4 fix. The implied behavior is related to how the Security Pass award, in
some cases, should retain both left and right arrows as lit.

In cases where the security levels are even (left and right have same number of lit security pass awards)
and the game has both left and right ramp arrows lit, when the player is awarded Security Pass, the
expectation is that after the award of left and right security level lamps, the left and right ramp arrows
both remain lit. It would be unfair and presumptuous of the security pass award to advance the level
evenly but then turn off one of the ramp arrows.

Security Levels Bug Fix

Based on the presented logic, the fix for the security levels lamp mismatch bug appears to be needed in
the Security Pass award logic. The existing L-8 software (as shown above) leverages on the left/right
ramp “made” switches to clear the lamp arrow after advancing the security level (if Payback Time has
not started as a result of such security level advancement).

It is evident that the correct logic would therefore involve having the “Award Security Pass” function
also take the extra effort of clearing the lamp arrow for the second (of the two) security level
advancements. The existing L-8 “Award Security Pass” code simply makes an assumption that the two

Start of Ball Handler

Left/Right Security

Levels equal?

Remainder of state set

logic at start of ball

done

yes

no

Various state set logic at

start of ball

Light Left Ramp Arrow

Light Right Ramp Arrow

security advancements do not require additional consideration about clearing any ramp arrows since
the advancement of two security levels should not change the lit ramp arrow state. Clearly this
assumption is incorrect since the first of the two security level advancements can cause both ramp
arrows to become lit as part of the “Start Payback Time” function.

The updated logic for L8.4 is depicted in the following updated “Award Security Pass” flowchart with
new logic highlighted. If the left/right security levels are equal then the new code will not attempt to
clear left or right ramp arrows, thus leaving them unchanged to retain L-8 design where an even
application of Security Pass award will keep both ramp arrows lit if they were both lit prior to the award
of the Security Pass.

Award Security Pass

Is Left Ramp Arrow

Lit?

Advance Security Level:

 Left

Advance Security Level:

 Right

Advance Security Level:

 Right

Advance Security Level:

 Left

Display animation as

necessary

no yes

The “Advance Security Level”

functions were previously

described, above

done

Payback Time can potentially start

after the first advancement (which is

when the bug happens) or after the

second security level advancement,

or not at all (as in most cases).

Payback Time

Triggered?

Clear Ramp Arrow:

Right Ramp

Payback Time

Triggered?

Clear Ramp Arrow:

Left Ramp

yes yes

no no

Left/Right Security

Levels equal?

Left/Right Security

Levels equal?

yes yes

no no

Security Levels Bug Fix – Code Changes

The necessary code changes for updating the “Award Security Pass” function require an update to the

security pass security level advancement function. The actual implementation of the “Award Security

Pass” function, as it is depicted in the flowcharts above, starts at $57DA,31, ROM offset 0x457DA. This

is the common function that is invoked from both the Escape Route and the Database Award functions.

---;---

 ;

 ; AwardSecurityPass()

 ;

57DA: 86 03 LDA #$03 ;

57DC: B7 06 0F STA $060F ;

57DF: BD 5E D3 JSR $5ED3 ; SecurityPassSecurityLevelLampsAdvance()

57E2: 0D C0 TST $C0 ;

57E4: 27 03 BEQ $57E9 ;

57E6: BD 52 6D JSR $526D ; WaitForAnimationCompletionE8()

57E9: BD 5E 8F JSR $5E8F ; SecurityPassAnimation()

57EC: BD 71 A3 JSR $71A3 ; Increment05BDbyPlayerIndexNumber()

57EF: 39 RTS ;

 ;

---;---

The important part of the function is the call to $5ED3,31 which is where the security levels are

advanced as part of the Security Pass award. This function is depicted below:

---;---

 ;

 ; SecurityPassSecurityLevelLampsAdvance()

 ;

5ED3: BD 84 49 JSR $8449 ; GetLampLitState() C-clear when lamp is on

5ED6: 30 ; 30 == Left Ramp

5ED7: 24 06 BCC $5EDF ;

5ED9: 8D 47 BSR $5F22 ; AdvanceSecurityLevelRight(), C-clr = Payback Time

5EDB: 8D 07 BSR $5EE4 ; AdvanceSecurityLevelLeft(), C-clr = Payback Time

5EDD: 20 04 BRA $5EE3 ;

5EDF: 8D 03 BSR $5EE4 ; AdvanceSecurityLevelLeft(), C-clr = Payback Time

5EE1: 8D 3F BSR $5F22 ; AdvanceSecurityLevelRight(), C-clr = Payback Time

5EE3: 39 RTS ;

 ;

---;---

The security level advancement function above, performs the logic previously depicted in the “Award

Security Pass” flowchart. This function in L-8 is compact using BSR instructions to cause the function to

be called using only 2 bytes per call. Since the bank $31 has very little available space for new code, the

L8.4 code fix will require that the $5ED3,31 function to be replaced with a call to the its new

replacement function located in bank $3A where more available ROM space can allow for the full and

proper fix.

Moving the function to bank $3A could potentially impose additional time and stack space as the new

function in bank $3A is called from bank $31 and it, in turn, calls into functions in bank $31. Such extra

time is in the order of, perhaps, a few hundred microseconds and not any different from other normally

running code that involves code from one bank calling code in another bank. Initial testing with this

code change shows it behaves as expected and the L8.4 code will proceed with the following changes.

The security level advancement function at $5ED3,31 for L8.4 is replaced with the following new content:

---;---

 ;

 ; SecurityPassSecurityLevelLampsAdvance()

 ; Function replacement for L8.4

 ;

5ED3: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

5ED6: 7A F4 3A ; L8.4 Security Pass Award Fixup

5ED9: 39 RTS ;

5EDA: FF FF FF FF ; <unused ROM bytes>

5EDE: FF FF FF FF ; <unused ROM bytes>

5EE2: FF FF ; <unused ROM bytes>

 ;

---;---

The advancement function is now a jump to the new L8.4 fixup function located at $7AF4,3A, ROM

offset 0x6BAF4. At this location in bank $3A is unused ROM bytes which are replaced with the following

new function to incorporate the logic fixes described above for the security level lamp mismatch

problem. This location in bank $3A is immediately after other L8.4 code additions, thus keeping a lot of

the new L8.4 code in the same region of the ROM image.

---;---

 ;

 ; SecurityPassSecurityLevelLampsAdvance()

 ;

7AF4: BD 84 49 JSR $8449 ; GetLampLitState() C-clear when lamp is on

7AF7: 30 ; 30 == Left Ramp

7AF8: 24 18 BCC $7B12 ;

 ; Left ramp lamp is not lit so assume right ramp is lit.

 ; Apply the Security Pass award, right then left levels.

 ; Then clear the lamp from left ramp lamp unless its

 ; security level advancement started Payback Time.

 ;

7AFA: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7AFD: 5F 22 31 ; AdvanceSecurityLevelRight()

7B00: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7B03: 5E E4 31 ; AdvanceSecurityLevelLeft()

7B06: 24 08 BCC $7B10 ; If Payback Time started, C-clr, skip ramp lamp off

7B08: 8D 1F BSR $7F29 ; Check if left/right security levels are equal

7B0A: 27 04 BEQ $7B10 ; If left/right levels are equal, don't clear ramp lamp

7B0C: BD 84 2B JSR $842B ; ClearSingleLamp()

7B0F: 30 ; 30 == Left Ramp

7B10: 20 16 BRA $7F28 ;

 ;

 ; Left ramp lamp is lit so assume right ramp is not lit.

 ; Apply the Security Pass award, left then right levels.

 ; Then clear the lamp from right ramp unless its

 ; security level advancement started Payback Time.

 ;

7B12: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7B15: 5E E4 31 ; AdvanceSecurityLevelLeft()

7B18: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7B1B: 5F 22 31 ; AdvanceSecurityLevelRight()

7B1E: 24 08 BCC $7F28 ; If Payback Time started, C-clr, skip ramp lamp off

7B20: 8D 07 BSR $7F29 ; Check if left/right security levels are equal

7B22: 27 04 BEQ $7F28 ; If left/right levels are equal, don't clear ramp lamp

7B24: BD 84 2B JSR $842B ; ClearSingleLamp()

7B27: 3A ; 3A == Right Ramp

 ;

7F28: 39 RTS ;

 ;

;--;---

;--;---

 ;

 ;

7F29: 34 12 PSHS X,A ;

7F2B: 8E 05 95 LDX #$0595 ; 0x0595 RAM storage for per-player left security level

7F2E: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

7F31: A6 84 LDA ,X ;

7F33: 8E 05 99 LDX #$0599 ; 0x0599 RAM storage for per-player right security level

7F36: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

7F39: A1 84 CMPA ,X ;

7F3B: 35 92 PULS A,X,PC ;

 ;

---;---

As shown in the code above, the new logic behaves as per the previously depicted flowchart. The

left/right security levels are compared and, if not equal, then the ramp lamp gets cleared. This ensures

correct logic whereby an even security level advancement of both sides will keep both ramp lamps lit if

they were lit prior to the Security Pass award. If the levels are uneven then the ramp lamp is sure to be

cleared, thus correcting the bug for L8.4.

Post-Tilt Bonus Multipliers Lamp Bug

For L8.4, an existing L-8 bug related to the playfield insert lamp states for Bonus-X values is being
corrected. The problem is related to the bonus-x lamp states in the next ball in play after the player has
experienced a tilt.

A summary of the bonus multipliers logic and the bug is provided, below.

Terminator 2 Bonus and Bonus Multipliers Logic

The bonus multiplier logic in Terminator-2 is fairly straightforward and commonly understood by most
pinball players. Below is a portion of the page from the Terminator-2 manual describing the way in
which the bonus and bonus multipliers work.

It is worth noting that the manual description for the Database award also indicates that “Bonus X” is a
possible award however the actual L-8 code does NOT offer “Bonus X” as a database award. It appears

that the actual game software added the “100,000” (or FUA) in place of the “Bonus X” since all of the
other database awards in the game correspond to what the manual lists for database award values.

What, perhaps, is not as well known is how the bonus value is accumulated. Based on some
investigation into the L-8 code, it appears the bonus value starts at 0 at each ball, and then increments
during game play as the ball hits different targets. Each target’s handler has a specific call into 1 of 4
possible functions to increase the player’s bonus by a fixed set of points. Listed below are the 4
functions, the bonus points it adds, and the number of calls to each function in the L-8 code.

Bonus Point Accumulation Functions, L-8

Function Points Number of calls in L-8

$FAA8 1,130 12

$FAAE 3,330 12

$FAB4 5,530 5

$FABA 9,930 6

Further details as exactly which switch ends up calling each bonus point accumulator function is left as
an exercise to the reader. For readers investigating the code, it is worth noting that the bonus is stored
in ram in binary coded decimal (BCD) and points are added up using opcodes that are intended to
accumulate BCD values. For reference the functions start at $FAA8, ROM offset 0x7FAA8, and are
shown below.

---;---

 ;

 ; AddToBonus_1130_points()

FAA8: 34 16 PSHS X,B,A ;

FAAA: 86 11 LDA #$11 ;

FAAC: 20 10 BRA $FABE ;

 ;

---;---

 ;

 ; AddToBonus_3330_points()

FAAE: 34 16 PSHS X,B,A ;

FAB0: 86 33 LDA #$33 ;

FAB2: 20 0A BRA $FABE ;

 ;

---;---

 ;

 ; AddToBonus_5530_points()

FAB4: 34 16 PSHS X,B,A ;

FAB6: 86 55 LDA #$55 ;

FAB8: 20 04 BRA $FABE ;

 ;

---;---

 ;

 ; AddToBonus_9930_points()

FABA: 34 16 PSHS X,B,A ;

FABC: 86 99 LDA #$99 ;

 ;

---;---

 ;

 ; AddToBonusValue()

 ; Adds value in A in hundreds plus 30 points.

 ;

FABE: BD F7 DE JSR $F7DE ; GetAddressOfCurrentPlayerBonusScoreBcd()

FAC1: 6D 01 TST $0001,X ;

FAC3: 27 06 BEQ $FACB ;

FAC5: E6 02 LDB $0002,X ;

FAC7: C1 15 CMPB #$15 ;

FAC9: 22 1E BHI $FAE9 ;

FACB: 34 02 PSHS A ;

FACD: 86 30 LDA #$30 ; Adds 30 points to the lowest 2 BCD digits.

FACF: AB 04 ADDA $0004,X ;

FAD1: 19 DAA ;

FAD2: A7 04 STA $0004,X ;

FAD4: 35 02 PULS A ;

FAD6: A9 03 ADCA $0003,X ; Adds value in A to next 2 BCD digits.

FAD8: 19 DAA ;

FAD9: A7 03 STA $0003,X ;

FADB: 86 00 LDA #$00 ;

FADD: A9 02 ADCA $0002,X ;

FADF: 19 DAA ;

FAE0: A7 02 STA $0002,X ;

FAE2: 86 00 LDA #$00 ;

FAE4: A9 01 ADCA $0001,X ;

FAE6: 19 DAA ;

FAE7: A7 01 STA $0001,X ;

FAE9: 35 96 PULS A,B,X,PC ;

 ;

---;---

An additional detail to mention is the “Hold Bonus” feature. When the bonus is held (as an Escape
Route award) the player’s bonus value is added to their running score and the bonus score value is
simply not cleared at the start of the next ball. The bonus score value in memory continues to
accumulate during the next ball in play.

At the end of a ball during bonus add-up, the code will check if the “Hold Bonus” lamp is set and use this
as logic to determine how to proceed. This is shown in the portion of code, below. This is code starting
at $7776,33, ROM offset 0x4F776.

7776: BD 84 49 JSR $8449 ; GetLampLitState() C-clear when lamp is on

7779: 03 ; 03 == Hold Bonus

777A: 24 0F BCC $778B ; If lamp is on (C-clr) skip down to $778B

 ;

 ; This is the normal clearing of bonus lamps at end of

 ; ball that takes place when the "Hold Bonus" is not

 ; taking place.

 ;

777C: BD 87 BE JSR $87BE ; ExtinguishLampGroupParamBytes()

777F: 05 00 ; Bonus2x4x6x8x lamps

7781: BD 84 8F JSR $848F ; ClearMemoryFlag()

7784: 41 ; Bonus Held flag

7785: BD 84 8F JSR $848F ; ClearMemoryFlag()

7788: 4A ;

7789: 20 38 BRA $77C3 ;

 ;

 ; Here handling "Hold Bonus" condition at end of ball.

 ;

778B: BD 84 80 JSR $8480 ; SetMemoryFlag()

778E: 41 ; Bonus Held flag

778F: BD 84 2B JSR $842B ; ClearSingleLamp()

7792: 03 ; 03 == Hold Bonus

7793: BD FB AE JSR $FBAE ; ClearDisplayMemory()

7796: 7E 77 99 JMP $7799 : <nop>

7799: BD D7 99 JSR $D799 ; Print string on DMD

779C: 00 0A ; String index

779E: 0A ; font

779F: 40 17 ; Coordinates

The above logic takes place during bonus collection. The logic will clear the “Hold Bonus” flag, if set,
then sets the 0x41 flag before proceeding with a handful of additional work that adds in the bonus (not
depicted). This 0x41 flag is set here as a crumb that the subsequent start of next ball will use to
determine whether or not to clear the bonus points that have accumulated for the current player.

During the new ball-in-play reset function, the software reads flag 0x41 to determine if bonus has been
held and, if so, the accumulated bonus points value is not cleared. If the 0x41 flag is set, the clearing of
the bonus value and the clearing of the player’s bonus-x level is skipped. If the bonus-held flag is not set
then the game clears the player’s bonus value and the player’s bonus-x level. The code where this
happens is at $62DE,3B, ROM offset 0x6E2DE, and is depicted below.

62DE: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag is set

62E1: 41 ; Bonus Held flag, it flag is set (c-clear)

62E2: 24 1B BCC $62FF ; then don't clear the bonus value here

 ;

62E4: BD F7 DE JSR $F7DE ; GetAddressOfCurrentPlayerBonusScoreBcd()

62E7: 7E 62 EA JMP $62EA ; <nop> Next, clear the player's bonus BCD value

62EA: 6F 84 CLR ,X ; Clears $05DB:$05DC (player 1)

62EC: 6F 01 CLR $0001,X ; Clears $05DD:$05DE (player 1)

62EE: 6F 02 CLR $0002,X ; Clears $05DF:$05E0 (player 1)

62F0: 6F 03 CLR $0003,X ; Clears $05E1:$05E2 (player 1)

62F2: 6F 04 CLR $0004,X ; Clears $05E3:$05E4 (player 1)

 ;

62F4: 8E 05 91 LDX #$0591 ; Starting address of per-player bonus-x level

62F7: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

62FA: 7E 62 FD JMP $62FD ; <nop>

62FD: 6F 84 CLR ,X ; Clear the player‟s bonus-x level

 ;

62FF: BD 84 8F JSR $848F ; ClearMemoryFlag()

6302: 41 ; Clear bonus-held flag

As shown in the code sample above, the game tracks a per-player bonus-x level at $0591. This stores a

numeric value representing the current bonus-x level, storing value 0 or 1 through 4 to indicate bonus-

2x through 8x, respectively. This code portion reveals that the game tracks this bonus-x level separately

from the lit bonus-x lamps. Although the game clears the player’s bonus-x level here, the actual bonus-x

lamps are cleared as separate part of the code. The actual part of code that clears the lamps is during

the bonus add-up that takes place at end of ball, as depicted earlier where the bonus-x lamps were

cleared with a call to $87BE with parameter bytes 0x05 and 0x00. This separation in how the lamps are

tracked and a separate bonus-x level counter is used, leads to the Terminator-2 Bonus Multipliers Bug,

described next.

Terminator 2 Bonus and Bonus Multipliers Logic Flowcharts

The previously depicted code for bonus can be summarized in the following flowcharts. These

flowcharts show the end-of-ball bonus logic and the start-of-ball logic where the bonus-x and “hold

bonus” lamps are considered.

End-of-Ball

Bonus Handler

Start-of-Ball

Handler

“Hold Bonus”

Lamp Lit?
Set Flag 0x41

Turn Off “Hold

Bonus” lamp
Turn Off Bonus-x

2x 4x 6x 8x lamps

Clear Flag 0x41

Remainder of

bonus collect

activities

done

Various start-of-ball

logic/activities

Flag 0x41

set?

Clear player’s bonus-x

level

Clear player’s bonus

points / accumulator

Clear Flag 0x41

Remaining start-of-

ball logic/activities

done

yes

no yes

no

The End-of-Ball Bonus Handler code

is NOT executed when a tilt occurs.

Terminator 2 Bonus and Bonus Multipliers Bug
The bug that occurs in L-8 related to bonus multipliers is simply that, upon a tilt, the game software

clears the player’s bonus-x level however it does not turn off the corresponding bonus-x lamps that the

player might have had accumulated prior to the tilt. The result of this is that during the subsequent ball-

in-play, the internally tracked bonus multiplier starts at zero even though bonus-x lamps remain lit.

When the next bonus multiplier is achieved, a new lamp is added to the set of bonus-x lamps that are

already lit (if all 4 bonus-x lamps are not already lit).

An examination of the code reveals this behavior is simply the result of code that has no consideration

for tilt and how it applies to the bonus-x lamps. The bonus-x lamp code appears to be designed with the

idea that the game will always award bonus at end of a ball, however this assumption is invalid since a

tilt can occur which bypasses bonus. The start-of-ball code that subsequently executes assumes that

bonus-x lamps were cleared and proceeds to only clear the internally tracked bonus-x level for the

player without doing anything with the bonus-x lamps.

At first it would seem the fix need to simply ensure that the code clears the bonus-x lamps at the same

time it resets the player’s bonus-x level. However it was also observed that the ‘Hold Bonus’ lamp

remains lit throughout a tilt and the game will, at drain of the subsequent ball, hold the bonus as per the

lit lamp (where such lit lamp was retained through the tilt). It is questionable as to whether the original

design should have also cleared the “Hold Bonus” lamp during the tilt or if the current behavior is per

design intentions. Further study, below, determines this is likely a bug and that the “Hold Bonus” lamp

should also be turned off after a tilt.

The behavior of a game in how it handles tilt and how it penalizes the player in removal of bonus and/or

bonus hold is entirely game specific. There is no requirement or expectation that all games behave

identically in this matter.

As part of considering what the correct logic should be for Terminator 2, with regard to tilt and bonus-x

and bonus hold retention, a summary of existing behaviors is below, along with comparisons with two

subsequent games from the same designer, the great Steve Ritchie.

Game S/W Multiplier
Lamps

Hold
Lamp

Hold
Duration

Holds
points

Holds
multiplier

Tilt
clears
points

Tilt clears
multipliers

Tilt
clears
hold

Terminator 2 L-8 2X 4X
6X 8X

Hold
Bonus

Single Ball Yes Yes Yes Yes* No**

The Getaway L-5 2X 4X
6X 8X

Hold
Bonus

Single Ball Yes Yes Yes Yes Yes

Star Trek:
TNG

LX-7 2X 4X
8X 10X

Hold
Multiplier

Single Ball N/A*** Yes N/A*** No Yes

*Multipliers are cleared but the lamps remain lit, bug subject to being fixed in L8.4.
** For L8.4 the code is being updated so that tilt will clear the “Hold Bonus”.
*** STTNG does not accumulate bonus points in same sense as other games. Achievements = bonus.

Terminator 2 Bonus and Bonus Multipliers Bug Fix
After investigation in the Terminator 2 bonus-x and hold bonus lamp code, it was determined the

appropriate fix for the bonus-x at tilt issue is as depicted in the updated flowchart below. New elements

are highlighted.

The updated logic will simply clear the bonus-x 2x, 4x, 6x, 8x lamps and the “Hold Bonus” lamp when, at
start of ball, it determines that the 0x41 flag is not set (and therefore normally clears only the per-player
bonus-x level). This effectively fixes the problem with tilt that was previously resulting in these lamps

End-of-Ball

Bonus Handler

Start-of-Ball

Handler

“Hold Bonus”

Lamp Lit?
Set Flag 0x41

Turn Off “Hold

Bonus” lamp
Turn Off Bonus-x

2x 4x 6x 8x lamps

Clear Flag 0x41

Remainder of

bonus collect

activities

done

Various start-of-ball

logic/activities

Flag 0x41

set?

Clear player’s bonus-x

level

Clear player’s bonus

points / accumulator

Clear Flag 0x41

Remaining start-of-

ball logic/activities

done

yes

no yes

no

The End-of-Ball Bonus Handler code

is NOT executed when a tilt occurs.

Turn Off Bonus-x

2x 4x 6x 8x lamps

Turn Off “Hold

Bonus” lamp

remaining lit at the start of the next ball following the tilt. This fix makes the obvious decision to clear
the 2x, 4x, 6x and 8x lamps when the bonus-x level is being cleared. Prior to this, code was making a
blind assumption that these lamps were already cleared when bonus was collected. This fix also blindly
clears the “Hold Bonus” flag as there are no valid scenarios where the “Hold Bonus” lamp is lit at the
start of a ball. With these changes in place, the regular game play and post-tilt game play will have
correct set of lamps regardless of whether a tilt took place or whether the bonus was held at the end of
the previous ball.

The code update that corresponds to this new logic starts in the previously depicted section of code at
$62DE,3B, ROM offset 0x6E2DE, and is highlighted below.

62DE: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag is set

62E1: 41 ; Bonus Held flag, it flag is set (c-clear)

62E2: 24 1B BCC $62FF ; then don't clear the bonus value here

62E4: BD F7 DE JSR $F7DE ; GetAddressOfCurrentPlayerBonusScoreBcd()

62E7: 7E 62 EA JMP $62EA ; <nop> Next, clear the player's bonus BCD value

62EA: 6F 84 CLR ,X ; Clears $05DB:$05DC (player 1)

62EC: 6F 01 CLR $0001,X ; Clears $05DD:$05DE (player 1)

62EE: 6F 02 CLR $0002,X ; Clears $05DF:$05E0 (player 1)

62F0: 6F 03 CLR $0003,X ; Clears $05E1:$05E2 (player 1)

62F2: 6F 04 CLR $0004,X ; Clears $05E3:$05E4 (player 1)

 ;

62F4: 8E 05 91 LDX #$0591 ; Starting address of per-player bonus-x level

62F7: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

62FA: 7E 62 FD JMP $62FD ; <nop>

62FD: 6F 84 CLR ,X ; Clear the player‟s bonus-x level

 ;

62F4: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

62F7: 7B 3D 3A ; $7B3D,3A L8.4 Bonus-x bugfix

62FA: 7E 62 FF JMP $62FF ; Jump down to resume normal code

62FD: 12 NOP ; Filler NOP

62FE: 12 NOP ; Filler NOP

 ;

62FF: BD 84 8F JSR $848F ; ClearMemoryFlag()

6302: 41 ; Clear bonus-held flag

The start-of-ball code that was clearing the player’s bonus-x level is replaced with a call to a new
function that is placed at $7B3D,3A, ROM offset 0x6BB3D. This is in a region of unused ROM space
where other L8.4 bug fix functions are also located. The new function is as follows.

---;---

 ;

7B3D: 34 10 PSHS X ;

7B3F: 8E 05 91 LDX #$0591 ; Starting address of per-player bonux-X level

7B42: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

7B45: 6F 84 CLR ,X ;

7B47: BD 87 BE JSR $87BE ; ExtinguishLampGroupParamBytes()

7B4A: 05 00 ; Bonux2x4x6x8x lamps

7B4C: BD 84 2B JSR $842B ; ClearSingleLamp()

7B3F: 03 ; 03 == Hold Bonus

7B40: 35 90 PULS X,PC ;

 ;

---;---

The new function simply clears the player’s bonus-x level and then extinguishes the bonus-x 2x, 4x, 6x,
8x lamps and then extinguishes the “Hold Bonus” lamp, thus fixing the bonus-x at tilt bug for L8.4.

HSTD Table Update Investigation
One item on the list of L8.4 fixes was investigation into the report of high score data containing

unexpected ordering. The report started with a video showing a Terminator 2 machine with attract

mode depicting scores in the following order:

Grand Champion : LRS – 191,784,950 <-- unexpected

Top Marksmen 1 : LRS – 324,629,310

Top Marksmen 2 : LRS – 215,750,310

Top Marksmen 3 : LRS – 201,094,490

Top Marksmen 4 : - 158,320,130

The top score #4 contains blank name. The report is that the player walked away and missed their
opportunity to enter the 3 initials.

An investigation into the code in the area of HSTD determination and insertion was done with the
following observations:

 The game code involves redundant mechanisms when dealing with high score data.
 A player’s score is checked multiple times for correct order when being put into the table.
 The Grand Champion and top-4 (Top Marksmen) are 2 separately maintained tables.
 The HSTD data is checked for valid ordering and memory contents.
 When HSTD is found to be invalid it gets reset to factory default content.
 When a score is found to have invalid data (anything other than 0-9 content) it is not used.
 For Initials, spaces are treated same as A-Z. It does not play a role in possible problems.
 Game adjustments allow custom default scores.
 If adjusted top-4 default scores are out of order, game will use factory default scores instead.
 Game will allow default grand champion to be less than top-4.
 Game allows disable of grand champion score from being tracked or shown.
 Game allows disable of all high scores (grand champion and top-4).

There was no coding flaw identified in which the invalid ordering could occur. The invalid ordering was,
however, found to be achievable by utilizing the game adjustments such as in the following way:

 Start with factory default high scores.
 Score 191,784,950, Grand Champion.
 Adjust HSTD settings to disable Grand Champion.
 Score 324,629,310, Top Marksmen 1
 Score 215,750,310, Top Marksmen 2
 Score 201,094,490, Top Marksmen 3
 Score 158,320,130, Top Marksmen 4
 Adjust HSTD settings to enable Grand Champion.

After the above sequence, the scores would be shown as indicated in the problem statement, above.
This is only serving to report one possible way in which the Grand Champion score could possibly be
shown with a lower value than the Top Marksmen 1 score.

For L8.4 the following will go into detail showing the discovered HSTD code and how it operates.
Perhaps a keen eye will discover something that was overlooked during this discovery process whereby
the ordering of high score data could possibly get into an unexpected ordering.

HSTD Full Problem Statement
The full sequence that was reported in the problem statement is as follows:

Start with a Factory Reset which restores the HSTD table to the following:

Grand Champion : AJA – 150,000,000

Top Marksmen 1 : XAQ – 90,000,000

Top Marksmen 2 : DOC – 70,000,000

Top Marksmen 3 : JAS – 50,000,000

Top Marksmen 4 : JCS - 30,000,000

Then simply play normally. Scoring various high scores over a period of time. Game may be shut off and
back on between games, as days have been reported to have elapsed before the problem took place.
All games are reported to have been single player games.

Grand Champion : LRS – 324,629,310

Top Marksmen 1 : LRS – 215,750,310

Top Marksmen 2 : LRS – 201,094,490

Top Marksmen 3 : - 158,320,130

Top Marksmen 4 : LSR - ???,???,??? (unknown)

The top score #4 would have to be something greater than 150,000,000 and less than or equal to
158,320,130. This is because the Grand Champion was 150,000,000 at the most recent factory settings
reset. The entry with no name was due to player walking away without entering their initials and the
lack of initials is not suspected of being related to the score ordering problem.

Next a game is played which scores 191,784,950 points. It is reported that the end of game reports that
the player is a Grand Champion prior to the entry of initials. After entering the initials the player’s score
then appears as Grand Champion with the HSTD table then shown as depicted below (and shown in a
video):

Grand Champion : LRS – 191,784,950

Top Marksmen 1 : LRS – 324,629,310

Top Marksmen 2 : LRS – 215,750,310

Top Marksmen 3 : LRS – 201,094,490

Top Marksmen 4 : - 158,320,130

As shown, the expectation is that the score with 191,784,950 should have been declared as “Top
Marksmen #3” and it should have pushed the 158,320,130 score to position #4.

HSTD Code Walk Through
This section will describe the code flow from the end of game sequence to high-score report and

collection of initials from the player. The attract mode sequence for reporting high scores is also shown.

The comments and analysis are sometimes a best-guess as to the code intentions and, as always, subject

to correction and revised interpretation.

Shown below is code starting in the middle of a function that handles end-of-ball sequence. Code

shown below starts at $476C,38, ROM offset 0x6076C.

476C: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte()

476F: 10 ; 0x10 == EndOfBallBonusAddupSequence()

 ;

4770: BD 83 46 JSR $8346 ;-\ Sleep()

4773: 02 ; | 31.25mS

4774: BD CA 90 JSR $CA90 ; |

4777: 81 10 CMPA #$10 ; |

4779: 27 F5 BEQ $4770 ;-/

 ;

477B: BD 86 90 JSR $8690 ;-\ SearchLinkedListForId() // c-bit clear = ID found

477E: 38 13 ; |

4780: 25 06 BCS $4788 ; |

4782: BD 83 46 JSR $8346 ; | Sleep()

4785: 01 ; | 15.625mS

4786: 20 F3 BRA $477B ;-/

 ;

4788: 0F 88 CLR $88 ;

478A: BD 85 E1 JSR $85E1 ;

478D: 04 ;

478E: BD 8A 9A JSR $8A9A ; CancelAllCallbacksIdMaskParameterBytes()

4791: 00 00 ;

4793: 10 00 ;

4795: BD 4B 39 JSR $4B39 ;

4798: BD 86 21 JSR $8621 ; CallFunctionPointerParameterBytes()

479B: 80 31 ; $8031 has $634E,3D

479D: BD B2 4E JSR $B24E ; Checks if at end of game

47A0: 25 07 BCS $47A9 ; C-set after last ball bonus was added up

47A2: 4F CLRA ;

47A3: BD 46 9E JSR $469E ; ends up setting lamps for current player at ball start

47A6: 7E 99 A2 JMP $99A2 ;

 ;

---;---

The code, above shows where the end of ball bonus sequence is triggered followed by some sleep loops
which, presumably, wait for the bonus display to complete or dramatic pause at end of ball. After this is
some other code that hasn’t been investigated followed by the highlighted code where code checks if
the last ball has just completed and, if so, branch to $47A9,38 which is the section of code that
immediately follows.

The function at $47A9,38, ROM offset 0x607A9, is where the end of game sequences take place and is
shown below.

---;---

 ;

 ; Last ball (of all players) bonus was added up.

 ; now check for high score

 ;

47A9: 1C FE ANDCC #$00FE ;

47AB: BD 86 21 JSR $8621 ; CallFunctionPointerParameterBytes()

47AE: 80 16 ; $8016 has $634D,3D, Debug hook, RTS

47B0: 25 3A BCS $47EC ; C-set upon error, nothing to do here

47B2: 86 01 LDA #$01 ;

47B4: 97 87 STA $87 ; Set $87 to 0x01 to mark end-of-game / game-over

47B6: BD 4D 3A JSR $4D3A ;

47B9: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

47BC: 62 84 39 ; EndOfGameReplayLevelAdjust()

47BF: BD 86 21 JSR $8621 ; CallFunctionPointerParameterBytes()

47C2: 80 D0 ; $80D0 has $6585,3B

47C4: BD 86 AC JSR $86AC ; UpdateCurrentRunningScheduleFunctionIDParameterBytes()

47C7: 00 0C ;

47C9: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte()

47CC: 01 ; $5D1A,3D table entry [01] has $6AC1,3B

47CD: 8D 20 BSR $47EF ; EndOfGameHstdUpdateAndMatchSequence()

 ;

 ;---

 ; Get here after any Initials have been entered and

 ; match sequence has finished.

 ;---

47CF: BD 4D 5A JSR $4D5A ;

47D2: BD 9E 0A JSR $9E0A ;

47D5: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

47D8: 60 12 39 ;

47DB: 24 04 BCC $47E1 ;

47DD: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte()

47E0: 06 ; $5D1A,3D table entry [06] has $7E19,30

47E1: BD 4B 6D JSR $4B6D ;

47E4: BD 46 13 JSR $4613 ;

47E7: BD 86 21 JSR $8621 ;

47EA: 80 19 SUBA #$19 ;

47EC: 7E 99 A2 JMP $99A2 ;

 ;

---;---

The function, above performs various activities at the end of a game. The highlighted function is what is
important for understanding HSTD determination and HSTD table insertion. The function at $47EF,38,
ROM offset 0x607EF, handles the HSTD table update and match sequence and is shown below.

---;---

 ;

 ; EndOfGameHstdUpdateAndMatchSequence()

 ;

47EF: 34 02 PSHS A ;

47F1: 86 03 LDA #$03 ;

47F3: BD 4A 8D JSR $4A8D ;

47F6: 0F 86 CLR $86 ;

47F8: A6 9F 81 96 LDA [$8196] ; At $8196 is 0xFE90. At $FE90 is 0x40, put into A here

47FC: 27 03 BEQ $4801 ; Since $FE90 has 0x40 this never jumps over instruction

47FE: BD 98 94 JSR $9894 ; Function popualtes video memory at $3A00

4801: BD 48 09 JSR $4809 ; HighScoreInitialEntryAndAward()

4804: BD 48 DA JSR $48DA ; MatchSequence()

4807: 35 82 PULS A,PC ;

 ;

---;---

The function, above, sets up some video memory and then calls a function that handles the entire HSTD
award and then calls a function that handles the entire match sequence. The HSTD function is at
$4809,38, ROM offset 0x60809, and is shown below.

---;---

 ;

 ; HighScoreInitialEntryAndAward()

 ;

4809: 34 56 PSHS U,X,B,A ;

480B: 32 7D LEAS $FFFD,S ; Make room for 3 bytes on the stack.

 ; S[0] Contains bitmap of handled players

 ; 0x01=player 1

 ; 0x02=player 2

 ; 0x04=player 3

 ; 0x08=player 4

 ; S[1] contains player indicator.

 ; 01=Player 1

 ; 02=Player 2

 ; 03=Player 3

 ; 04=Player 4

 ; S[2] ends up getting HSTD number

 ; 00=Grand Champion

 ; 01=Top Marksmen 1

 ; 02=Top Marksmen 2

 ; 03=Top Marksmen 3

 ; 04=Top Marksmen 4

480D: 1C FE ANDCC #$00FE ;

480F: BD 86 21 JSR $8621 ; CallFunctionPointerParameterBytes()

4812: 80 6D ; $806D has $637B,3D, Debug hook, just an RTS

 ;

4814: 10 25 00 A5 LBCS $48BD ; C is always clear, so no branch

 ;

4818: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

481B: A2 00 ; Adj=0xA2 $1B61:$1B62 HstdAdj001, Highest Scores

481D: 10 24 00 9C LBCC $48BD ; C-bit set = normal high scores is allowed, no branch

 ;

4821: 6F E4 CLR ,S ; Start with S[0] = 0x00, no players scores checked yet

 ;

4823: 33 E4 LEAU ,S ;-\ SP pointer into U, start of 3 bytes on the stack

4825: BD 4A 17 JSR $4A17 ; | GetNextPlayerHstdAchieved()

4828: 10 25 00 91 LBCS $48BD ; | C-set no new high score found.

 ; |

 ; | Now collect the initials from user.

 ; | Example of the three byte buffer in various cases:

 ; |

 ; | Bitmap PlayerIndex HSTDEntry

 ; | ---

 ; | Player 1 new GC : 01 01 00

 ; | Player 1 new Top #1: 01 01 01

 ; | Player 1 new Top #2: 01 01 02

 ; | Player 1 new Top #3: 01 01 03

 ; | Player 1 new Top #4: 01 01 04

482C: 86 01 LDA #$01 ; |

482E: B7 04 B1 STA $04B1 ; |

4831: BD AB A2 JSR $ABA2 ; | general illumination related

4834: AE 61 LDX $0001,S ; | X gets 2 bytes of PlayerIndex and HSTDEntry

4836: BD 86 21 JSR $8621 ; | CallFunctionPointerParameterBytes()

4839: 80 61 ; | $8061 has $6377,3D, Debug hook, just and RTS

483B: BD 85 53 JSR $8553 ; | ShowMonochromeAnimationParameterByte()

483E: 07 ; | $5D1A,3D [07] $505E,24

 ; | ReportPlayerGrandChamptionOrTopMarksmen()

483F: 24 06 BCC $4847 ; | C-set when error detected

 ; |

 ; |------------------------------------

4841: BD 82 B6 JSR $82B6 ; | ErrorHandler()

4844: 61 ; |

4845: 20 76 BRA $48BD ; | Branch to the end in error scenario

 ; |------------------------------------

 ; |

4847: BD 4A 06 JSR $4A06 ; | WaitForHstdFunctionToComplete()

484A: AE 61 LDX $0001,S ; | X gets PlayerIndex and HSTDEntry

484C: BD 86 21 JSR $8621 ; | CallFunctionPointerParameterBytes()

484F: 80 64 ; | $8064 has $6378,3D, RTS, debug hook

4851: BD 85 53 JSR $8553 ; | ShowMonochromeAnimationParameterByte()

4854: 08 ; | $5D1A,3D [08] $4DC3,24 HstdCollectPlayerInitials()

4855: 25 EA BCS $4841 ; |

4857: BD 4A 06 JSR $4A06 ; | WaitForHstdFunctionToComplete()

485A: BD 88 F5 JSR $88F5 ; | CallBankedFunction_Param_WPCAddr()

485D: 5B FF 39 ; |

 ; |

 ; | Now figure out how many credits/tickets to award

4860: CE 00 00 LDU #$0000 ; |

4863: 33 C6 LEAU A,U ; |

4865: 86 A5 LDA #$A5 ; | Adj=0x25 $1B67:$1B68 HstdAdj004, Champion Credits

4867: AB 62 ADDA $0002,S ; | Lookup adjustment 0xA5, 0xA6, 0xA7, 0xA8, or 0xA9 to

 ; | determine how many credits or tickets to award

4869: BD 92 DE JSR $92DE ; | Get8BitSettingIntoA()

486C: 25 3A BCS $48A8 ; | C-set upon error, if so go to $48A8

486E: BD 86 5B JSR $865B ; | LookupGameAdjParameter1andCheckIfEqualsParam2()

4871: A3 01 ; | Adj=0xA3 $1B63:$1B64 HstdAdj002, HSTD Award

4873: 25 1C BCS $4891 ; | C-set when credit, c-clear when ticket

 ; |

 ; | Awarding ticket

4875: E6 61 LDB $0001,S ; |

4877: BD 88 F5 JSR $88F5 ; |

487A: 45 B1 3D ; |

487D: C6 09 LDB #$09 ; |

487F: BD 88 F5 JSR $88F5 ; |

4882: 45 2B 3D ; |

4885: 8E 80 19 LDX #$8019 ; |

4888: BD 88 F5 JSR $88F5 ; |

488B: 52 5D 39 ; |

488E: 4F CLRA ; |

488F: 20 17 BRA $48A8 ; |

 ; |

 ; | Awarding credit

4891: BD 88 F5 JSR $88F5 ; |

4894: 45 90 3D ; |

4897: C6 04 LDB #$04 ; |

4899: BD 88 F5 JSR $88F5 ; |

489C: 45 22 3D ; |

489F: 8E 80 19 LDX #$8019 ; |

48A2: BD 88 F5 JSR $88F5 ; |

48A5: 52 5D 39 ; |

 ; |

48A8: 1F 89 TFR A,B ; |

48AA: AE 61 LDX $0001,S ; |

48AC: BD 86 21 JSR $8621 ; | CallFunctionPointerParameterBytes()

48AF: 80 67 ; | $8067 == $6379,3D

48B1: BD 85 53 JSR $8553 ; | ShowMonochromeAnimationParameterByte()

48B4: 09 ; | 0x09 == $50B9,24

48B5: 25 8A BCS $4841 ; | C-set? goto error handler

48B7: BD 4A 06 JSR $4A06 ; |

48BA: 7E 48 23 JMP $4823 ;-/

 ;

48BD: B6 04 B1 LDA $04B1 ;

48C0: 27 0B BEQ $48CD ;

48C2: BD AB 98 JSR $AB98 ; FlippersRelayDisable()

48C5: 7F 04 B1 CLR $04B1 ;

48C8: BD 86 21 JSR $8621 ; CallFunctionPointerParameterBytes()

48CB: 80 6A ; $806A has $637A,3D

 ;

48CD: 32 63 LEAS $0003,S ; Restore stack pointer, done with 3 byte buffer

48CF: 35 D6 PULS A,B,X,U,PC ;

 ;

---;---

The function, above repeatedly calls the GetNextPlayerHstdAchieved() function until it returns C-bit set.
Each time the GetNextPlayerHstdAchieved() function returns C-bit clear, it means another player (of the
up to 4 players) has been found to have a score that belongs as a new entry in the Grand Champion or
top-4 high score tables. Each call to GetNextPlayerHstdAchieved() discovers the best score among all
players (and which has not been discovered from a previous call to GetNextPlayerHstdAchieved()) as the
loop keeps checking until no more players with score worthy of HSTD are present.

For each player that has been found to to have a score that belongs as a new entry in the GC or top-4
HSTD tables, the code will collect the player’s initials and then award credits or tickets, as according to
the game settings. After the award, the next pass through loop takes place to check for another player
with a high score.

Highlighted in the function, above, are the calls to GetNextPlayerHstdAchieved() where the ‘next’ player
score is discovered for HSTD insertion and the call to HstdCollectPlayerInitials() where the game collects
the 3 initials for the player that is currently being added as a new GC or top-4 HSTD entry. Details on
these functions will be provided later, below.

Next is a flowchart depicting the above function.

As indicated in the function code, above, the code utilizes a 3-byte buffer as it repeatedly calls the
GetNextPlayerHstdAchieved() function. The first byte stores a bitmap that saves which players have
been processed so that subsequent calls into GetNextPlayerHstdAchieved() will exclude such players
from consideration due to already being recognized as a high score. In the case of a single player game,
the GetNextPlayerHstdAchieved() function is only called a single time.

HighScoreInitialEntryAndAward() Start

Is HSTD “Highest

Scores” setting “on”

A “next” player HSTD

score found?

Report on DMD player number being a

Grand Champion or Top Marksmen

Collect player’s initials

Award credits or tickets as per game

settings

Disable flipper relay

Other finishing logic

done

no

no

yes

yes

01

01

00

3-byte

buffer

Bitmap indicating players who have been awarded HSTD entry.

01 = Player 1, 02 = Player 2, 04 = Player 3, 08 = Player 4

When GetNextPlayerHstdAchieved() returned C-bit clear, this

contains the current player number 01 – 04 who has high score.

When GetNextPlayerHstdAchieved() returned C-bit clear, this

contains the HSTD award. 00=GC, 01-04 are HSTD #1 through #4.

As indicated, above, the GetNextPlayerHstdAchieved() is the first part of code that makes a
determination of a player’s score as being worthy of being inserted into the GC or top-4 high score
tables. At first one might think the incorrect ordering of players score could happen if the 3-byte buffer
somehow contained an incorrect value of 00 in its 3rd byte (which means player gets Grand Champion)
however later it will be shown that even if the 3rd byte were to incorrectly contain a 00, subsequent code
will refuse to put the players score into the Grand Champion if the existing GC score is larger than the
player’s score that is being inserted.

The GetNextPlayerHstdAchieved() is at $4A17,38, ROM offset 0x60A17, and is shown below.

---;---

 ;

 ;

 ; GetNextPlayerHstdAchieved()

 ;

4A17: 34 76 PSHS U,Y,X,B,A ;

4A19: 32 7B LEAS $FFFB,S ; Make room for 5 bytes on the stack

4A1B: CC 00 00 LDD #$0000 ;

4A1E: A7 61 STA $0001,S ;

4A20: A7 62 STA $0002,S ;

4A22: ED 63 STD $0003,S ; Counter Player Idx Bitmap Score Ptr

4A24: 86 01 LDA #$01 ; ---

4A26: A7 E4 STA ,S ; SP: 01 00 00 00 00

 ;

4A28: C6 01 LDB #$01 ; Starting bitmap: 01 (player 1)

 ;

 ; The following loop finds the next best top high score

 [among up to 4 players scores

 ; A bitmap is used to exclude already awarded players

 ;---

4A2A: EE 6B LDU $000B,S ;-\ U gets address of caller‟s 3-byte buffer

4A2C: E5 C4 BITB ,U ; | Check if high score byte [0] has the bit in B set

4A2E: 26 18 BNE $4A48 ; | If set, skip, already awarded this player

 ; |

 ; | If haven't processed this player's score yet

 ; | {

4A30: A6 E4 LDA ,S ; | A gets first byte of 5-byte buffer, player index

 ; | this is the „current player‟ this pass in loop.

4A32: BD BB 3E JSR $BB3E ; | GetPlayerScoreIndexAintoU() U points to score

4A35: 10 AE 63 LDY $0003,S ; | Y gets last 2 bytes of 5-byte buffer, cur best

4A38: 27 08 BEQ $4A42 ; | If (Y != 0x0000) if we previously found a best

 ; | {

4A3A: BD 88 F5 JSR $88F5 ; | CallBankedFunction_Param_WPCAddr()

4A3D: 42 0A 3D ; | $420A,3D CompareBCDScoreUWithScoreY()

 ; | C-clear if score U is greater than score Y

 ; | Comparing current player score with cur best

4A40: 25 06 BCS $4A48 ; | if (c-set) goto $4A48 C-set when current

 ; | player score is not better than the cur best

 ; | score, so skip current player‟s score.

 ; | }

 ; | --

 ; | Getting here means we have a new current best

 ; | Now update the 5-byte buffer

 ; | --

4A42: EF 63 STU $0003,S ; | Store address of cur high score in 4th and 5th b

4A44: A7 61 STA $0001,S ; | Store current player index into 2nd byte of 5

4A46: E7 62 STB $0002,S ; | Store current bitmap bit into 3rd byte of 5

 ; | }

 ; |

4A48: 58 ASLB ; | Shift B bitmap left

4A49: 6C E4 INC ,S ; | Increment player index number

4A4B: BD B1 9F JSR $B19F ; | GetCurrentGameNumberOfPlayersIntoA()

4A4E: A1 E4 CMPA ,S ; | Check if we have more players scores to check

4A50: 24 D8 BCC $4A2A ;-/ If so, keep looping

 ;

4A52: EE 6B LDU $000B,S ; U gets address of caller‟s 3-byte buffer

4A54: A6 61 LDA $0001,S ; Get player index of highest score into A

4A56: 27 2F BEQ $4A87 ; If no player index found (0x00) skip to the end

4A58: A7 41 STA $0001,U ; Store player index of highest score into 2nd byte of 5

4A5A: E6 62 LDB $0002,S ; Get bitmap for high score into B

4A5C: EA C4 ORB ,U ; OR it with first byte of callers 3-byte buffer

4A5E: E7 C4 STB ,U ; Store result in first byte of callers 3-byte buffer

 ;

4A60: 8E 43 45 LDX #$4345 ; X gets 0x4345 <--- addr in bank $3D for GC HSTD data

4A63: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4A66: 43 C0 3D ; $43C0,3D, VerifyHstdTableXAllowed()

 ; c-set if not allowed. c and $04FB cleared if allowed

4A69: 25 0F BCS $4A7A ; C-set? not allowed so skip over the following

 ;

 ; if (Grand Champion HSTD allowed)

 ; {

4A6B: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4A6E: 41 E3 3D ; $41E3,3D, ComparePlayerIndexAScoreWithHSTDTableX()

 ; C-clear if player A score is a new HSTD entry.

 ; A has winning HSTD table index (for GC it is 01)

4A71: 25 07 BCS $4A7A ; C-set? skip the following

 ;

 ; if (player score greater than grand champion HSTD)

 ; {

4A73: 4F CLRA ; A = 0x00 (Grand Champion)

 ;

 ;saveEntryAndExit:

4A74: A7 42 STA $0002,U ; Store A into 3rd byte of caller's 3-byte buffer.

 ; 00 (Grand Champion),

 ; 01 - 04 for top marksmen 1 through 4

4A76: 1C FE ANDCC #$00FE ; Clear C-bit

4A78: 20 0F BRA $4A89 ; goto done

 ; }

 ; }

 ;

4A7A: A6 61 LDA $0001,S ; Get player index of highest score into A

4A7C: 8E 43 3E LDX #$433E ; X gets 0x433E <--- addr in bank $3D for Top4 HSTD data

4A7F: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4A82: 41 E3 3D ; $41E3,3D, ComparePlayerIndexAScoreWithHSTDTableX()

 ; C-clear if hit player A score is a new HSTD entry.

 ; A has winning index 01, 02, 03, 04 HSTD entry number

4A85: 24 ED BCC $4A74 ; C-clear? goto saveEntryAndExit, Save the high score

 ; table index into 3rd byte of 3-byte buffer and done

 ;

4A87: 1A 01 ORCC #$0001 ; Set c-bit when no high score found

 ;

4A89: 32 65 LEAS $0005,S ; Restore stack back to normal, done with 5-byte array

4A8B: 35 F6 PULS A,B,X,Y,U,PC ; done

 ;

---;---

The function, above, samples each player’s score, discovering the best top score among all players
(excluding any players who have previously been discovered as a best top score) and then updates the
3-byte buffer that the calling function provided with information about the top score.

If a top score is found, the function returns with C-bit clear and sets the callers 3-byte buffer in the
following way:

 Byte[0] is the bitmask of awarded players is updated with bit set for the discovered score player.
The 0x01 bit is set for player 1, 0x02 bit for player 2, 0x04 bit for player 3, 0x08 bit for player 4.

 Byte[1] gets the player index that is discovered, 01, 02, 03, or 04.
 Byte[2] gets the detected high score slot. 00 for GC, 01, 02, 03, 04 for a Top4 entry.

Prior to updating the caller’s 3-byte buffer this function, itself, uses a 5-byte buffer of its own that it uses
to discover which of the (up to) 4 player’s scores represents the best next high score to declare as a new
HSTD table entry.

The best score among all players is tracked with this 5-byte buffer. For single player games, the function
only needs to loop through a single time, using the player’s score as the ‘best’ score. For multi player
games, the function will loop through all players scores and determine the best score among all players
(excluding any that have previously been awarded from a prior call through this function as mentioned
above).

Once the ‘best’ score among all players is determined, the caller’s 3-byte buffer is updated with the
player index and player’s bitmap bit set, indicating this player should not be included in a subsequent
call through this function (if the current call through the function returns C-bit clear then a follow-up call
will take place to look for any other HSTD winners). After updating these 2 bytes of the caller’s 3-byte
buffer, the current highest score is then checked for possible inclusion into the Grand Champion HSTD
table. If the score does not warrant entry in the Grand Champion HSTD table, then it is checked for
possible inclusion into the top-4 Top Marksmen HSTD table.

If the score is worthy of inclusion into the Grand Champion or Top Marksmen table then the function
updates the caller’s 3-byte buffer by setting the 3rd byte to indicate if the top score should be added as a
new Grand Champion or a new top-4 score. After this, the function returns C-bit clear to inform the
calling function that a new high score has been found and needs to be added into the HSTD table
according to the data that has been populated into the caller’s 3-byte buffer (for winning player number
and the HSTD table/entry into which it should be inserted).

A flowchart is shown below to depict the logic of the GetNextPlayerHstdAchieved() function and to help
illustrate its logic.

01

01

01

1730

5-byte

buffer

Ordinary counter 01, 02, 03, 04 as the loop scans for up to 4 players

If a ‘best’ high score has been determined, its player number 01, 02, 03, 04

If a ‘best’ high score has been determined, its player bitmap 01, 02, 04, 08

If a ‘best’ high score has been determined, its score address in RAM

GetNextPlayerHstdAchieved()

Start

Current Player = 01

A highest score found?

Update caller’s 3-byte buffer with highest

score index and bitmap bit set

Grand Champion

Allowed?

Highest score > GC?

Highest score > Any

Current Top-4?

Update caller’s 3-byte buffer with

winning HSTD table entry 00 for GC

or 01-04 for Top-4. Clear C-bit.
Set C-bit

Done

A highest score found?

Current Player’s score >

highest?

Highest score found = current player’s

Already awarded

current player?

Current Player = Current Player + 1

Checked all players

this game?

yes

yes

yes

yes

yes

yes

yes
yes

no

no

no

no

no

no

The GetNextPlayerHstdAchieved() function, above, determines HSTD worthiness of each players score,
returning player index (1 – 4) and HSTD table entry (0 for GC or 1-4 for top-4). These two pieces of
information are then delivered to the HstdCollectPlayerInitials() function, as previously highlighted. The
HstdCollectPlayerInitials() function is at $4DC3,24, ROM offset 0x10DC3 and shown below.

There are various helper routines that ensure player initials are valid, and for handling the input of
player initial selection and display characteristics during the initials-entry process. Such functions are
not necessarily depicted as the primary focus is the insertion of the player’s initials and score, as
highlighted, into the HSTD tables.

---;---

 ;

 ; HstdCollectPlayerInitials()

 ;

4DC3: BD 89 48 JSR $8948 ; ScheduleFunction()

4DC6: 50 53 24 ; InitialsCollectionTimer()

4DC9: BD FB AE JSR $FBAE ; ClearDisplayMemory()

4DCC: 7E 4D CF JMP $4DCF ; <nop>

4DCF: 1F 10 TFR X,D ; Copy X to D. A has Player Index 1-4, B has HSTD slot.

4DD1: B7 05 90 STA $0590 ; $0590 gets player index 1-4

4DD4: F7 05 8E STB $058E ; $058E gets HSTD slot, 0=GC 1-4=Top4

4DD7: 86 08 LDA #$08 ; A = 08, Grand Champion music

4DD9: 7D 05 8E TST $058E ; If $058E is not 00 (Grand Champion)

4DDC: 27 02 BEQ $4DE0 ; {

4DDE: 86 05 LDA #$05 ; A = 05, Top Marksmen music

 ; }

4DE0: B7 06 08 STA $0608 ; Save music byte to $0608

4DE3: BD C0 BC JSR $C0BC ; PlayMusicRegisterA() Play initials-entry music

4DE6: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

4DE9: 87 ; 87 = "You are superior"

4DEA: 86 20 LDA #$20 ; 20 = ' ' space character

4DEC: B7 05 83 STA $0583 ; $0583, currently selected character is space ' '

4DEF: B7 05 89 STA $0589 ; $0589, Initial 1 is a space ' '

4DF2: B7 05 8A STA $058A ; $058A, Initial 2 is a space ' '

4DF5: B7 05 8B STA $058B ; $058B, Initial 3 is a space ' '

4DF8: 7F 05 85 CLR $0585 ; $0585 is 00

4DFB: 7F 05 87 CLR $0587 ; $0587 is 00, number of initials entered so far

4DFE: 86 08 LDA #$08 ; A = 8

4E00: B7 05 8D STA $058D ; $058D gets 8

4E03: 86 01 LDA #$01 ; A = 1

4E05: B7 05 8F STA $058F ; $058F is 01

4E08: BD 84 8F JSR $848F ; ClearMemoryFlag()

4E0B: E1 ; E1, start button or gun trigger held-down flag

4E0C: BD 84 8F JSR $848F ; ClearMemoryFlag()

4E0F: E2 ; E2, left or right flippper button held-down flag

4E10: BD 4D 83 JSR $4D83 ; PrintPlayerNumber()

4E13: BD 4F D7 JSR $4FD7 ;

4E16: BD E2 74 JSR $E274 ;

 ;

4E19: BD 83 29 JSR $8329 ;-\ GetSwitchClosedState() C-clear if switch closed

4E1C: 0B ; | SwitchTableEntry0B, 13, Start Button

4E1D: 10 24 00 97 LBCC $4EB8 ; |

 ; |

4E21: BD 83 29 JSR $8329 ; | GetSwitchClosedState() C-clear if switch closed

4E24: 1C ; | SwitchTableEntry1C, 34, Grip Trigger

4E25: 10 24 00 8F LBCC $4EB8 ; |

 ; |

4E29: BD 84 8F JSR $848F ; | ClearMemoryFlag()

4E2C: E1 ; | E1, start button or gun trigger held-down flag

 ; |

4E2D: BD 83 29 JMP $8329 ; | GetSwitchClosedState() C-clear if switch closed

4E30: 0A ; | SwitchTableEntry0A, 12, Left Flipper

4E31: 24 4A BCC $4E7D ; |

 ; |

4E33: BD 83 29 JSR $8329 ; | GetSwitchClosedState() C-clear if switch closed

4E36: 09 ; | SwitchTableEntry09, 11, Right Flipper

4E37: 24 54 BCC $4E8D ; |

 ; |

 ; |---

 ; | No switches are closed, do housekeeping

 ; |---

4E39: BD 84 8F JSR $848F ; | ClearMemoryFlag()

4E3C: E2 ; | E2, left or right flippper button held-down flag

4E3D: 7F 05 8F CLR $058F ; | $058F = 0

4E40: 7C 05 8F INC $058F ; | $058F Increment by 1

4E43: 7A 05 8D DEC $058D ; | If (--$058D == 0)

4E46: 26 2F BNE $4E77 ; | { Reach this every 0.125 seconds, dmd housekeeping

4E48: 86 08 LDA #$08 ; | A = 8

4E4A: B7 05 8D STA $058D ; | reset $058D to 8

4E4D: BD D3 56 JSR $D356 ; | display memory related call

4E50: 86 3F LDA #$3F ; |

4E52: B7 05 2D STA $052D ; | $052D gets 0x3F

4E55: 86 16 LDA #$16 ; |

4E57: B7 05 2E STA $052E ; | $052E gets 0x16

4E5A: 86 07 LDA #$07 ; |

4E5C: B7 05 31 STA $0531 ; | $0531 gets 0x07

4E5F: 86 09 LDA #$09 ; |

4E61: B7 05 32 STA $0532 ; | $0532 gets 0x09

4E64: BD EF E1 JSR $EFE1 ; |

4E67: B6 05 85 LDA $0585 ; |

4E6A: 88 FF EORA #$FF ; |

4E6C: B7 05 85 STA $0585 ; | $0585 gets its bits flipped

4E6F: 27 03 BEQ $4E74 ; |

4E71: BD 4D 9A JSR $4D9A ; | EnteredInitialsValidate()

4E74: BD D3 4C JSR $D34C ; | display related call

 ; | }

4E77: BD 83 46 JSR $8346 ; | Sleep()

4E7A: 01 ; | 15.625mS

4E7B: 20 9C BRA $4E19 ;-/

 ;

 ;----------------------------

 ; Left Flipper Button

 ;----------------------------

4E7D: 7A 05 8F DEC $058F ; Decrement flipper-button debounce time count

4E80: 26 F5 BNE $4E77 ; If debounce count not zero then skip button entry

4E82: B6 05 83 LDA $0583 ; A gets currently selected characer from $0583

4E85: BD 4F 99 JSR $4F99 ; InitialsEntryLeftFlipperButtonNewCharIntoA()

4E88: B7 05 83 STA $0583 ; Store newly selected character back into $0583

4E8B: 20 0E BRA $4E9B ; goto common flipper button handler, below

 ;

 ;----------------------------

 ; Right Flipper Button

 ;----------------------------

4E8D: 7A 05 8F DEC $058F ; Decrement flipper-button debounce time count

4E90: 26 E5 BNE $4E77 ; If debounce count not zero then skip button entry

4E92: B6 05 83 LDA $0583 ; A gets currently selected characer from $0583

4E95: BD 4F B8 JSR $4FB8 ; InitialsEntryRightFlipperButtonNewCharIntoA()

4E98: B7 05 83 STA $0583 ; Store newly selected character back into $0583

 ;

 ;---

 ; Common code for left and right flipper buttons

 ; Common code for start and gun trigger handling

 ;---

4E9B: BD 4F 59 JSR $4F59 ;

4E9E: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

4EA1: E2 ' ; E2, left or right flippper button held-down flag

4EA2: 24 0C BCC $4EB0 ;

 ;--

 ; Flipper button now being declared as being held down

 ;--

4EA4: BD 84 80 JSR $8480 ; SetMemoryFlag()

4EA7: E2 ; E2, left or right flippper button held-down flag

4EA8: 86 20 LDA #$20 ; Long debounce count at first 0x20

4EAA: B7 05 8F STA $058F ; $058F gets long debounce count

4EAD: 16 FF 69 LBRA $4E19 ; Go up to switch scanning

 ;

 ;--

 ; Flipper button already being declared as held down

 ;--

4EB0: 86 08 LDA #$08 ; Short Debounce count 8

4EB2: B7 05 8F STA $058F ; $058F gets debounce count

4EB5: 16 FF 61 LBRA $4E19 ; Go up to switch scanning

 ;

 ;----------------------------

 ; Start Button & Gun Trigger

 ;----------------------------

4EB8: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

4EBB: E1 ; E1 is start/gun trigger button hold-down indicator

4EBC: 10 24 FF 6D LBCC $4E2D ; If hold-down, go to switch scanning at flipper buttons

 ;

 ;---

 ; Start/Gun Trigger now being declared as held down

 ;---

4EC0: BD 84 80 JSR $8480 ; SetMemoryFlag()

4EC3: E1 ; Set the E1 start/gun trigger hold-down indicator

4EC4: F6 05 87 LDB $0587 ; B gets number of entered initials so far

4EC7: 5C INCB ; Locally increment entered initials count in B

4EC8: C1 03 CMPB #$03 ;

4ECA: 22 CF BHI $4E9B ; If more than 3 initials goto $4E9B, unexpected case

4ECC: B6 05 83 LDA $0583 ; A gets currently selected character

4ECF: 81 7F CMPA #$7F ; If (Current Character == backspace indicator)

4ED1: 26 19 BNE $4EEC ; {

4ED3: C1 01 CMPB #$01 ; if (number of entered initials = 1)

4ED5: 27 C4 BEQ $4E9B ; goto $4E9B, unexpected

4ED7: 86 20 LDA #$20 ; A gets 0x20, space ' ' character

4ED9: 8E 05 89 LDX #$0589 ; X gets 0x0589 (address of first of 3 initials)

4EDC: 5A DECB ; Make B 0-based number

4EDD: 3A ABX ; Increment X so it points to current initial of the 3

4EDE: A7 84 STA ,X ; Now push the space character into current initial

 ; Since backspace is entered the above just wrote

 ; space into the entered position before moving to

 ; position that player wants to go back to and change.

4EE0: 8E 05 89 LDX #$0589 ; Reset X to 0x0589 (address of first of 3 initials)

4EE3: 5A DECB ; Decrement to previous initial index (at 1 or 2 now)

4EE4: 3A ABX ; Increment X so it points to previous initial

4EE5: A7 84 STA ,X ; Now push the space character into previous initial

 ; The above overwrites previous position with a space

4EE7: F7 05 87 STB $0587 ; Update number of entered initials into $0587

4EEA: 20 AF BRA $4E9B ; }

 ;

4EEC: F7 05 87 STB $0587 ; Update number of entered initials into $0587

4EEF: 8E 05 89 LDX #$0589 ; X gets address of first of 3 initials

4EF2: 5A DECB ; Make current initials count 0-based

4EF3: 3A ABX ; Increment X so it points to new entered position

4EF4: B6 05 83 LDA $0583 ; A gets currently selected character

4EF7: A7 84 STA ,X ; Now update the initial in memory w/selected character

4EF9: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

4EFC: 61 ; 0x61 = Smash

4EFD: C1 02 CMPB #$02 ; Check the 0-based initials count with 2

4EFF: 25 9A BCS $4E9B ; If less than 2 go up and keep collecting initials

4F01: BD 9E 0A JSR $9E0A ; CancelSelf() Cancels timer and self from scheduler.

 ; This instance continues to run.

 ;

 ;---

 ; All three initials have been entered.

 ; Or, branch here when Initials input times out

 ;---

 ;

4F04: BD 4F 59 JSR $4F59 ;

4F07: BD 83 46 JSR $8346 ; Sleep()

4F0A: 10 ; 1/4 second

4F0B: 7D 05 8E TST $058E ; if ($058E is 00) (Grand Champion)

4F0E: 26 2B BNE $4F3B ; {

4F10: C6 01 LDB #$01 ; B = 1 (fetching row 1 of Grand Champion table)

4F12: 8E 43 45 LDX #$4345 ; X = $4345, Grand Champion data table pointer in $3D

4F15: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4F18: 41 48 3D ; GetHstdTableEntryXIndexB_into_InitialsUScoreY()

4F1B: 1E 23 EXG Y,U ; Current GC Initials into Y, Score into U

 ;

4F1D: 8E 43 3E LDX #$433E ; X = $433E, Top4 data table pointer in $3D

4F20: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4F23: 42 1D 3D ; PushHstdTableEntryUpdate() Pushes cur GC into top4

 ;

4F26: B6 05 90 LDA $0590 ; A gets the cur HSTD player index (1-4) from $0590

4F29: BD BB 3E JSR $BB3E ; GetPlayerScoreIndexAintoU() U* = player's score

4F2C: 10 8E 05 89 LDY #$0589 ; Y gets 0x0589, pointer to entered initials

4F30: 8E 43 45 LDX #$4345 ; X = $4345, Grand Champion data table pointer in $3D

4F33: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4F36: 42 1D 3D ; PushHstdTableEntryUpdate() Pushes player score to GC

4F39: 20 13 BRA $4F4E ; }

 ; else

 ; {

4F3B: B6 05 90 LDA $0590 ; A gets the cur HSTD player index (1-4) from $0590

4F3E: BD BB 3E JSR $BB3E ; GetPlayerScoreIndexAintoU() U* = player's score

4F41: 10 8E 05 89 LDY #$0589 ; Y gets 0x0589, pointer to entered initials

4F45: 8E 43 3E LDX #$433E ; X = $433E, Top4 data table pointer in $3D

4F48: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4F4B: 42 1D 3D ; PushHstdTableEntryUpdate() Pushes score to top4

 ; }

 ;

4F4E: 86 F2 LDA #$F2 ; A = 0xF2

4F50: BD CA 94 JSR $CA94 ; sets up time that caller uses to know we are busy

4F53: BD 83 46 JSR $8346 ;-\ Sleep()

4F56: F0 ; | 3.75 seconds

4F57: 20 FA BRA $4F53 ;-/

 ;

---;---

As shown above, the entry of score into the HSTD table begins at $4F04,24. It is worth mentioning, also,
that this function, at $4DC3,24, had started off by launching a background timer that runs for about 88
seconds, as shown below:

---;---

 ;

 ; InitialsCollectionTimer()

 ;

5053: BD 86 79 JSR $8679 ; SleepPlusURegisterSave()

5056: 15 F9 ; 87.890625 seconds

5058: BD 9E 0A JSR $9E0A ; CancelSelf() Cancels initials entry and self

 ; This instance continues to run.

505B: 16 FE A6 LBRA $4F04 ; Now go to the HSTD table update

 ;

---;---

At timer expiration it then jumps to this same address $4F04,24 whereupon whatever initials that have
been entered up to this point, are pushed into the HSTD table. By default, all three characters are space
characters, so if no player activity takes place, then the timeout results in 3 space characters being
entered as the player’s high score. If player entered 1 or 2 characters then they are used as the player’s
initials when the timer expires.

As shown above, when the HSTD table is updated there are several key pieces of logic:

 If the original determination was that player is the new Grand Champion:
o The existing GC score and initials are inserted into the Top Marksmen table.
o The current player’s score is then inserted into the Grand Champion table.

 If the original determination was that player is a Top Marksmen:
o The current player’s score is inserted into the Top Marksmen table.

All of these logics utilize helper function located in bank $3D and will be shown below. These helper
functions perform validation logic to ensure the HSTD table is valid such as:

 When inserting a score into the GC table, the new score must be greater than the current GC
score.

 When inserting a score into the Top-4 table, the new score must be greater than at least one of
the existing top-4 scores.

 When inserting a score into any table, the score is ensured to be valid (digits 0-9).
 When inserting a score into the top-4 table, the ordering of the table scores are ensured to be

correct numerical order.

The entire section of bank $3D that has such HSTD helper functions is pasted below. This starts at
$4148,3D, ROM offset 0x74148. Not all portions of this have been annotated. These are the helper
functions cited in the code sections depicted above. Presented here for readers who are interested in
the full suite of HSTD related code.

---;---

 ;

 ; GetHstdTableEntryXIndexB_into_InitialsUScoreY()

4148: 34 16 PSHS X,B,A ;

414A: 5D TSTB ;

414B: 27 04 BEQ $4151 ; If B == 0x00 then ErrorHandler()

414D: E1 03 CMPB $0003,X ; Compare the B index w/number of HSTD entries, table X

414F: 23 06 BLS $4157 ; If winning index B <= HSTD entries then we're good.

 ;

4151: BD 82 B6 JSR $82B6 ; ErrorHandler()

4154: 5E ;

4155: C6 01 LDB #$01 ;

 ;

4157: 5A DECB ; Decrement B index, making it zero based

4158: 86 08 LDA #$08 ; A has 8 bytes per HSTD entry

415A: 3D MUL ; D now has index offset for current HSTD entry

415B: AE 84 LDX ,X ; X now is at start of HSTD data

415D: 30 8B LEAX D,X ; Bump X into the correct 8-byte row as indicated in B

415F: 31 03 LEAY $0003,X ; Y now points to the corresponding score for HSTD entry

4161: 33 84 LEAU ,X ; U now points to the corresponding initials HSTD entry

4163: 35 96 PULS A,B,X,PC ;

 ;

---;---

 ;

 ; Validates the high score table entry pointed to by X

4165: 8D 08 BSR $416F ; ValidateHstdTableX() C-set if problem

4167: 24 05 BCC $416E ;

4169: BD 42 8B JSR $428B ;

416C: 8D 01 BSR $416F ;

416E: 39 RTS ;

 ;

---;---

 ;

 ; ValidateHstdTableX() C-set if problem

 ;

416F: 34 76 PSHS U,Y,X,B,A ;

4171: A6 02 LDA $0002,X ;

4173: BD 92 3B JSR $923B ; VerifyRAMBlockChecksumIndexA()

4176: 25 24 BCS $419C ;

4178: E6 03 LDB $0003,X ;

417A: AE 84 LDX ,X ;

417C: CE 00 00 LDU #$0000 ;

 ;

417F: 8D 1D BSR $419E ;-\ HstdTableEntryXValidate()

4181: 25 19 BCS $419C ; |

4183: 31 C4 LEAY ,U ; |

4185: 33 03 LEAU $0003,X ; | Advance past the 3 initials

4187: 10 8C 00 00 CMPY #$0000 ; |

418B: 27 08 BEQ $4195 ; |

418D: 8D 7B BSR $420A ; | CompareBCDScoreUWithScoreY() C-clear if score at

 ; | U is greater than score at Y

418F: 25 04 BCS $4195 ; |

4191: 1A 01 ORCC #$0001 ; |

4193: 20 07 BRA $419C ; |

4195: 30 08 LEAX $0008,X ; |

4197: 5A DECB ; |

4198: 26 E5 BNE $417F ;-/

 ;

419A: 1C FE ANDCC #$00FE ;

419C: 35 F6 PULS A,B,X,Y,U,PC ;

 ;

---;---

 ;

 ; HstdTableEntryXValidate()

 ;

 ;

419E: 34 26 PSHS Y,B,A ;

41A0: 31 84 LEAY ,X ; Y gets address out of X

41A2: C6 03 LDB #$03 ;

 ;

41A4: A6 A0 LDA ,Y+ ;-\ A gets next character of HSTD table initials

41A6: 8D 28 BSR $41D0 ; | HstdTableInitialCharacterValidate()

41A8: 25 07 BCS $41B1 ; |

41AA: 5A DECB ; |

41AB: 26 F7 BNE $41A4 ;-/

 ;

41AD: 31 03 LEAY $0003,X ; Advance past the 3-characters

41AF: 8D 02 BSR $41B3 ; HighScoreYValidate()

41B1: 35 A6 PULS A,B,Y,PC ;

 ;

---;---

 ;

 ; HighScoreYValidate()

 ;

41B3: 34 26 PSHS Y,B,A ;

41B5: C6 05 LDB #$05 ;

 ;

41B7: A6 A4 LDA ,Y ;-\

41B9: 84 0F ANDA #$0F ; |

41BB: 81 09 CMPA #$09 ; |

41BD: 23 04 BLS $41C3 ; |

41BF: 1A 01 ORCC #$0001 ; |

41C1: 20 0B BRA $41CE ; |

41C3: A6 A0 LDA ,Y+ ; |

41C5: 81 99 CMPA #$99 ; |

41C7: 22 F6 BHI $41BF ; |

41C9: 5A DECB ; |

41CA: 26 EB BNE $41B7 ;-/

 ;

41CC: 1C FE ANDCC #$00FE ;

41CE: 35 A6 PULS A,B,Y,PC ;

 ;

---;---

 ;

 ; HstdTableInitialCharacterValidate()

 ;

41D0: 81 20 CMPA #$20 ; Check for ' '

41D2: 27 0E BEQ $41E2 ; If found, done

41D4: 81 41 CMPA #$41 ; Check for 'A'

41D6: 25 08 BCS $41E0 ;

41D8: 81 5A CMPA #$5A ; Check for 'Z'

41DA: 22 04 BHI $41E0 ;

41DC: 1C FE ANDCC #$00FE ;

41DE: 20 02 BRA $41E2 ;

41E0: 1A 01 ORCC #$0001 ;

41E2: 39 RTS ;

 ;

---;---

 ;

 ; ComparePlayerIndexAScoreWithHSTDTableX()

 ; Returns C-clear if hit.

 ; A has winning index 1,2,3,4. (1 when GC)

 ;

41E3: 34 40 PSHS U ;

41E5: BD BB 3E JSR $BB3E ; GetPlayerScoreIndexAintoU()

41E8: 33 C4 LEAU ,U ;

41EA: 8D 02 BSR $41EE ; CompareBCDScoreUWithHSTDTableX() C-clear if score

 ; at U is found to be greater than a HSTD table entry.

 ; A has winning index 1,2,3,4. (1 when GC)

41EC: 35 C0 PULS U,PC ;

 ;

---;---

 ;

 ; CompareBCDScoreUWithHSTDTableX()

 ; Return C-clear if score U is found to be greater than

 ; a HSTD table entry.

 ; A has winning index 1,2,3,4. (1 when GC)

 ;

41EE: 34 74 PSHS U,Y,X,B ;

41F0: BD 41 65 JSR $4165 ; Validates the high score table entry pointed to by X

41F3: 86 01 LDA #$01 ;

41F5: E6 03 LDB $0003,X ; B gets number of high score entries for table entry X

41F7: AE 84 LDX ,X ; X gets starting address of high score entries

 ;

41F9: 31 03 LEAY $0003,X ;-\ Load Y with the score portion of the X table data

41FB: BD 42 0A JSR $420A ; | CompareBCDScoreUWithScoreY() C-clear if score at U

 ; | is greater than score at Y

41FE: 24 08 BCC $4208 ; | If C-clear then player's score is greater than the

 ; | current HSTD entry, done

4200: 30 08 LEAX $0008,X ; | Advance X to next high score

4202: 4C INCA ; |

4203: 5A DECB ; |

4204: 26 F3 BNE $41F9 ;-/

 ;

4206: 1A 01 ORCC #$0001 ;

4208: 35 F4 PULS B,X,Y,U,PC ;

 ;

---;---

 ;

 ; CompareBCDScoreUWithScoreY()

 ; Returns C-clear if score U is greater than score Y

 ;

420A: 34 66 PSHS U,Y,B,A ;

420C: C6 05 LDB #$05 ; 5 bytes per score

 ;

420E: A6 C0 LDA ,U+ ;-\ A gets player score byte

4210: A1 A0 CMPA ,Y+ ; | Compare player score byte to HSTD score byte

4212: 22 07 BHI $421B ; | If player score byte is greater than HSTD score byte

 ; | then we are done, clear C-bit

4214: 25 03 BCS $4219 ; | If player score byte is less than the HSTD score

 ; | byte then C is set we are done, set C-bit

4216: 5A DECB ; | If player score byte is equal to HSTD score byte

 ; | then decrement byte counter

4217: 26 F5 BNE $420E ;-/ Keep checking next byte

 ;

4219: 1A 01 ORCC #$0001 ; Return C-bit set to report player score < HSTD score

421B: 35 E6 PULS A,B,Y,U,PC ;

 ;

---;---

 ;

 ; PushHstdTableEntryUpdate()

 ;

 ; Called with U pointing to HSTD entry score

 ; (player's high score)

 ; Called with Y pointing to HSTD entry initials

 ; (player's entered initials)

 ; Called with X pointing to HSTD table data in bank $3D

 ;

421D: 34 36 PSHS Y,X,B,A ;

421F: 32 7E LEAS $FFFE,S ; Make room for 2 bytes on the stack to store addresss

4221: BD 41 65 JSR $4165 ; Validates the high score table entry pointed to by X

4224: 25 17 BCS $423D ; If table invalid, C-bit is set, return

 ;

4226: 31 C4 LEAY ,U ; Y points to HSTD entry score (player's high score)

4228: BD 41 B3 JSR $41B3 ; HighScoreYValidate()

422B: 25 4D BCS $427A ; If score invalid, C-bit is set, return

 ;

422D: E6 03 LDB $0003,X ; B gets number of HSTD entrys in table X

422F: AE 84 LDX ,X ; X points to the top of HSTD table data initials

 ;

4231: 31 03 LEAY $0003,X ;-\ Advance past 3 initials to the score. Y now points

 ; | to the HSTD table data score

 ; | U points to player's high score.

 ; | Y points to next HSTD Table score

4233: BD 42 0A JSR $420A ; | CompareBCDScoreUWithScoreY() C-clear if score at U

 ; | is greater than score at Y

 ; |

4236: 24 09 BCC $4241 ; | If HSTD entry score at U is less than or equal to

 ; | current table entry score

 ; |

4238: 30 08 LEAX $0008,X ; | Advance X to next row in HSTD table, 8 bytes per

 ; | table entry initials/score

423A: 5A DECB ; | Compare player's score to next HSTD table score

423B: 26 F4 BNE $4231 ;-/

 ;

423D: 1A 01 ORCC #$0001 ; Error, all HSTD table scores are greater than player's

 ; score

423F: 20 39 BRA $427A ; Set c-bit and return

 ;

 ; Jump here when we discovered player's score is greater

 ; than HSTD entry score

 ;

 ;---

 ; The following will make a hole in HSTD table so a new

 ; score can be inserted

 ;---

4241: AF E4 STX ,S ; Save HSTD table entry, score pointer, where we will

 ; overwrite, temporarily onto the stack

4243: AE 64 LDX $0004,S ; X=original value from stack, start of HSTD table data

4245: 8D 37 BSR $427E ; LoadXWithHstdTableXEndPointer()

4247: BD 92 23 JSR $9223 ; UnlockRAM()

424A: 86 08 LDA #$08 ; A gets 0x08, bytes per HSTD table entry,

 ; 3 initials 5-bytes of score

424C: 31 18 LEAY $FFF8,X ; Y points to tail HSTD table record, at its initials

 ;

424E: 30 38 LEAX $FFF8,Y ;-\ X gets previous HSTD table record

4250: 10 AC E4 CMPY ,S ; | Compare addr of HSTD score we want to update with

 ; | addr of tail HSTD entry

4253: 23 07 BLS $425C ; | if (addr of current tail HSTD entry <= addr of HSTD

 ; | entry to update)

 ; | {

4255: BD A6 B9 JSR $A6B9 ; | MemcpyXtoYbytecountA()

4258: 31 84 LEAY ,X ; | Y gets next previous tail HSTD entry

 ; | }

425A: 20 F2 BRA $424E ;-/ loop up to check next tail HSTD entry

 ;

425C: 30 C4 LEAX ,U ; X now points to player's high score in ram

425E: 10 AE E4 LDY ,S ; Y now points to the HSTD table entry that will be

 ; updated (initials)

4261: 31 23 LEAY $0003,Y ; Y now points to the HSTD table entry that will be

 ; updated (score)

4263: 86 05 LDA #$05 ; A gets 0x05, 5 bytes of score to copy

4265: BD A6 B9 JSR $A6B9 ; MemcpyXtoYbytecountA()

4268: 31 3D LEAY $FFFD,Y ; Y now points to the HSTD table entry that will be

 ; updated (initials)

426A: AE 66 LDX $0006,S ; X now points to HSTD entry initials (player's entered

 ; initials)

426C: 86 03 LDA #$03 ; A gets 0x05, 3 bytes of initials to copy

426E: BD A6 B9 JSR $A6B9 ; MemcpyXtoYbytecountA()

4271: AE 64 LDX $0004,S ; X now points to HSTD table data in bank $3D

4273: A6 02 LDA $0002,X ; A gets the HSTD table index value needed in the

 ; checksum update, next

4275: BD 92 65 JSR $9265 ; ComputeAndWriteChecksumAndLockRAM()

4278: 1C FE ANDCC #$00FE ; Clear C-bit

427A: 32 62 LEAS $0002,S ; Restore stack pointer

427C: 35 B6 PULS A,B,X,Y,PC ;

 ;

---;---

 ;

 ; LoadXWithHstdTableXEndPointer()

427E: 34 06 PSHS B,A ;

4280: E6 03 LDB $0003,X ; B gets number of HSTD table rows

4282: 86 08 LDA #$08 ; A gets 8, bytes per HSTD table

4284: 3D MUL ; D has total number of bytes in HSTD table

4285: AE 84 LDX ,X ; X points to start of HSTD table

4287: 30 8B LEAX D,X ; X points to end of HSTD table

4289: 35 86 PULS A,B,PC ;

 ;

---;---

 ;

 ; ResetHSTDTableXToFactoryDefault()

 ;

428B: 34 76 PSHS U,Y,X,B,A ;

428D: 32 78 LEAS $FFF8,S ; Make room for 8 bytes on the stack

428F: 33 E4 LEAU ,S ;

4291: A6 06 LDA $0006,X ; A = Adjustment index byte from last byte of table data

4293: E6 03 LDB $0003,X ; Get number of table entries into B

4295: C1 04 CMPB #$04 ; Must be less or equal to 4

4297: 23 04 BLS $429D ;

4299: BD 82 98 JSR $8298 ; Error handler

429C: 62 ;

429D: 8D 5E BSR $42FD ; LoadBackupHstdScoreIntoX()

429F: 33 E4 LEAU ,S ;

42A1: 10 AE 84 LDY ,X ;

42A4: A6 03 LDA $0003,X ;

42A6: AE 04 LDX $0004,X ;

42A8: BD 90 C5 JSR $90C5 ;

42AB: BD 92 23 JSR $9223 ; UnlockRAM()

 ;

42AE: 8D 1F BSR $42CF ;-\

42B0: 8D 28 BSR $42DA ; |

42B2: 30 03 LEAX $0003,X ; |

42B4: 31 28 LEAY $0008,Y ; |

42B6: 33 42 LEAU $0002,U ; |

42B8: 4A DECA ; |

42B9: 26 F3 BNE $42AE ;-/

 ;

42BB: AE 6A LDX $000A,S ;

42BD: A6 02 LDA $0002,X ;

42BF: BD 92 65 JSR $9265 ; ComputeAndWriteChecksumAndLockRAM()

42C2: BD 41 6F JSR $416F ;

42C5: 24 04 BCC $42CB ;

42C7: BD 82 B6 JSR $82B6 ; ErrorHandler()

42CA: 5D ;

42CB: 32 68 LEAS $0008,S ; Fix stack pointer, release the 8 bytes on stack

42CD: 35 F6 PULS A,B,X,Y,U,PC ;

 ;

---;---

 ;

42CF: 34 22 PSHS Y,A ;

42D1: 31 A4 LEAY ,Y ;

42D3: 86 03 LDA #$03 ;

42D5: BD 91 39 JSR $9139 ;

42D8: 35 A2 PULS A,Y,PC ;

 ;

---;---

 ;

42DA: 34 36 PSHS Y,X,B,A ;

42DC: 1C FE ANDCC #$00FE ;

42DE: BD 86 21 JSR $8621 ; CallFunctionPointerParameterBytes()

42E1: 80 D9 ; $80D9 has $63BF,3D

42E3: 25 16 BCS $42FB ;

42E5: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

42E8: 42 53 38 ;

42EB: 8E 03 B7 LDX #$03B7 ;

42EE: EC C4 LDD ,U ;

42F0: ED 1B STD $FFFB,X ;

42F2: 30 1B LEAX $FFFB,X ;

42F4: 86 05 LDA #$05 ; 5 bytes of score data

42F6: 31 23 LEAY $0003,Y ; Advance Y past 3 bytes of initials to start of 5-bytes

 ; of score

42F8: BD A6 B9 JSR $A6B9 ; MemcpyXtoYbytecountA()

42FB: 35 B6 PULS A,B,X,Y,PC ;

 ;

---;---

 ;

 ; LoadBackupHstdScoreIntoX()

 ;

42FD: 34 36 PSHS Y,X,B,A ;

42FF: 30 C4 LEAX ,U ; X gets U pointer

 ;

4301: BD 92 D4 JSR $92D4 ;-\ Get16BitSettingIntoY() A has adjustment 0xAC or 0xAB

 ; | from HSTD table;

 ; | 0xAC, $1B75:$1B76 HstdAdjustment011, Backup HSTD 1

 ; | 0xAB, $1B73:$1B74 HstdAdjustment010, Backup Champ‟n

 ; |

4304: 8D 10 BSR $4316 ; | ValidateNormalizeBCDScoreBytesY()

 ; | // Fixes Y, any nibble > 9 gets set to 9

4306: 10 AF 81 STY ,X++ ; | Save 2 bytes from Y into X pointer, advance X

 ; | pointer by 2

4309: 4C INCA ; | Increment A to next adjustment backup score value

 ; | (used by top4 hstd table)

430A: 5A DECB ; | Decrement B number of HSTD table entries

 ; } (1 for GC, 4 for top4)

430B: 26 F4 BNE $4301 ;-/

 ;

430D: 30 C4 LEAX ,U ; X gets U pointer

430F: E6 61 LDB $0001,S ; B gets original value of from stack at function start

4311: BD A7 9F JSR $A79F ;

4314: 35 B6 PULS A,B,X,Y,PC ;

 ;

---;---

 ;

 ; ValidateNormalizeBCDScoreBytesY()

 ; // Fixes Y, any nibble > 9 gets set to 9

 ;

 ; Backup scores in config are stored in 16-bit value for

 ; 4 nibbles of score

4316: 34 06 PSHS B,A ;

4318: 1F 20 TFR Y,D ;

431A: 8D 0A BSR $4326 ; ValidateNormalizeBCDScoreByteA()

 ; // Fixes A, any nibble > 9 gets set to 9

431C: 1E 89 EXG A,B ;

431E: 8D 06 BSR $4326 ; ValidateNormalizeBCDScoreByteA()

 ; // Fixes A, any nibble > 9 gets set to 9

4320: 1E 89 EXG A,B ;

4322: 1F 02 TFR D,Y ;

4324: 35 86 PULS A,B,PC ;

 ;

---;---

 ;

 ; ValidateNormalizeBCDScoreByteA()

 ; // Fixes A, any nibble > 9 gets set to 9

 ;

4326: 34 04 PSHS B ;

4328: 1F 89 TFR A,B ;

432A: C4 0F ANDB #$0F ;

432C: C1 09 CMPB #$09 ;

432E: 23 04 BLS $4334 ;

4330: 84 F0 ANDA #$F0 ;

4332: 8B 09 ADDA #$09 ;

4334: 81 99 CMPA #$99 ;

4336: 23 04 BLS $433C ;

4338: 84 0F ANDA #$0F ;

433A: 8B 90 ADDA #$90 ;

433C: 35 84 PULS B,PC ;

 ;

---;---

 ;

 ;

433E: 1C 61 ; Pointer in RAM to where Top Marksman #1 is stored,

 ; starting at initials

4340: 85 ; RAM Table Index used when checksum is updated

4341: 04 ; There are 4 scores to check for Top Marksmen table

4342: 81 48 ; Pointer to default initials for factory reset,

 ; at $8148 is $6432,3B

4344: AC ; Adjustment: 0xAC, $1B75:$1B76 HstdAdjustment011,

 ; Backup HSTD 1

 ;

4345: 1C 83 ; Pointer in RAM to where Grand Champion entry is stored

 ; starting at initials

4347: 86 ; RAM Table Index used when checksum is updated

4348: 01 ; There is 1 score to check for Grand Champion

4349: 81 4B ; Pointer to default initials for factory reset

 ; at $814B is $642F,3B

434B: AB ; 0xAB, $1B73:$1B74 HstdAdjustment010, Backup Champion

 ;

---;---

 ;

434C: 34 22 PSHS Y,A

434E: 86 87 LDA #$87

4350: BD 92 35 JSR $9235 ; VerifyRAMBlockChecksumIndexA_PreserveAandB()

4353: 24 04 BCC $4359

4355: 8D 1F BSR $4376

4357: 20 1B BRA $4374

4359: BD 82 F2 JSR $82F2

435C: AA 10 ORA $FFF0,X

435E: BC 1C 8D CPX $1C8D

4361: 26 F2 BNE $4355

4363: 10 8C 00 00 CMPY #$0000

4367: 27 0B BEQ $4374

4369: 10 BE 1C 8F LDY $1C8F

436D: 26 05 BNE $4374

436F: 8D 05 BSR $4376

4371: BD 40 E5 JSR $40E5

4374: 35 A2 PULS A,Y,PC ; (PUL? PC=RTS)

 ;

---;---

 ;

4376: 34 20 PSHS Y

4378: BD 82 F2 JSR $82F2

437B: AA BD 92 23 ORA [-$FFFF6DDD,Y]

437F: 10 BF 1C 8D STY $1C8D

4383: 10 BF 1C 8F STY $1C8F

4387: 8D 2B BSR $43B4

4389: 35 A0 PULS Y,PC ; (PUL? PC=RTS)

 ;

---;---

 ;

438B: 34 06 PSHS B,A

438D: 86 87 LDA #$87

438F: BD 92 35 JSR $9235

4392: 24 04 BCC $4398

4394: 8D E0 BSR $4376

4396: 20 1A BRA $43B2

4398: BD B1 9F JSR $B19F

439B: 1F 89 TFR A,B

439D: 4F CLRA

439E: 34 06 PSHS B,A

43A0: FC 1C 8F LDD $1C8F

43A3: A3 E1 SUBD ,S++

43A5: 24 03 BCC $43AA

43A7: CC 00 00 LDD #$0000

43AA: BD 92 23 JSR $9223

43AD: FD 1C 8F STD $1C8F

43B0: 8D 02 BSR $43B4

43B2: 35 86 PULS A,B,PC ; (PUL? PC=RTS)

43B4: 34 02 PSHS A

43B6: BD 92 23 JSR $9223

43B9: 86 87 LDA #$87

43BB: BD 92 65 JSR $9265

43BE: 35 82 PULS A,PC ; (PUL? PC=RTS)

 ;

---;---

 ;

 ; VerifyHstdTableXAllowed()

 ; Returns c-set if not allowed.

 ; C and $04FB cleared if allowed

43C0: 8C 43 45 CMPX #$4345 ;

43C3: 26 07 BNE $43CC ;

43C5: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; // C-bit set when not-equal

43C8: A4 01 ; 0xA4, $1B65:$1B66 HstdAdjustment003, Champion Hstd

43CA: 25 0A BCS $43D6 ;

43CC: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; // C-bit set when not-equal

43CF: A2 01 ; 0xA2, $1B61:$1B62 HstdAdjustment001, Highest Scores

43D1: 25 03 BCS $43D6 ;

43D3: BD 41 65 JSR $4165 ; Validates the high score table entry pointed to by X

43D6: 39 RTS ;

 ;

---;---

To further describe the redundancy and validations in how HSTD gets updated, consider the checks and
balances that take place when a score is being processed.

 At end-of-game, GetNextPlayerHstdAchieved() takes the player’s score and calls function
$41E3,3D ComparePlayerIndexAScoreWithHSTDTableX() to compare score with the GC and, if
necessary, the Top-4 HSTD table. This, in turn, calls CompareBCDScoreUWithHSTDTableX() at
$41EE,3D to compare scores. This includes a validation of the HSTD table which will cause table
to reset to factory defaults if problem is found. The player’s score is compared to the GC or to
each of the top-4 scores until the player’s score is found to be greater than an existing GC or
top-4 score, returning the discovered “winning” HSTD table/entry to caller of
GetNextPlayerHstdAchieved().

 The “winning” HSTD table/entry information is passed into $4DC3,24 HstdCollectPlayerInitials().
This starts with 3 blank ‘space’ characters and lets player select displayable characters. When 3
characters have been entered or after a fixed timeout occurs, code at $4F04,24 is reached which
then checks the previously declared “winning” HSTD table/entry. If it was Grand Champion then
function $4148,3D is called to get existing GC score and $421D,3D is called to push the existing
GC score into the top-4 HSTD table. After this, the player’s score is used with $421D,3D to insert
score into the GC table. Tracing these functions in bank $3D will show how the code ensures
the inserted score is applicable for the table. Scores are compared before table insertion and
player score must be greater than the existing GC score for it to be added as the new Grand
Champion.

 In order for the reported problem to occur, it appears that multiple failures would need to take
place in order for the initial determination of GC and subsequent insertion of the player’s score
into the Grand Champion table.

 Feedback is welcomed and appreciated from any readers who can point to a path in these
function calls whereby the players score might incorrectly be inserted into the Grand Champion
score (when it should have been inserted into the Top-4 HSTD table instead).

As an additional consideration, the attract-mode display for HSTD data has also been examined. To rule
out possibility that, perhaps, the HSTD was properly updated but an attract-mode problem is displaying
data incorrectly, the attract mode HSTD display code is presented here. This function is located with a
lot of other attract mode functions in bank $30 at $7C43,30, ROM offset 0x43C43.

---;---

 ;

 ; AttractMode_HighScores()

 ;

7C43: 8E 43 3E LDX #$433E ; Top-4 HSTD Table pointer in bank $3D

7C46: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7C49: 43 C0 3D ; VerifyHstdTableXAllowed() c-set if not allowed

 ;

7C4C: 10 25 00 B1 LBCS $7D01 ; Long branch if C-set to the RTS

 ; else proceed with display of high scores

 ;

7C50: 8D A3 BSR $7BF5 ; AttractMode_GrandChampion() Displays "Grand Champion"

 ;

7C52: 8E 43 3E LDX #$433E ; Top-4 HSTD Table pointer in bank $3D

7C55: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7C58: 41 65 3D ; Validates the high score table entry pointed to by X

 ;

7C5B: 10 25 00 A2 LBCS $7D01 ; Long branch if C-set to the RTS

 ;

7C5F: 8E 06 52 LDX #$0652 ;

7C62: BF 17 99 STX $1799 ;

7C65: 8E 43 3E LDX #$433E ; Top-4 HSTD Table pointer in bank $3D

 ;

7C68: BD D3 60 JSR $D360 ;

7C6B: BD D7 99 JSR $D799 ; Print string on DMD

7C6E: 00 95 ; $4BEB,30 String Table index 0x95 "TOP MARKSMEN"

7C70: 09 ;

7C71: 40 0B ;

7C73: C6 01 LDB #$01 ; B gets 0x01, HSTD #1

7C75: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7C78: 41 48 3D ; GetHstdTableEntryXIndexB_into_InitialsUScoreY()

7C7B: BD D7 7D JSR $D77D ; Load text bitmap using absolute x position

7C7E: 80 30 ; $4001,3C String Table index 0x30 "%B) %SR3KU"

7C80: 09 ;

7C81: 00 1A ;

7C83: BD D7 B4 JSR $D7B4 ;

7C86: 80 31 ; $4001,3C String Table index 0x31 "%OIXY"

7C88: 09 ;

7C89: 7F 1A ;

7C8B: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7C8E: 4A 57 24 ;

7C91: BD 83 46 ; Sleep()

7C94: 60 ; 1.5 seconds

7C95: BD D3 60 JSR $D360 ;

 ;

7C98: 5C INCB ; B goes to 0x02, HSTD #2

7C99: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7C9C: 41 48 3D ; GetHstdTableEntryXIndexB_into_InitialsUScoreY()

7C9F: BD D7 7D JSR $D77D ; Load text bitmap using absolute x position

7CA2: 80 30 ; $4001,3C String Table index 0x30 "%B) %SR3KU"

7CA4: 09 ;

7CA5: 00 1A ;

7CA7: BD D7 B4 JSR $D7B4 ;

7CAA: 80 31 ; $4001,3C String Table index 0x31 "%OIXY"

7CAC: 09 ;

7CAD: 7F 1A ;

7CAF: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7CB2: 4A C6 24 ;

7CB5: BD 83 46 JSR $8346 ; Sleep()

7CB8: 60 ; 1.5 seconds

7CB9: BD D3 60 JSR $D360 ;

 ;

7CBC: 5C INCB ; B goes to 0x03, HSTD #3

7CBD: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7CC0: 41 48 3D ; GetHstdTableEntryXIndexB_into_InitialsUScoreY()

7CC3: BD D7 7D JSR $D77D ; Load text bitmap using absolute x position

7CC6: 80 30 ; $4001,3C String Table index 0x30 "%B) %SR3KU"

7CC8: 09 ;

7CC9: 00 1A ;

7CCB: BD D7 B4 JSR $D7B4 ;

7CCE: 80 31 ; $4001,3C String Table index 0x31 "%OIXY"

7CD0: 09 ;

7CD1: 7F 1A ;

7CD3: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7CD6: 4A 9A 24 ;

7CD9: BD 83 46 JSR $8346 ; Sleep()

7CDC: 60 ; 1.5 seconds

7CDD: BD D3 60 JSR $DE60 ;

 ;

7CE0: 5C INCB ; B goes to 0x04, HSTD #4

7CE1: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7CE4: 41 48 3D ; GetHstdTableEntryXIndexB_into_InitialsUScoreY()

7CE7: BD D7 7D JSR $D77D ; Load text bitmap using absolute x position

7CEA: 80 30 ; $4001,3C String Table index 0x30 "%B) %SR3KU"

7CEC: 09 ;

7CED: 00 1A ;

7CEF: BD D7 B4 JSR $D7B4 ;

7CF2: 80 31 ; $4001,3C String Table index 0x31 "%OIXY"

7CF4: 09 ;

7CF5: 7F 1A ;

7CF7: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7CFA: 4A C6 24 ;

7CFD: BD 83 46 JSR $8346 ; Sleep()

7D00: 60 ; 1.5 seconds

 ;

7D01: 39 RTS ;

 ;

---;---

The attract mode HSTD function, above will first make a call to 7BF5,30, ROM offset 0x43BF5, as shown
below:

---;---

 ;

 ; AttractMode_GrandChampion()

 ;

 ; Displays "Grand Champion" score and brief delay

 ;

7BF5: 8E 43 45 LDX #$4345 ; Grand Chamption HSTD Table pointer in bank $3D

7BF8: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7BFB: 43 C0 3D ; VerifyHstdTableXAllowed() c-set if not allowed

7BFE: 25 42 BCS $7C42 ; If C-set, HSTD table is not valid branch down to RTS

 ;

7C00: 8E 43 45 LDX #$4345 ; Grand Chamption HSTD Table pointer in bank $3D

7C03: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7C06: 41 65 3D ; Validates the high score table entry pointed to by X

7C09: 25 37 BCS $7C42 ;

 ;

7C0B: BD FB AE JSR $FBAE ; ClearDisplayMemory()

7C0E: 7E 7C 11 JMP $7C11 ; <nop>

 ;

7C11: 8E 06 52 LDX #$0652 ;

7C14: BF 17 99 STX $1799 ;

7C17: BD D3 60 JSR $D360 ;

7C1A: BD D7 99 JSR $D799 ; Print string on DMD

7C1D: 80 33 ; $4001,3C String Table index 0x33 "GRAND CHAMPION"

7C1F: 09 ;

7C20: 40 0B ;

7C22: C6 01 LDB #$01 ; B gets 0x01, Grand Champion table entry 1 of 1

7C24: 8E 43 45 LDX #$4345 ; Grand Chamption HSTD Table pointer in bank $3D

7C27: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7C2A: 41 48 3D ; GetHstdTableEntryXIndexB_into_InitialsUScoreY()

7C2D: BD D7 99 JSR $D799 ; Print string on DMD

7C30: 00 97 ; $4BEB,30 String Table index 0x97 "%SR3KU %R10OIXY"

7C32: 09 ;

7C33: 40 1A ;

7C35: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7C38: 4A 14 24 ;

7C3B: BD D3 4C JSR $D34C ;

7C3E: BD 83 46 JSR $8346 ; Sleep()

7C41: 80 ; 2.0 seconds

7C42: 39 RTS ;

 ;

---;---

The code for displaying scores, above, is rather uneventful and appears to show the Grand Champion
score and then the top-4 scores in a straightforward way. There does not appear to be any particular
way where the game would incorrectly display a top-4 score when it is trying to display the Grand
Champion score.

Readers are encouraged to study the code, above, and perhaps experiment with pinball simulators to
further analyze code flow and, perhaps, come up with any explanation for how high scores could ever be
inserted incorrectly. If any flaw can be identified and reproduced, a later update will be made which
corrects the flaw.

We are actively collecting any further reports of unexpected HSTD table updates.

Adjustable Autofire Timer
For L8.4 it was requested that the autofire timer is made adjustable so that the game operator can

choose how many seconds the game will flash the “Autofire” where, upon ball drain, the game will

automatically serve another ball to the player without penalty, allowing the current ball-in-play to

continue. This request is specifically for the autofire period that occurs at the start of each ball and not

applicable to other moments of game play where the game will return the ball back to the player after a

ball drain.

Some investigation into the game code reveals that the original L-8 autofire timer code is a bit more

complicated than a simple fixed number of seconds at start of the autofire period. The code for autofire

uses various timer values depending on the gameplay element that initiated the autofire timer. A

summary of all autofire timer values is as follows:

Autofire Mode Gameplay Event Seconds

00 Ball Shooter Lane Exit/5-bank Target hit during Skill Shot 2, 3, or 5

01 Multiball Start, player’s first multiball 7

02 Autofire Awarded (i.e. from Database award) 8

03 Drop Target hit and A.2 17 “Drp Tgt Autofire” adjustment is “On” 5

As shown, there are a variety of different autofire timer values, depending on the nature of the

gameplay that is causing the autofire to engage. For L8.4, the first row, “Ball Shooter Lane Exit/5-bank

Target hit during Skill Shot” is subject of a new adjustment, and it also happens to be the most

complicated of all of the autofire timer values.

Autofire Mode 00, Skill Shot

As shown above, there are 3 possible autofire timer values used to start the autofire timer during a skill

shot period. The logic for which timer is used boils down to the following:

 If the current ball is “Ball 1” and the player has not been awarded any extra balls then the

autofire timer value used is 5 seconds.

 Otherwise, if the player’s game time is greater than 255 seconds then the autofire timer value

used is 2 seconds.

 Otherwise, if the player’s game time is less than 10 seconds per ball then the autofire timer

value used is 5 seconds.

 Otherwise, the autofire timer value used is 3 seconds.

This logic is depicted in the following flowchart.

Shooter switch opened/5-Bank Target Hit during

Skill Shot: Autofire Timer Mode 00

Current Ball:

 Ball 1?

Player Awarded

any Extra Balls?

Game-Time >

255 seconds?

Game-Time <

10s per ball?

Timer Value = 3 seconds

Timer Value = 5 seconds

Timer Value = 2 seconds

Set Autofire Timer to Timer Value

done

yes

yes

yes

yes

no

no

no

no

Autofire Timer Code
Supporting the described autofire timer behaviors, shown below is the annotated code that handles the

autofire timer. This is a function that is called after the B register has been loaded with the desired

autofire timer mode, hence the name InitAutoFireModeB(). This function is located at $6DE9,31, ROM

offset 0x46DE9. This function is called from a few places in game code whenever the autofire timer is

potentially needed. For some modes the logic will perform checks to determine whether autofire is

needed such as mode 01 when multiball is starting, only if it is the player’s first multiball is when an

autofire timer will be started.

---;---

 ;

 ; InitAutoFireModeB()

 ;

6DE9: 34 16 PSHS X,B,A ;

6DEB: BD 88 F5 JSR $88F5 ;

6DEE: 4C 7B 38 ; GetCurrentPlayerIndexIntoAPlayerDataTableIntox()

6DF1: AE 88 22 LDX $22,X ; X gets current player's game-time

6DF4: 9F CE STX $CE ; Store it into $CE:$CF

 ;

6DF6: C1 00 CMPB #$00 ; 0x00 == SkillShotFiveBankTargetHit

6DF8: 27 3C BEQ $6E36 ;

6DFA: C1 01 CMPB #$01 ; 0x01 == MultiballStart

6DFC: 27 71 BEQ $6E6F ;

6DFE: C1 02 CMPB #$02 ; 0x02 == AutofireAward

6E00: 27 19 BEQ $6E1B ;

6E02: C1 03 CMPB #$03 ; 0x03 == DropTargetSwitchHdlr

6E04: 27 02 BEQ $6E08 ;

6E06: 35 96 PULS A,B,X,PC ; Should never get here, unhandled B value, unknown case

 ;

 ;---

 ;---

 ;

 ;---

 ; Mode 03 == DropTargetSwitchHdlr --> 5 second autofire

 ;---

6E08: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

6E0B: 11 01 ; FeatureAdjustment017, Drt Tgt Autofire Adj=0x11

6E0D: 25 0A BCS $6E19 ;

6E0F: C6 05 LDB #$05 ; 5 second ball saver

6E11: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

6E14: 00 83 ;

6E16: 6E 8A 31 ;

6E19: 20 6D BRA $6E88 ;

 ;

 ;--

 ; Mode 02 == AutofireAward --> 8 second autofire

 ;--

6E1B: 8E 05 B1 LDx #$05B1 ; 0x05B1 == Number of Autofire awards given, per-player

6E1E: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6E21: 7E 6E 24 JMP $6E24 ; <nop>

6E24: 6C 84 INC ,X ; Increment number of autofires given for current player

6E26: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

6E29: 7A ; 0x7A == "Autofire"

6E2A: C6 08 LDB #$08 ; 8 second ball saver

6E2C: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

6E2F: 00 83 ;

6E31: 6E 8A 31 ;

6E34: 20 52 BRA $6E88 ;

 ;

 ;---

 ; When B == 0x00 == SkillShotFiveBankTargetHit

 ;---

6E36: 8E 05 AD LDX #$05AD ; 0x05AD == Number of extra balls awarded to player

6E39: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6E3C: 7E 6E 3F JMP $6E3F ; <nop>

6E3F: 6D 84 TST ,X ;

6E41: 26 07 BNE $6E4A ;

6E43: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

6E46: 81 01 CMPA #$01 ; if ((extra balls == 0) && (CurrentBallInPlay == 1))

6E48: 27 19 BEQ $6E63 ; goto 5 second ball saver

 ;

6E4A: 8E 00 CE LDX #$00CE ;

6E4D: 6D 84 TST ,X ; If (player game time > 255 seconds)

6E4F: 26 0E BNE $6E5F ; goto 2 second ball saver

 ;

6E51: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

6E54: C6 0A LDB #$0A ;

6E56: 3D MUL ; D = current ball * 10

6E57: E1 01 CMPB $0001,X ; if (player game time is less than 10 seconds per ball)

6E59: 22 08 BHI $6E63 ; goto 5 second ball saver

 ; else

6E5B: C6 03 LDB #$03 ; 3 second ball saver

6E5D: 20 06 BRA $6E65 ;

6E5F: C6 02 LDB #$02 ; 2 second ball saver

6E61: 20 02 BRA $6E65 ;

 ;

6E63: C6 05 LDB #$05 ; 5 second ball saver

6E65: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

6E68: 00 83 ;

6E6A: 6E 8A 31 ;

6E6D: 20 19 BRA $6E88 ;

 ;

 ;---

 ; Mode 01 == MultiballStart --> 7 second autofire

 ; if at first multiball

 ;---

6E6F: 8E 05 C9 LDX #$05C9 ; 0x05C9 == Number of multiballs for current player

6E72: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6E75: 7E 6E 78 JMP $6E78 ; <nop>

6E78: A6 84 LDA ,X ;

6E7A: 81 01 CMPA #$01 ;

6E7C: 26 EF BNE $6E6D ;

6E7E: C6 07 LDB #$07 ; 7 second ball saver

6E80: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

6E83: 00 83 ; ID 0083

6E85: 6E 94 31 ;

6E88: 35 96 PULS A,B,X,PC ;

 ;

---;---

The autofire function refers to a value that is being annotated here as number of seconds of game play
for the current player. In the simulator this value regularly increases as game play proceeds however
actual measurement of per-second has not been verified as the actual increment rate, but has been
assumed to be the case during code analysis.

For mode 00, the game code has a redundant mechanism to ensure the autofire timer is started. During
skillshot, when the ball shooter switch is opened, the timer is started. Also when a 5-bank target is hit
during skill shot, it ensures the timer is running if not already started due to shooter switch opening.

Autofire Timer Adjustment
To accommodate the request for adjustable autofire timer, and for it to apply only to skill shot autofire

timer, a new adjustment is added in L8.4 to allow a variety of adjustments to fit various needs. The new

adjustment will provide the following possible adjustment values:

Adjustment Value Internal Value Meaning

Original 0 (0x00) Retains existing L-8 autofire timer

+1 sec 1 (0x01) Adds 1 second to existing skill shot autofire timer values

+2 secs 2 (0x02) Adds 2 seconds to existing skill shot autofire timer values

+3 secs 3 (0x03) Adds 3 seconds to existing skill shot autofire timer values

+4 secs 4 (0x04) Adds 4 seconds to existing skill shot autofire timer values

+5 secs 5 (0x05) Adds 5 seconds to existing skill shot autofire timer values

+6 secs 6 (0x06) Adds 6 seconds to existing skill shot autofire timer values

+7 secs 7 (0x07) Adds 7 seconds to existing skill shot autofire timer values

+8 secs 8 (0x08) Adds 8 seconds to existing skill shot autofire timer values

+9 secs 9 (0x09) Adds 9 seconds to existing skill shot autofire timer values

+10 secs 10 (0x0A) Adds 10 seconds to existing skill shot autofire timer values

Off 11 (0x0B) No skill shot autofire timer

1 sec 12 (0x0C) Uses 1 second for all skill shot autofire timer values

2 secs 13 (0x0D) Uses 2 seconds for all skill shot autofire timer values

3 secs 14 (0x0E) Uses 3 seconds for all skill shot autofire timer values

4 secs 15 (0x0F) Uses 4 seconds for all skill shot autofire timer values

5 secs 16 (0x10) Uses 5 seconds for all skill shot autofire timer values

6 secs 17 (0x11) Uses 6 seconds for all skill shot autofire timer values

7 secs 18 (0x12) Uses 7 seconds for all skill shot autofire timer values

8 secs 19 (0x13) Uses 8 seconds for all skill shot autofire timer values

9 secs 20 (0x14) Uses 9 seconds for all skill shot autofire timer values

10 secs 21 (0x15) Uses 10 seconds for all skill shot autofire timer values

The set of adjustments provides several options regarding the skill shot autofire timer:

 Retain all original L-8 skill shot autofire timer behavior

 Add 1-10 seconds to the various L-8 skill shot autofire timer values

 Disable the skill shot autofire timer

 Set the skill shot autofire timer to fixed value 1-10 seconds in all scenarios

Autofire Timer Adjustment – L8.4 Code Changes

The code changes for skill shot autofire timer can be divided into two distinct areas:

 Code changes to allow adjustment to be presented with the various values described above.

 Code changes to have the actual autofire timer to be set according to the adjustment value.

Autofire Timer Adjustment – L8.4 Code Changes for Adjustment Management

The adjustment table for L8.4 has extra room to accommodate an extra new adjustment. The table is

updated as highlighted below.

Refer to the original text from L8.3 document describing The L-8 Adjustments Memory Map. The table

with all adjustments is updated to accommodate the new L8-4 adjustment as highlighted in the table

portion, below:

Overall
Index

SRAM Bytes Table-and-Index WPC Menu Name WPC Lookup
Index

0x63 (99) $1BE3:$1BE4 FeatureAdjustment021 DrpTrgt Dwn Mlti 0x15

0x64 (100) $1BE5:$1BE6 FeatureAdjustment022 *Profanity 0x16

0x65 (101) $1BE7:$1BE8 FeatureAdjustment023 *Attract Mode 0x17

0x66 (102) $1BE9:$1BEA FeatureAdjustment024 *Animation Code 0x18

0x67 (103) $1BEB:$1BEC FeatureAdjustment025 *Lamp Driver 0x19

0x68 (104) $1BED:$1BEE FeatureAdjustment026 *Mb Start Dt Actn 0x1A

0x69 (105) $1BEF:$1BF0 FeatureAdjustment027 *Timed 3Bank Lamp 0x1B

0x6A (106) $1BF1:$1BF2 FeatureAdjustment028 **Cannon 1 Hit 0x1C

0x6B (107) $1BF3:$1BF4 FeatureAdjustment029 **SS Autofire Time 0x1D

0x6D (108) $1BF5:$1BF6 FeatureAdjustment030 <unused> 0x1E

0x6E (109) $1BF7:$1BF8 FeatureAdjustment031 <unused> 0x1F

N/A $1BF9:$1BFA <Adjustments Checksum>

* New adjustments in L8.3 shown for reference.

** New L8.4 adjustment (additional new L8.4 adjustments are depicted later in this document)

The Feature Adjustments Metadata table is updated as indicated in the abbreviated table content,

below. Below is depicted the increased table size and new content. Additional updates in L8.4 will add

additional adjustments causing the resulting L8.4 table size to also increase so ‘xx’ is depicted here.

;---;--

7000: 00 xx, Incremented by 1 ; Table entries is xx (xx entries), Incremented by 1

7002: 0C ; Bytes per table entry is 0C (12 bytes)

...

70FF: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.21, Drptrgt Dwn Mlti

 ; NEW ADJUSTMENT METADATA BELOW

710B: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.22, Profanity

7117: 00 02 00 00 00 02 00 01 00 65 7C 3D ; Feature Adjustments, A2.23, Attract Mode

7123: 00 01 00 00 00 01 00 01 00 65 C5 3D ; Feature Adjustments, A2.24, Animation Code

712F: 00 00 00 00 00 01 00 01 00 65 F3 3D ; Feature Adjustments, A2.25, Lamp Driver

713B: 00 00 00 00 00 05 00 01 00 66 54 3D ; Feature Adjustments, A2.26, MB Start DT Action

7147: 00 00 00 00 00 01 00 01 00 65 3D 3D ; Feature Adjustments, A2.27, Timed 3Bank Lamp

7153: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.28, Cannon 1 Hit

715F: 00 00 00 00 00 15 00 01 00 7B 52 3A ; Feature Adjustments, A2.29, SS Autofire Time

716B: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.30, <placeholder>

7177: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.31, <placeholder>

;---;--

The metadata table, above, is located at $7000,3D, ROM offset 0x77000 and is updated with the new

adjustment for skillshot autofire timer values. The name of this new adjustment is added to the existing

English, German, and French menu string tables as indicated in the table below.

 Table Start New Pointer Bytes New String Address New String Value

English $6700,3D $673D,3D $68F8,3D “SS AUTOFIRE TIME”

German $6A00,3D $6A3D,3D $6B90,3D “SS AUTOFIRE ZEIT”

French $6D00,3D $6D3D,3D $6EE1,3D “SS DUR. AUTOFIRE”

The new adjustment, internally, tracks the various possible values as a simple numeric value that

corresponds to the various settings as according to the “Internal Value” previously depicted in the table

of possible adjustment values. As the adjustment contains a variety of possible values, a new function is

defined in L8.4 to interpret the different values for display in the adjustment menu. To accommodate

the display of these unique values, a new function is added at $7B52,3A, ROM offset 0x6BB52 that the

adjustment menu will use for displaying the various values. As shown in the updated adjustment table

row, above, this function is cited in the last 3 bytes of its 12 byte entry as 0x7B, 0x52, 0x3A.

Since the L8.4 changes are made with efforts to keep changes localized, the adjustment display handler

uses its own method of displaying the various strings. This is because the master string table is not

being updated for L8.4, so local strings are being referenced which means the common L-8 function for

handling display of strings cannot easily be used. Refer to the new adjustment display handler below.

---;---

 ;

 ; Adjustment handler for "SS Autofire Time"

 ;

 ; A has adjustment index

 ; B has code, 0x02 means to write the adjustment value

 ; ASCII string at pointer Y

 ; U has the current value

 ; Y has address of where to put ASCII string (when B=02)

 ;

 ;

7B52: BD 79 E2 JSR $79E2 ; AdjustmentWriteASCIIValueCclear()

7B55: 25 03 BCS $7B5A ; If C-bit is set, RTS now. Don't write ASCII string.

7B57: BD 7B 6D JSR $7B6D ; Print the adjustment string for value U

7B5A: 39 RTS ;

 ;

---;---

 ;

 ; Advance X depending on Language Adjustment value

7B5B: 34 06 PSHS B,A ;

7B5D: BD 82 FF JSR $82FF ; Get language adjustment value into A

7B60: 95 ;

7B61: 81 02 CMPA #$02 ; Check if "French" 0x02

7B63: 22 04 BHI $7B69 ; If greater than 0x02, assume error and use English.

7B65: 1F 89 TFR A,B ; Need to increment X by value in A*2, store A into B

7B67: 58 ASLB ; Shift left, to multily B by 2

7B68: 3A ABX ; X now gets updated pointer value for language

7B69: AE 84 LDX ,X ; De-reference X to get the start address of the string

7B6B: 35 86 PULS A,B,PC ;

 ;

---;---

 ;

7B6D: 34 36 PSHS Y,X,B,A ;

7B6F: 1F 30 TFR U,D ; D now has the adjustment value

 ;

7B71: BD 7B C2 JSR $7BC2 ; Load X with pointer for current adj value D

7B74: BD 7B 5B JSR $7B5B ; Advance X for current language setting

7B77: BD B9 51 JSR $B951 ; CopyASCIIStringFromXtoYandVerifyLength()

 ;

7B7A: 35 B6 PULS A,B,X,Y,PC ;

 ;

---;---

 ;

7B7C: 7B 94 ; English "ORIGINAL"

7B7E: 7B 94 ; German "ORIGINAL"

7B80: 7B 9D ; French "ORIGINALE"

7B82: 7B A7 ; English "OFF"

7B84: 7B AB ; German "AUS"

7B86: 7B AF ; French "HORS"

7B88: 7B B4 ; English "sec" English Sigular

7B8A: 7B BD ; German "Sek." German Singular

7B8C: 7B B4 ; French "sec" French Singular

7B8E: 7B B8 ; English "secs" English Plural

7B90: 7B BD ; German "Sek." German Plural

7B92: 7B B8 ; French "secs" French Plural

 ;

7B94: 4F 52 49 47 49 4E 41 4C 00 ; "ORIGINAL" (English and German)

7B9D: 4F 52 49 47 49 4E 41 4C 45 00 ; "ORIGINALE" (French "Original")

7BA7: 4F 46 46 00 ; "OFF" (English)

7BAB: 41 55 53 00 ; "AUS" (German off)

7BAF: 48 4F 52 53 00 ; "HORS" (French for OFF)

7BB4: 73 65 63 00 ; "sec" (English and French) Singular

7BB8: 73 65 63 73 00 ; "secs" (English and French) Plural

7BBD: 53 65 6B 2E 00 ; "Sek." (German) Singular or Plural

 ;

---;---

 ;

7BC2: C1 00 CMPB #$00 ; Check if at "ORIGINAL" 0x00

7BC4: 26 05 BNE $7BCB ;

7BC6: 8E 7B 7C LDX #$7B7C ; X gets pointer to English: "ORIGINAL"

7BC9: 20 34 BRA $7BFF ; Done

 ;

7BCB: C1 0B CMPB #$0B ; Check if at "OFF" 0x0B

7BCD: 26 05 BNE $7BD4 ;

7BCF: 8E 7B 82 LDX #$7B82 ; X gets pointer to English: "OFF"

7BD2: 20 2B BRA $7BFF ; Done

 ;

7BD4: C1 15 CMPB #$15 ; Check if at "2 secs" through "10 secs" 0x0D - 0x15

7BD6: 22 EE BHI $7BC6 ; If higher than "10 secs" error, just show "Original"

 ;

7BD8: C1 0A CMPB #$0A ; Check if at "+2 secs" through "+10 secs" 0x02 - 0x0A

7BDA: 23 04 BLS $7BE0 ; If less then or same as 0x0A then it is "+" seconds

7BDC: C0 0B SUBB #$0B ; Fixup the B value so it now has number of seconds

7BDE: 20 04 BRA $7BE4 ;

7BE0: 86 2B LDA #$2B ; A gets the '+' character we will print

7BE2: A7 A0 STA ,Y+ ; Display now has '+' character prior to seconds value

 ;

7BE4: 8E 7B 8E LDX #$7B8E ; X gets pointer to English: "secs" Plural

7BE7: C1 01 CMPB #$01 ; Check if at "1 sec"

7BE9: 26 03 BNE $7BEE ;

7BEB: 8E 7B 88 LDX #$7B88 ; X gets pointer to English: "sec" Singular

 ;

7BEE: C1 09 CMPB #$09 ; Checking if we are at 1-9 seconds

7BF0: 23 05 BLS $7BF7 ;

7BF2: 86 31 LDA #$31 ; A gets the '1' character we will print for the "10"

7BF4: A7 A0 STA ,Y+ ; Display now has '1' character as part of the "10"

7BF6: 5F CLRB ; Clear B so the '0' gets printed next

7BF7: CA 30 ORB #$30 ; Make the seconds value in B ASCII "1" through "9"

7BF9: E7 A0 STB ,Y+ ; Now print remaining seconds digit

7BFB: 86 20 LDA #$20 ; A gets the ' ' character between number and label

7BFD: A7 A0 STA ,Y+ ; Display now has '1' character as part of the "10"

 ;

7BFF: 39 RTS ;

 ;

---;---

The code, above, for displaying the adjustment string value is specific only for this new adjustment, with

fixed assumptions that the max value is 10 seconds. The code checks if the adjustment is a ‘plus’ or

‘fixed’ number of seconds. Since the number of seconds is allowed to go to 1, there is added logic to

handle singular or plural representation of abbreviated seconds indicator. The detailed flow through the

above code is left as an exercise to the reader.

Autofire Timer Adjustment – L8.4 Code Changes for Autofire Timer Startup

With the new adjustment in place, the actual autofire timer startup code now needs to be updated to

behave in accordance with the new adjustment value. As previously depicted, the function is located at

$6DE9,31, ROM offset 0x46DE9. This is where the code will be updated to take the new adjustment

value into account.

The applicable portion of the existing code is re-shown below with the L8.4 modification highlighted:

 ;

 ;---

 ; When B == 0x00 == SkillShotFiveBankTargetHit

 ;---

6E36: 8E 05 AD LDX #$05AD ; 0x05AD == Number of extra balls awarded to player

6E39: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6E3C: 7E 6E 3F JMP $6E3F ; <nop>

6E3F: 6D 84 TST ,X ;

6E41: 26 07 BNE $6E4A ;

6E43: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

6E46: 81 01 CMPA #$01 ; if ((extra balls == 0) && (CurrentBallInPlay == 1))

6E48: 27 19 BEQ $6E63 ; goto 5 second ball saver

 ;

6E4A: 8E 00 CE LDX #$00CE ;

6E4D: 6D 84 TST ,X ; If (player game time > 255 seconds)

6E4F: 26 0E BNE $6E5F ; goto 2 second ball saver

 ;

6E51: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

6E54: C6 0A LDB #$0A ;

6E56: 3D MUL ; D = current ball * 10

6E57: E1 01 CMPB $0001,X ; if (player game time is less than 10 seconds per ball)

6E59: 22 08 BHI $6E63 ; goto 5 second ball saver

 ; else

6E5B: C6 03 LDB #$03 ; 3 second ball saver

6E5D: 20 06 BRA $6E65 ;

6E5F: C6 02 LDB #$02 ; 2 second ball saver

6E61: 20 02 BRA $6E65 ;

 ;

6E63: C6 05 LDB #$05 ; 5 second ball saver

6E65: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

6E68: 00 83 ;

6E6A: 6E 8A 31 ;

6E65: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

6E68: 7C 00 3A ; New autofire timer startup function $7C00,3A

6E6B: 20 00 BRA $6E6D ; <nop> filler for 2 bytes, go to next instruction

6E6D: 20 19 BRA $6E88 ;

 ;

The old code used 8 bytes to immediately schedule the function $6E8A,31 with scheduler ID 0x0083

with B register containing the number of seconds for the autofire timer to use. The new code replaces

the 8 bytes with a call to a new L8.4 function at $7C00,3A, ROM offset 0x6BC00, which will perform the

new logic as shown below.

---;---

 ;

 ; Jump here from $6E65,31 skillshot autofire timer start

 ; B has number of seconds the L-8 code determined for

 ; the autofire timer value

 ;

7C00: 34 06 PSHS B,A ;

 ;

7C02: BD 82 FF JSR $82FF ; Get "SS Autofire Time" adjustment value into A

7C05: 1D ;

 ;

7C06: 81 00 CMPA #$00 ; Check if at "ORIGINAL" 0x00

7C08: 27 16 BEQ $7C20 ; If at original, go schedule autofire now using B value

 ;

7C0A: 81 0B CMPA #$0B ; Check if at "OFF" 0x0B

7C0C: 27 1A BEQ $7C28 ; If at OFF, done, no autofire timer, return

 ;

7C0E: 81 15 CMPA #$15 ; Check if at "2 secs" through "10 secs" 0x0D - 0x15

7C10: 22 0E BHI $7C20 ; If higher than "10 secs" error, handle as "Original"

 ;

7C12: 81 0A CMPA #$0A ; Check if at "+2 secs" through "+10 secs" 0x02 - 0x0A

7C14: 23 06 BLS $7C1C ; If less then or same as 0x0A then it is "+" seconds

7C16: 80 0B SUBA #$0B ; Fixup the A value so it now has number of seconds

7C18: 1F 89 TFR A,B ; Overwrite B with the fixed number of seconds in A

7C1A: 20 04 BRA $7C20 ; Now schedule the timer using fixed number of seconds

 ;

7C1C: 34 02 PSHS A ;

7C1E: EB E0 ADDB ,S+ ;

 ; Now schedule the autofire timer timer value in B

7C20: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

7C23: 00 83 ;

7C25: 6E 8A 31 ;

 ;

7C28: 35 86 PULS A,B,PC ;

 ;

---;---

The new skillshot timer logic, above, simply retrieves the new “SS Autofire Time” adjustment value and

uses it to determine how to fixup the B value (number of seconds) before scheduling the same original

function that was scheduled in original L-8 code. In the event that the new “Off” adjustment value is set,

then no timer gets scheduled.

The value of B may be incremented by the adjustment value or set to the specific number of seconds as

per the adjustment value. This gives the game operator a lot of flexibility in how they wish to allow their

game to run the autofire timer for skillshot attempts. Note that when the autofire timer is set to “Off”

the game will still employ other mechanisms to return the ball to the player in cases such as where no

targets have been hit and the ball drains after it had exited the shooter lane.

Text String Corrections L8.4
The previous L8.3 release covered a large number of text fixups. For L8.4 additional text changes were

done and documented here.

Fix German Adjustment Menu Text For Abbreviated Seconds
While implementing the text for Skillshot Autofire Timer feature in L8.4 it was observed that the game

menu system uses “secs” for abbreviated “seconds” in English and French while the German text is “sek.”

The correct abbreviated term for “seconds” in German should use upper case ‘S’ for this string.

This string is located at $5B01,30, ROM offset 0x41B01 and is as follows:

5B01: 25 75 20 73 65 6B 2E 00 ; "%u sek."

This string includes “%u” as the game will invoke code to print the string while the desired numeric

value is located in the ‘U’ register. For L8.4, the ‘S’ is made upper-case with new code as follows:

5B01: 25 75 20 53 65 6B 2E 00 ; "%u Sek."

An example of this updated string is as follows:

Super Jackpot Lamp Movement Update for L8.4
For L8.4 it was requested that some enhancement is made to the Super Jackpot lamp movements. The

problem is that the original Super Jackpot lamp movement is too predictable. The fact that the lamp

movements always begin at the same point in conjunction with the cannon motor, a player can easily hit

the super jackpot by simply observing the cannon position alone, and pulling the trigger at the right

moment in the cannon swing. Although this is beneficial to the player, it would be better to require the

player to observe the cannon and moving target in order to aim for a successful hit.

The goals for the L8.4 Super Jackpot lamp movement changes are as follows:

 Ensure the original L-8 movement can be selected (and is the default adjustment value).

 Provide adjustment(s) to alter the lamp movement difficulty level.

 Ensure that all players in a multi-player game get the same experience.

Super Jackpot Lamp Design Considerations for L8.4
This section generally describes the design ideas and goals defined in the L8.4 Super Jackpot

enhancement. In order to define the best solution for the L8.4 design, various ideas were raised and the

resulting design ideas and goals are presented below.

Super Jackpot Lamp Movement Possibilities

The current design of L-8 Super Jackpot code makes it fairly easy to update the code to allow for various

changes to the lamp movement. Some of the available changes that can be done are as follows:

 Varying starting lamp.

 Varying starting lamp direction (applicable when starting lamp is 2, 3, or 4).

 Faster lamp movements.

 Different lamp movement patterns

These possible changes will be implemented in L8.4 in varying levels of difficulty.

Super Jackpot Levels of Difficulty

In order to give maximum flexibility, it is appropriate to allow for various levels of challenge with the

L8.4 enhancement. Game owners and operators can adjust the level of difficulty that best fits their

situation. Although the original request was, essentially, to require the player to actually aim the

cannon (and not just memorize a gun motor position), it seems various settings can be provided to

provide a variety of challenge levels which could involve:

 Smaller window of gun position that the player could memorize, or

 Multiple gun positions, depending on starting lamp movements, the player could memorize, or

 Requiring the player to observe the lamp movements and aim (or memorize a lot of patterns).

Super Jackpot Multi-Player Considerations

In order to ensure fairness during multi-player games, it is appropriate that the L8.4 design ensures that

all players in a multi-player game get the same experience. The starting lamp and direction and lamp

movement pattern cannot be truly random. The goal is to have all players be given the same level of

difficulty in that their Super Jackpot starting lamp and direction and lamp movement pattern should all

be the same for all players in the game. The downside of such design goal is that the first player to

attempt Super Jackpot is first to encounter the current game’s lamp movement while subsequent

players are then aware of the Super Jackpot starting lamp movement and direction that they will be

presented with when their chance for Super Jackpot occurs.

This particular approach can also involve a different lamp movement for at each subsequent super

jackpot attempt during the same game. In this way, all players get same lamp movement at first super

jackpot. Then for the 2nd super jackpot attempt a different lamp movement can occur whereby all

players going for their 2nd super jackpot will get the same movement for the 2nd super jackpot, and so on.

In order to provide consistent behavior for all players in the multi-player game, the game bookkeeping

statistics can be sampled in order to get a numeric value that remains unchanged for the duration of the

entire multi-player game (details to follow).

Super Jackpot Variable Lamp Movements

As mentioned above, for L8.4 Super Jackpot lamp movements the design goals are for:

 Unpredictability, or seemingly “random” lamp behaviors (i.e. starting lamp and direction), and

 Same Super Jackpot experiences for all players in a multi-player game.

A survey of game code reveals that a method could be employed whereby game bookkeeping statistics

may be used to come up with numbers that are seemingly random but also consistent throughout the

entire game (for all players). The bookkeeping values which are only updated at game completion can

be used as basis for determining variable lamp movements that apply to the current game in play.

The following bookkeeping values are updated at the end of game. The table below shows the

bookkeeping values that can be used for deriving seemingly random Super Jackpot lamp behaviors.

Bookkeeping Entry ID # RAM Location

Bookkeeping B.3 08 "MATCH AWARDS" 0x8018 $18A1 $18A2 $18A3

Bookkeeping B.3 28 "1 PLAYER GAMES" 0x8024 $18E9 $18EA $18EB

Bookkeeping B.3 29 "2 PLAYER GAMES" 0x8025 $18EF $18F0 $18F1

Bookkeeping B.3 30 "3 PLAYER GAMES" 0x8026 $18F5 $18F6 $18F7

Bookkeeping B.3 31 "4 PLAYER GAMES" 0x8027 $18FB $18FC $18FD

Bookkeeping B.5 01 "0-1.9 M. SCORE" 0x802D $191F $1920 $1921

Bookkeeping B.5 02 "2-4.9 M. SCORE" 0x802E $1925 $1926 $1927

Bookkeeping B.5 03 "3-9.9 M. SCORE" 0x802F $192B $192C $192D

Bookkeeping B.5 04 "10-19 M. SCORE" 0x8030 $1931 $1932 $1933

Bookkeeping B.5 05 "20-29 M. SCORE" 0x8031 $1937 $1938 $1939

Bookkeeping B.5 06 "30-29 M. SCORE" 0x8032 $193D $193E $193F

Bookkeeping B.5 07 "40-49 M. SCORE" 0x8033 $1943 $1944 $1945

Bookkeeping B.5 08 "50-69 M. SCORE" 0x8034 $1949 $194A $194B

Bookkeeping B.5 09 "70-99 M. SCORE" 0x8035 $194F $1950 $1951

Bookkeeping B.5 10 "100-149 M. SCORE" 0x8036 $1955 $1956 $1957

Bookkeeping B.5 11 "150-199 M. SCORE" 0x8037 $195B $195C $195D

Bookkeeping B.5 12 "200-299 M. SCORE" 0x8038 $1961 $1962 $1963

Bookkeeping B.5 13 "OVER 300 MILLION" 0x8039 $1967 $1968 $1969

Bookkeeping B.5 14 "GAME TIME 0.0-1.0M" 0x803A $196D $196E $196F

Bookkeeping B.5 15 "GAME TIME 1.0-1.5M" 0x803B $1973 $1974 $1975

Bookkeeping B.5 16 "GAME TIME 1.5-2.0M" 0x803C $1979 $197A $197B

Bookkeeping B.5 17 "GAME TIME 2.0-2.5M" 0x803D $197F $1980 $1981

Bookkeeping B.5 18 "GAME TIME 2.5-3.0M" 0x803E $1985 $1986 $1987

Bookkeeping B.5 19 "GAME TIME 3.0-3.5M" 0x803F $198B $198C $198D

Bookkeeping B.5 20 "GAME TIME 3.5-4.0M" 0x8040 $1991 $1992 $1993

Bookkeeping B.5 21 "GAME TIME 4-5 M." 0x8041 $1997 $1998 $1999

Bookkeeping B.5 22 "GAME TIME 5-6 M." 0x8042 $199D $199E $199F

Bookkeeping B.5 23 "GAME TIME 6-8 M." 0x8043 $19A3 $19A4 $19A5

Bookkeeping B.5 24 "GAME TIME 8-10 M." 0x8044 $19A9 $19AA $19AB

Bookkeeping B.5 25 "GAME TIME 10-15 M" 0x8045 $19AF $19B0 $19B1

Bookkeeping B.5 26 "GAME TIME > 15 M" 0x8046 $19B5 $19B6 $19B7

Each of the bookkeeping statistics are cited in game code by the ID value shown in the table, above.

Each statistic is stored in memory taking up 3 bytes of RAM to store the statistic value. The design of the

L8.4 solution involving these bookkeeping statics will be described in detail, below.

Super Jackpot Lamp Enhancement for L8.4

With the game design considerations and goals in mind (see above), the resulting L8.4 enhancement
may now be defined. In order to ensure no ambiguity exists in the following text, refer to the following
playfield image for reference of lamp numbers and direction:

The following text will refer to lamp numbers and direction consistent with that shown above. Some of
the depicted code will refer to the 5 lamps with identifiers 0 through 4 corresponding to lamps #1
through #5. In such cases, readers should exercise careful examination when tracing through the code.

Super Jackpot L8.4 Configuration

For L8.4 a new adjustment is added to allow the game operator to select the level of Super Jackpot
difficulty. The adjustment provides the options as described in the table below.

The original L-8 lamp speed is 0.3125 seconds between lamp movements and is referred to as “Slow”.
For L8.4 a faster speed of 0.250 seconds between lamp movements may also be used and is referred to
as “Fast” in the following text.

Setting Internal
Value

Lamp
Speed

Starting
Lamp

Starting
Direction

Lamp Pattern
(repeating)

Description

Original
(default)

0 (0x00) Slow #5 Up 5-4-3-2-1-2-3-4-5 Original L-8 behavior.

Original+1 1 (0x01) 1st: Slow,
else Fast

#5 Up 5-4-3-2-1-2-3-4-5 Same as “Original”, except
first Super Jackpot uses slow,
subsequent uses fast lamps.

Original++ 2 (0x02) Fast #5 Up 5-4-3-2-1-2-3-4-5 Same as “Original”, except
fast lamp speed for all Super
Jackpots.

Medium 3 (0x03) Slow Varies Varies 5-4-3-2-1-2-3-4-5
(variable starting lamp)

Same as “Original” except the
starting lamp may be any of
the 5 lamps. When starting
lamp is #2, #3 or #4, the
starting direction could be
down or up. When the
starting lamp is #5 the Super
Jackpot attempt is 100%
identical to “Original”.

Medium+1 4 (0x04) 1st: Slow,
else Fast

Varies Varies 5-4-3-2-1-2-3-4-5
(variable starting lamp)

Same as “Medium”, except
first Super Jackpot uses slow,
subsequent uses fast lamps.

Medium++ 5 (0x05) Fast Varies Varies 5-4-3-2-1-2-3-4-5
(variable starting lamp)

Same as “Medium”, except
fast lamp speed for all Super
Jackpots.

Hard 6 (0x06) Slow Varies Varies 5-4-3-2-1-2-3-4-5, or
1-2-3-4-5-1-2-3-4-5, or
5-4-3-2-1-5-4-3-2-1
(variable starting lamp)

Same as “Medium”, except
additional lamp patterns may
occur. When the lamp
pattern is 5-4-3-2-1-2-3-4-5
and the starting lamp is #5
the Super Jackpot attempt is
100% identical to “Original”.

Hard+1 7 (0x07) 1st: Slow,
else Fast

Varies Varies 5-4-3-2-1-2-3-4-5, or
1-2-3-4-5-1-2-3-4-5, or
5-4-3-2-1-5-4-3-2-1
(variable starting lamp)

Same as “Hard”, except first
Super Jackpot uses slow,
subsequent uses fast lamps.

Hard++ 8 (0x08) Fast Varies Varies 5-4-3-2-1-2-3-4-5, or
1-2-3-4-5-1-2-3-4-5, or
5-4-3-2-1-5-4-3-2-1
(variable starting lamp)

Same as “Hard”, except fast
lamp speed for all Super
Jackpots.

Expert 9 (0x09) Slow Varies Varies 5-4-3-2-1-2-3-4-5, or
1-2-3-4-5-1-2-3-4-5, or
5-4-3-2-1-5-4-3-2-1, or
1-3-5-2-4-1-3-5-2-4, or
4-2-5-3-1-4-2-5-3-1
(variable starting lamp)

Same as “Hard” but
additional lamp patterns are
added for extra challenge.
There are two alternating
patterns that a player would
need to identify and carefully
plan their aim.

Expert+1 10 (0x0A) 1st: Slow,
else Fast

Varies Varies 5-4-3-2-1-2-3-4-5, or
1-2-3-4-5-1-2-3-4-5, or
5-4-3-2-1-5-4-3-2-1, or
1-3-5-2-4-1-3-5-2-4, or
4-2-5-3-1-4-2-5-3-1
(variable starting lamp)

Same as “Expert”, except first
Super Jackpot uses slow,
subsequent uses fast lamps.

Expert++ 11 (0x0B) Fast Varies Varies 5-4-3-2-1-2-3-4-5, or
1-2-3-4-5-1-2-3-4-5, or
5-4-3-2-1-5-4-3-2-1, or
1-3-5-2-4-1-3-5-2-4, or
4-2-5-3-1-4-2-5-3-1
(variable starting lamp)

Same as “Expert”, except fast
lamp speed for all Super
Jackpots.

In summary, there are 4 major adjustments, summarized in the following table.

Difficulty Level Summary

Original Same as L-8, with fixed starting lamp #5.

Medium Adds varying starting lamp and varying starting lamp direction (when starting lamp is #2, #3, #4).

Hard Adds varying lamp patterns.

Expert Adds additional, more challenging lamp patterns.

Each difficulty level has selectable lamp speeds as denoted by the suffixes summarized in the following
table.

Difficulty Level Suffix Summary

<no suffix> Time between lamp movements is same as L-8, 0.3125 seconds for each lamp.

“+1” For the first Super Jackpot (for each player) lamp movements are same as L-8 using
0.3125 seconds for each lamp. Once the first super jackpot is collected,
subsequent Super Jackpots will use faster 0.250 seconds for each lamp.

“++” Time between lamp movements is “fast”, using 0.250 seconds for each lamp.

As shown in the tables above, the level of difficulty increases as higher adjustment selections are made.
The various selections provide a variety of flexibility in how the Super Jackpot behaves to add extra
challenge and excitement to the game play experience.

Super Jackpot Adjustment – L8.4 Code Changes for Adjustment Management

The adjustment table for L8.4 has extra room to accommodate an extra new adjustment. The table is

updated as highlighted below.

Refer to the original text from L8.3 document describing The L-8 Adjustments Memory Map. The table

with all adjustments is updated to accommodate the new L8-4 adjustment as highlighted in the table

portion, below:

Overall
Index

SRAM Bytes Table-and-Index WPC Menu Name WPC Lookup
Index

0x63 (99) $1BE3:$1BE4 FeatureAdjustment021 DrpTrgt Dwn Mlti 0x15

0x64 (100) $1BE5:$1BE6 FeatureAdjustment022 *Profanity 0x16

0x65 (101) $1BE7:$1BE8 FeatureAdjustment023 *Attract Mode 0x17

0x66 (102) $1BE9:$1BEA FeatureAdjustment024 *Animation Code 0x18

0x67 (103) $1BEB:$1BEC FeatureAdjustment025 *Lamp Driver 0x19

0x68 (104) $1BED:$1BEE FeatureAdjustment026 *Mb Start Dt Actn 0x1A

0x69 (105) $1BEF:$1BF0 FeatureAdjustment027 *Timed 3Bank Lamp 0x1B

0x6A (106) $1BF1:$1BF2 FeatureAdjustment028 **Cannon 1 Hit 0x1C

0x6B (107) $1BF3:$1BF4 FeatureAdjustment029 **SS Autofire Time 0x1D

0x6D (108) $1BF5:$1BF6 FeatureAdjustment030 **Super Jackpot 0x1E

0x6E (109) $1BF7:$1BF8 FeatureAdjustment031 <unused> 0x1F

N/A $1BF9:$1BFA <Adjustments Checksum>

* New adjustments in L8.3 shown for reference.

** New L8.4 adjustment (additional new L8.4 adjustments are depicted later in this document)

The Feature Adjustments Metadata table is updated as indicated in the abbreviated table content,

below. Below is depicted the increased table size and new content. This is the final new adjustment

added to L8.4 and, as such, the resulting table size is depicted below, 0x1F.

;---;--

7000: 00 1F ; Table entries is 1F (31 entries)

7002: 0C ; Bytes per table entry is 0C (12 bytes)

...

70FF: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.21, Drptrgt Dwn Mlti

 ; NEW ADJUSTMENT METADATA BELOW

710B: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.22, Profanity

7117: 00 02 00 00 00 02 00 01 00 65 7C 3D ; Feature Adjustments, A2.23, Attract Mode

7123: 00 01 00 00 00 01 00 01 00 65 C5 3D ; Feature Adjustments, A2.24, Animation Code

712F: 00 00 00 00 00 01 00 01 00 65 F3 3D ; Feature Adjustments, A2.25, Lamp Driver

713B: 00 00 00 00 00 05 00 01 00 66 54 3D ; Feature Adjustments, A2.26, MB Start DT Action

7147: 00 00 00 00 00 01 00 01 00 65 3D 3D ; Feature Adjustments, A2.27, Timed 3Bank Lamp

7153: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.28, Cannon 1 Hit

715F: 00 00 00 00 00 15 00 01 00 7B 52 3A ; Feature Adjustments, A2.29, SS Autofire Time

716B: 00 00 00 00 00 0B 00 01 00 7C 2A 3A ; Feature Adjustments, A2.30, Super Jackpot

7177: 00 00 00 00 00 00 00 01 00 8E BC FF ; Feature Adjustments, A2.31, <placeholder>

;---;--

The metadata table, above, is located at $7000,3D, ROM offset 0x77000 and is updated with the new

adjustment for Super Jackpot difficulty levels. The name of this new adjustment is added to the existing

English, German, and French menu string tables as indicated in the table below. Being consistent with L-

8, the same English string for “SUPER JACKPOT” is being used for both German and French.

 Table Start New Pointer Bytes New String Address New String Value

English $6700,3D $673F,3D $6909,3D “SUPER JACKPOT”

German $6A00,3D $6A3F,3D $6909,3D “SUPER JACKPOT”

French $6D00,3D $6D3F,3D $6909,3D “SUPER JACKPOT”

The new adjustment, internally, tracks the various possible values as a simple numeric value that

corresponds to the various settings as according to the “Internal Value” previously depicted in the table

of Super Jackpot settings. As the adjustment contains a variety of possible values, a new function is

defined in L8.4 to interpret the different values for display in the adjustment menu. To accommodate

the display of these unique values, a new function is added at $7C2A,3A, ROM offset 0x6BC2A that the

adjustment menu will use for displaying the various values. As shown in the updated adjustment table

row, above, this function is cited in the last 3 bytes of its 12 byte entry as 0x7C, 0x2A, 0x3A.

Since the L8.4 changes are made with efforts to keep changes localized, the adjustment display handler

needs to use its own method of displaying the various strings. This is because the master string table is

not being updated for L8.4, so local strings are being referenced which means the common L-8 function

for handling display of strings cannot easily be used. Refer to the new adjustment display handler below.

---;---

 ;

 ; Adjustment handler for "Super Jackpot"

 ;

 ; A has adjustment index

 ; B has code, 0x02 means write adj string to pointer Y

 ; U has the current value

 ; Y has addr where to put ASCII string (when B is 0x02)

 ;

 ;

7C2A: BD 79 E2 JSR $79E2 ; AdjustmentWriteASCIIValueCclear()

7C2D: 25 02 BCS $7C31 ; If C-bit is set, RTS now. Don't write string to Y.

7C2F: 8D 01 BSR $7C32 ; Print the adjustment string for value U

7C31: 39 RTS ;

 ;

---;---

 ;

7C32: 34 36 PSHS Y,X,B,A ;

7C34: 1F 30 TFR U,D ; D now has the adjustment value

 ;

7C36: 8D 08 BSR $7C40 ; Load X with pointer for current adj value D

7C38: BD 7B 5B JSR $7B5B ; Advance X for current language setting

7C3B: BD B9 51 JSR $B951 ; CopyASCIIStringFromXtoYandVerifyLength()

 ;

7C3E: 35 B6 PULS A,B,X,Y,PC ;

 ;

---;---

 ;

 ; B has adjustment value. Using it, load X with

 ; address of pointer to English string from table, below.

 ;

7C40: C1 0C CMPB #$0C ; Check that B is not out of bounds

7C42: 25 01 BCS $7C45 ; If out of bounds

7C44: 5F CLRB ; then reset to 0 "Original" setting.

 ;

7C45: 86 06 LDA #$06 ; 6 bytes per set of pointers for each adjustment

7C47: 3D MUL ; B now has result of multiplication

7C48: 8E 7C 4E LDX #$7C4E ; X gets Base address of pointers starting at "Original"

7C4B: 30 8B LEAX D,X ; X now gets advanced to English pointer for adjustment

7C4D: 39 RTS ;

 ;

---;---

 ;

 ; The first 3 point to existing string in L8.4 ROM

7C4E: 7B 94 ; English "ORIGINAL" // Original, slow

7C50: 7B 94 ; German "ORIGINAL" // Original, slow

7C52: 7B 9D ; French "ORIGINALE" // Original, slow

7C54: 7C 96 ; English "ORIG.+1" // Original, 1st slow, rest fast

7C56: 7C 96 ; German "ORIG.+1" // Original, 1st slow, rest fast

7C58: 7C 96 ; French "ORIG.+1" // Original, 1st slow, rest fast

7C5A: 7C 9E ; English "ORIG.++" // Original, fast

7C5C: 7C 9E ; German "ORIG.++" // Original, fast

7C5E: 7C 9E ; French "ORIG.++" // Original, fast

7C60: 7C A6 ; English "MEDIUM" // Medium, slow

7C62: 7C AD ; German "MITTEL" // Medium, slow

7C64: 7C B4 ; French "MOYEN" // Medium, slow

7C66: 7C BA ; English "MEDIUM+1" // Medium, 1st slow, rest fast

7C68: 7C C3 ; German "MITTEL+1" // Medium, 1st slow, rest fast

7C6A: 7C CC ; French "MOYEN+1" // Medium, 1st slow, rest fast

7C6C: 7C D4 ; English "MEDIUM++" // Medium, fast

7C6E: 7C DD ; German "MITTEL++" // Medium, fast

7C70: 7C E6 ; French "MOYEN++" // Medium, fast

7C72: 7C EE ; English "HARD" // Hard, slow

7C74: 7C F3 ; German "SCHWER" // Hard, slow

7C76: 7C FA ; French "DIFFICILE" // Hard, slow

7C78: 7D 04 ; English "HARD+1" // Hard, 1st slow, rest fast

7C7A: 7D 0B ; German "SCHWER+1" // Hard, 1st slow, rest fast

7C7C: 7D 14 ; French "DIFF/LE+1" // Hard, 1st slow, rest fast

7C7E: 7D 1E ; English "HARD++" // Hard, fast

7C80: 7D 25 ; German "SCHWER++" // Hard, fast

7C82: 7D 2E ; French "DIFF/LE++" // Hard, fast

7C84: 7D 38 ; English "EXPERT" // Expert, slow

7C86: 7D 3F ; German "EXPERTE" // Expert, slow

7C88: 7D 3F ; French "EXPERTE" // Expert, slow

7C8A: 7D 47 ; English "EXPERT+1" // Expert, 1st slow, rest fast

7C8C: 7D 50 ; German "EXPERTE+1" // Expert, 1st slow, rest fast

7C8E: 7D 50 ; French "EXPERTE+1" // Expert, 1st slow, rest fast

7C90: 7D 5A ; English "EXPERT++" // Expert, fast

7C92: 7D 63 ; German "EXPERTE++" // Expert, fast

7C94: 7D 63 ; French "EXPERTE++" // Expert, fast

 ;

7C96: 4F 52 49 47 2E 2B 31 00 ; "ORIG.+1" // Original, 1st slow, rest fast En,Gm,Fr

7C9E: 4F 52 49 47 2E 2B 2B 00 ; "ORIG.++" // Original, 1st slow, rest fast En,Gm,Fr

7CA6: 4D 45 44 49 55 4D 00 ; "MEDIUM" // Medium, slow (English)

7CAD: 4D 49 54 54 45 4C 00 ; "MITTEL" // Medium, slow (German)

7CB4: 4D 4F 59 45 4E 00 ; "MOYEN" // Medium, slow (French)

7CBA: 4D 45 44 49 55 4D 2B 31 00 ; "MEDIUM+1" // Medium, 1st slow, rest fast (English)

7CC3: 4D 49 54 54 45 4C 2B 31 00 ; "MITTEL+1" // Medium, 1st slow, rest fast (German)

7CCC: 4D 4F 59 45 4E 2B 31 00 ; "MOYEN+1" // Medium, 1st slow, rest fast (French)

7CD4: 4D 45 44 49 55 4D 2B 2B 00 ; "MEDIUM++" // Medium, fast (English)

7CDD: 4D 49 54 54 45 4C 2B 2B 00 ; "MITTEL++" // Medium, fast (German)

7CE6: 4D 4F 59 45 4E 2B 2B 00 ; "MOYEN++" // Medium, fast (French)

7CEE: 48 41 52 44 00 ; "HARD" // Hard, slow (English)

7CF3: 53 43 48 57 45 52 00 ; "SCHWER" // Hard, slow (German)

7CFA: 44 49 46 46 49 43 49 4C 45 00 ; "DIFFICILE" // Hard, slow (French)

7D04: 48 41 52 44 2B 31 00 ; "HARD+1" // Hard, 1st slow, rest fast (English)

7D0B: 53 43 48 57 45 52 2B 31 00 ; "SCHWER+1" // Hard, 1st slow, rest fast (German)

7D14: 44 49 46 46 2F 4C 45 2B 31 00 ; "DIFF/LE+1" // Hard, 1st slow, rest fast (French)

7D1E: 48 41 52 44 2B 2B 00 ; "HARD++" // Hard, fast (English)

7D25: 53 43 48 57 45 52 2B 2B 00 ; "SCHWER++" // Hard, fast (German)

7D2E: 44 49 46 46 2F 4C 45 2B 2B 00 ; "DIFF/LE++" // Hard, fast (French)

7D38: 45 58 50 45 52 54 00 ; "EXPERT" // Expert, slow (English)

7D3F: 45 58 50 45 52 54 45 00 ; "EXPERTE" // Expert, slow (German and French)

7D47: 45 58 50 45 52 54 2B 31 00 ; "EXPERT+1" // Expert, 1st slow, rest fast (English)

7D50: 45 58 50 45 52 54 45 2B 31 00 ; "EXPERTE+1" // Expert, 1st slow, rest fast (German,Fr)

7D5A: 45 58 50 45 52 54 2B 2B 00 ; "EXPERT++" // Expert, fast (English)

7D63: 45 58 50 45 52 54 45 2B 2B 00 ; "EXPERTE++" // Expert, fast (German,French)

 ;

---;---

The code, above, for displaying the adjustment string value is specific only for this new adjustment. The

detailed flow through the above code is left as an exercise to the reader.

Super Jackpot Lamp Movement – Original L-8 Code

The Super Jackpot lamp movement is managed by scheduled callback function ID 1033 which is

launched from $58B7,34 with the following instructions:

58B7: BD 89 48 JSR $8948 ; Scheduler function

58BA: 59 26 34 ; Schedules function that cycles the arrow

This particular scheduler function assigns the ID of the scheduled function to the current function that is

invoking the scheduler function. In this case the function ID is 1033 which is the ID used by the Super

Jackpot arrow cycler function. The arrow cycler function is at $5926,34, ROM offset 0x51926 and is

shown below for reference.

---;---

 ;

 ; ID 1033

 ;

 ; This function maintains the super-jackpot lit arrow

 ;

5926: 86 FF LDA #$FF ; Store 0xFF into $D3

5928: 97 D3 STA $D3 ; Checked during huntership hit from $4BE3,31

592A: BD 87 15 JSR $8715 ; LampOnParameterByte1PlaneParameterByte2()

592D: 15 ; Lamp 15, Target 5 Low

592E: 18 ; Solid lamps plane (?)

592F: 86 04 LDA #$04 ; Store 0x04 into $05F9 (5th lamp)

5931: B7 05 F9 STA $05F9 ; Checked during huntership hit from $4BE9,31

 ;

5934: BD 83 46 JSR $8346 ; --\--\ Sleep()

5937: 14 ; | | 0.3125 seconds

5938: BD FD B4 JSR $FDB4 ; | |

593B: 18 18 ; | | This lights the previous lamp in the 5-bank

593D: 7A 05 F9 DEC $05F9 ; | |

5940: B6 05 F9 LDA $05F9 ; | |

5943: 4D TSTA ; | |

5944: 26 EE BNE $5934 ; |--/

 ; |

5946: BD 83 46 JSR $8346 ; |--\ Sleep()

5949: 14 ; | | 0.3125 seconds

594A: BD FD A2 JSR $FDA2 ; | |

594D: 18 18 ; | | This lights the next lamp in the 5-bank

594F: 7C 05 F9 INC $05F9 ; | |

5952: B6 05 F9 LDA $05F9 ; | |

5955: 81 04 CMPA #$04 ; | |

5957: 25 ED BCS $5946 ; |--/

 ; |

5959: 20 D9 BRA $5934 ; --/

 ;

---;---

The L-8 function, above will be relocated and expanded in L8.4 to accommodate the various adjustment

settings in order to move the arrow in the way set in the new adjustment.

Super Jackpot Lamp Movement – Bookkeeping Statistics To Derive Variable Lamp Behaviors

As described earlier, the bookkeeping statistics can be used in L8.4 to determine a starting number that

applies to the current game in play (regardless if it is single player or multi-player game). The starting

number can then be used to establish a particular variable behavior such as starting lamp or starting

lamp direction (applicable when starting lamp is #2, #3 or #4).

The way in which the base values for the variable behaviors is derived, is shown in the table below.

Bookkeeping Entry Addr Bookkeeping Statistic Participation

Starting
Lamp

Starting
Direction*

Lamp
Pattern**

Bookkeeping B.3 08 "MATCH AWARDS" $18A3

Bookkeeping B.3 28 "1 PLAYER GAMES" $18EB

Bookkeeping B.3 29 "2 PLAYER GAMES" $18F1

Bookkeeping B.3 30 "3 PLAYER GAMES" $18F7

Bookkeeping B.3 31 "4 PLAYER GAMES" $18FD

Bookkeeping B.5 01 "0-1.9 M. SCORE" $1921

Bookkeeping B.5 02 "2-4.9 M. SCORE" $1927

Bookkeeping B.5 03 "3-9.9 M. SCORE" $192D

Bookkeeping B.5 04 "10-19 M. SCORE" $1933

Bookkeeping B.5 05 "20-29 M. SCORE" $1939

Bookkeeping B.5 06 "30-29 M. SCORE" $193F

Bookkeeping B.5 07 "40-49 M. SCORE" $1945

Bookkeeping B.5 08 "50-69 M. SCORE" $194B

Bookkeeping B.5 09 "70-99 M. SCORE" $1951

Bookkeeping B.5 10 "100-149 M. SCORE" $1957

Bookkeeping B.5 11 "150-199 M. SCORE" $195D

Bookkeeping B.5 12 "200-299 M. SCORE" $1963

Bookkeeping B.5 13 "OVER 300 MILLION" $1969

Bookkeeping B.5 14 "GAME TIME 0.0-1.0M" $196F

Bookkeeping B.5 15 "GAME TIME 1.0-1.5M" $1975

Bookkeeping B.5 16 "GAME TIME 1.5-2.0M" $197B

Bookkeeping B.5 17 "GAME TIME 2.0-2.5M" $1981

Bookkeeping B.5 18 "GAME TIME 2.5-3.0M" $1987

Bookkeeping B.5 19 "GAME TIME 3.0-3.5M" $198D

Bookkeeping B.5 20 "GAME TIME 3.5-4.0M" $1993

Bookkeeping B.5 21 "GAME TIME 4-5 M." $1999

Bookkeeping B.5 22 "GAME TIME 5-6 M." $199F

Bookkeeping B.5 23 "GAME TIME 6-8 M." $19A5

Bookkeeping B.5 24 "GAME TIME 8-10 M." $19AB

Bookkeeping B.5 25 "GAME TIME 10-15 M" $19B1

Bookkeeping B.5 26 "GAME TIME > 15 M" $19B7

* Variable starting direction only applies when the starting lamp is #2, #3 or #4

** Variable lamp pattern only applies when adjustment is set to have multiple patterns.

Each statistic is stored in a 3-byte region however only the last of the 3 bytes is needed for purposes of

deriving a unique number for the current game in play. The table, above, shows how each statistic is

used in deriving the base number for the variable behavior indicated. By using the bookkeeping values

in this way, it results in a seemingly random behavior which is difficult for the typical player to predict.

The “seed” value is determined by taking the sum of all bookkeeping statistics for the given item. To

add different behavior at subsequent Super Jackpots, the number of current player’s acquired Super

Jackpot awards is also added to this sum. To reduce complexity the sum is accumulated into an 8-bit

register, discarding any overflow that might take place.

Once the total sum is determined, the resulting 8-bit value is then used as an index into an array of data

bytes to acquire a resulting byte value from which the final value will be determined. The array of bytes

is simply ROM bytes that normally represents code, however in this case it can be treated as “random”

data bytes to serve the purpose of getting a variable value at each game (and after each Super Jackpot

awarded to the player).

At WPC address $FD00, ROM offset 0x7FD00, the starting point for the array of data bytes has been

arbitrarily chosen for purposes of acquiring the “random” data. By using the signed 8-bit seed value as

the index into this data, there are 256 bytes from where the resulting data byte will be used. Being a

signed value, this means the 128 bytes prior to the $FD00 and the 127 bytes after $FD00 are used,

depending on the seed value. This results in an effective range of data of $FC80 through $FD7F.

The selected byte from the 256 bytes is then subjected to a formula to determine the value that will be

used for the given variable feature behavior. The table below shows the formula used for each behavior.

Variable Behavior Needed Values Formula to derive value X from byte B
(C-like syntax) Range # of values

Starting Lamp 0..4 5 X = (B & 0x07); X = (X > 4) ? (X – 4) : X

Starting Direction 0..1 2 X = B & 0x01

Lamp Pattern (Hard) 0..2 3 X = (B & 0x03); X = (X > 2) ? (X – 2): X

Lamp Pattern (Expert) 0..4 5 X = ((B >> 4) & 0x07); X = (X > 4) ? (X – 4) : X

The resulting set of numbers/values for each of the variable behaviors is shown in the table below. The

information in this table was derived in order to confirm that a seemingly random mix of all possible

value are in the pool of numbers that will be used in L8.4.

Variable Behavior Formula Results Resulting Behavior

Starting Lamp

Formula Results
define which lamp
number is start of
Super Jackpot:

#1 Top lamp
…
#5 Bottom Lamp

0 2 2 1 3 2 0 3 3 1 4 2 1 3 0 2
3 0 3 1 0 2 3 1 1 3 4 0 3 1 3 0
2 2 0 2 4 3 2 0 2 1 2 2 4 4 1 3
4 3 0 2 1 3 3 0 1 1 1 2 4 4 4 2
4 2 4 0 4 3 4 2 4 1 4 1 4 0 2 3
2 1 2 1 0 4 2 3 3 3 2 2 0 3 2 1
0 3 0 3 0 3 2 2 0 3 2 3 0 1 0 3
2 3 2 0 2 3 4 1 2 4 2 1 4 3 2 2
1 1 4 2 2 3 3 3 1 3 3 0 1 2 3 4
2 2 4 3 4 4 1 3 3 2 2 2 1 2 3 0
2 0 3 2 3 4 4 1 1 3 2 4 1 3 4 3
2 2 2 1 1 3 0 2 2 3 2 4 1 3 0 4
4 1 1 3 2 4 1 4 4 3 3 3 3 4 1 0
3 4 2 2 4 3 4 4 1 3 2 2 3 0 1 0
2 3 2 3 4 1 1 3 0 2 0 3 3 3 4 4
1 1 3 2 4 1 3 4 3 2 3 4 1 2 3 0

#1 #3 #3 #2 #4 #3 #1 #4 #4 #2 #5 #3 #2 #4 #1 #3
#4 #1 #4 #2 #1 #3 #4 #2 #2 #4 #5 #1 #4 #2 #4 #1
#3 #3 #1 #3 #5 #4 #3 #1 #3 #2 #3 #3 #5 #5 #2 #4
#5 #4 #1 #3 #2 #4 #4 #1 #2 #2 #2 #3 #5 #5 #5 #3
#5 #3 #5 #1 #5 #4 #5 #3 #5 #2 #5 #2 #5 #1 #3 #4
#3 #2 #3 #2 #1 #5 #3 #4 #4 #4 #3 #3 #1 #4 #3 #2
#1 #4 #1 #4 #1 #4 #3 #3 #1 #4 #3 #4 #1 #2 #1 #4
#3 #4 #3 #1 #3 #4 #5 #2 #3 #5 #3 #2 #5 #4 #3 #3
#2 #2 #5 #3 #3 #4 #4 #4 #2 #4 #4 #1 #2 #3 #4 #5
#3 #3 #5 #4 #5 #5 #2 #4 #4 #3 #3 #3 #2 #3 #4 #1
#3 #1 #4 #3 #4 #5 #5 #2 #2 #4 #3 #5 #2 #4 #5 #4
#3 #3 #3 #2 #2 #4 #1 #3 #3 #4 #3 #5 #2 #4 #1 #5
#5 #2 #2 #4 #3 #5 #2 #5 #5 #4 #4 #4 #4 #5 #2 #1
#4 #5 #3 #3 #5 #4 #5 #5 #2 #4 #3 #3 #4 #1 #2 #1
#3 #4 #3 #4 #5 #2 #2 #4 #1 #3 #1 #4 #4 #4 #5 #5
#2 #2 #4 #3 #5 #2 #4 #5 #4 #3 #4 #5 #2 #3 #4 #1

Starting Direction

Formula Results
define which
direction the lamp
will initially move
when starting lamp
is #2, #3 or #4.

0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0
1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1
0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1
0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1
0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0
1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0

D D D U U D D U U U D D U U D D
U D U U D D U U U U D D U U U D
D D D D D U D D D U D D D D U U
D U D D U U U D U U U D D D D D
D D D D D U D D D U D U D D D U
D U D U D D D U U U D D D U D U
D U D U D U D D D U D U D U D U
D U D D D U D U D D D U D U D D
U U D D D U U U U U U D U D U D

U = Up
D = Down

0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0
0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1
0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0
0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0
1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0
0 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0
1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0

D D D U D D U U U D D D U D U D
D D U D U D D U U U D D U U D U
D D D U U U D D D U D D U U D D
D U U U D D U D D U U U U D U D
U D D D D U D D U U D D U D U D
D U D U D U U U D D D U U U D D
U U U D D U U D U D U D U D U D

Lamp Pattern (Hard)

Formula Results
define which lamp
pattern will be used
during “Hard”
difficulty settings.

#1 = 543212345
#2 = 1234512345
#3 = 5432154321

Starting lamp in the
pattern will vary.

0 2 2 1 1 2 0 1 1 1 0 2 1 1 0 2
1 0 1 1 0 2 1 1 1 1 0 0 1 1 1 0
2 2 0 2 0 1 2 0 2 1 2 2 0 0 1 1
0 1 0 2 1 1 1 0 1 1 1 2 0 0 0 2
0 2 0 0 0 1 0 2 0 1 0 1 0 0 2 1
2 1 2 1 0 0 2 1 1 1 2 2 0 1 2 1
0 1 0 1 0 1 2 2 0 1 2 1 0 1 0 1
2 1 2 0 2 1 0 1 2 0 2 1 0 1 2 2
1 1 0 2 2 1 1 1 1 1 1 0 1 2 1 0
2 2 0 1 0 0 1 1 1 2 2 2 1 2 1 0
2 0 1 2 1 0 0 1 1 1 2 0 1 1 0 1
2 2 2 1 1 1 0 2 2 1 2 0 1 1 0 0
0 1 1 1 2 0 1 0 0 1 1 1 1 0 1 0
1 0 2 2 0 1 0 0 1 1 2 2 1 0 1 0
2 1 2 1 0 1 1 1 0 2 0 1 1 1 0 0
1 1 1 2 0 1 1 0 1 2 1 0 1 2 1 0

#1 #3 #3 #2 #2 #3 #1 #2 #2 #2 #1 #3 #2 #2 #1 #3
#2 #1 #2 #2 #1 #3 #2 #2 #2 #2 #1 #1 #2 #2 #2 #1
#3 #3 #1 #3 #1 #2 #3 #1 #3 #2 #3 #3 #1 #1 #2 #2
#1 #2 #1 #3 #2 #2 #2 #1 #2 #2 #2 #3 #1 #1 #1 #3
#1 #3 #1 #1 #1 #2 #1 #3 #1 #2 #1 #2 #1 #1 #3 #2
#3 #2 #3 #2 #1 #1 #3 #2 #2 #2 #3 #3 #1 #2 #3 #2
#1 #2 #1 #2 #1 #2 #3 #3 #1 #2 #3 #2 #1 #2 #1 #2
#3 #2 #3 #1 #3 #2 #1 #2 #3 #1 #3 #2 #1 #2 #3 #3
#2 #2 #1 #3 #3 #2 #2 #2 #2 #2 #2 #1 #2 #3 #2 #1
#3 #3 #1 #2 #1 #1 #2 #2 #2 #3 #3 #3 #2 #3 #2 #1
#3 #1 #2 #3 #2 #1 #1 #2 #2 #2 #3 #1 #2 #2 #1 #2
#3 #3 #3 #2 #2 #2 #1 #3 #3 #2 #3 #1 #2 #2 #1 #1
#1 #2 #2 #2 #3 #1 #2 #1 #1 #2 #2 #2 #2 #1 #2 #1
#2 #1 #3 #3 #1 #2 #1 #1 #2 #2 #3 #3 #2 #1 #2 #1
#3 #2 #3 #2 #1 #2 #2 #2 #1 #3 #1 #2 #2 #2 #1 #1
#2 #2 #2 #3 #1 #2 #2 #1 #2 #3 #2 #1 #2 #3 #2 #1

Lamp
Pattern(Expert)

Formula Results
define which lamp
pattern will be used
during “Expert”
difficulty settings.

#1 = 543212345
#2 = 1234512345
#3 = 5432154321
#4 = 1352413524
#5 = 4253142531

Starting lamp in the
pattern will vary.

0 4 1 3 4 0 2 1 0 3 3 3 3 2 2 3
0 1 2 0 1 3 1 1 3 1 4 2 0 3 1 2
4 0 2 2 4 2 0 1 2 4 2 4 2 4 3 2
3 3 4 1 1 0 0 1 2 2 3 3 3 2 3 2
3 4 3 1 3 1 3 2 3 3 3 3 3 1 0 0
0 0 0 3 1 3 3 1 1 1 3 2 0 2 1 4
2 2 3 2 4 1 3 2 0 2 0 2 4 4 2 2
0 1 3 2 3 2 2 3 3 1 3 2 0 2 0 1
0 3 3 0 0 3 3 3 3 3 3 3 3 0 3 3
1 3 0 4 3 0 4 2 1 3 3 2 4 0 2 1
2 0 3 3 2 0 0 4 2 0 0 0 3 3 0 4
3 3 2 4 0 2 1 3 3 2 3 0 4 2 0 0
0 3 2 0 0 0 2 3 0 4 2 0 3 0 4 2
4 3 1 3 0 4 3 0 4 2 1 3 3 4 4 2
2 1 3 3 4 4 0 2 1 2 0 3 3 4 0 0
4 2 0 0 0 3 3 0 4 3 3 4 0 0 2 1

#1 #5 #2 #4 #5 #1 #3 #2 #1 #4 #4 #4 #4 #3 #3 #4
#1 #2 #3 #1 #2 #4 #2 #2 #4 #2 #5 #3 #1 #4 #2 #3
#5 #1 #3 #3 #5 #3 #1 #2 #3 #5 #3 #5 #3 #5 #4 #3
#4 #4 #5 #2 #2 #1 #1 #2 #3 #3 #4 #4 #4 #3 #4 #3
#4 #5 #4 #2 #4 #2 #4 #3 #4 #4 #4 #4 #4 #2 #1 #1
#1 #1 #1 #4 #2 #4 #4 #2 #2 #2 #4 #3 #1 #3 #2 #5
#3 #3 #4 #3 #5 #2 #4 #3 #1 #3 #1 #3 #5 #5 #3 #3
#1 #2 #4 #3 #4 #3 #3 #4 #4 #2 #4 #3 #1 #3 #1 #2
#1 #4 #4 #1 #1 #4 #4 #4 #4 #4 #4 #4 #4 #1 #4 #4
#2 #4 #1 #5 #4 #1 #5 #3 #2 #4 #4 #3 #5 #1 #3 #2
#3 #1 #4 #4 #3 #1 #1 #5 #3 #1 #1 #1 #4 #4 #1 #5
#4 #4 #3 #5 #1 #3 #2 #4 #4 #3 #4 #1 #5 #3 #1 #1
#1 #4 #3 #1 #1 #1 #3 #4 #1 #5 #3 #1 #4 #1 #5 #3
#5 #4 #2 #4 #1 #5 #4 #1 #5 #3 #2 #4 #4 #5 #5 #3
#3 #2 #4 #4 #5 #5 #1 #3 #2 #3 #1 #4 #4 #5 #1 #1
#5 #3 #1 #1 #1 #4 #4 #1 #5 #4 #4 #5 #1 #1 #3 #2

The analysis, above, was done to show there is a variable set of possible values and behaviors that will
occur by using this mechanism. Since each “random” value for each variable behavior depends on a
different set of game bookkeeping statistics, the actual chosen value is not easily for a player to predict
and, as such, results in a seemingly random behavior as the result.

Super Jackpot Code Updates for L8.4

The original code for Super Jackpot code scheduler is updated as follows. At $58B7,34, ROM offset
0x518B7, where L-8 code previously scheduled function $5926,34, it is now updated to schedule the
new L8.4 function located at $7E95,3A. The new byte values highlighted below.

58B7: BD 89 48 JSR $8948 ; Scheduler function

58BA: 7E 95 3A ; Schedules New L8.4 function for Super Jackpot

As shown, the old Super Jackpot vector $5926,34 has been replaced with $7E95,3A. In addition to this
jump point change, the original L-8 Super Jackpot code at $5926,34 (ROM offset 0x51926) has been
removed with its bytes set to 0xFF, with such ROM region available for other code in the future.

The new L8.4 Super Jackpot code at $7E95,3A (ROM offset 0x6BE95) is the entry point for the L8.4 Super
Jackpot code. It is added to unused region of ROM toward the end of bank $3A where a lot of the other
new L8.4 code is also located. There are various helper functions and data tables that are also part of
this portion of L8.4 code. The entire block of code for Super Jackpot is from $7D6D,3A through
$7F47,3A and is depicted below.

The code, below, handles the entirety of L8.4 Super Jackpot, supporting all of the Super Jackpot
adjustment settings, fast and slow speed lamp movements, and the different possible lamp patterns. A
detailed description of this logic is is being left as an exercise to the reader. For tracing the code, the
entry point at $7E95,3A.

---;---

---;---

 ;

 ; Starting Lamp Position

 ;------------------------

 ; Table of Bookkeeping Storage Locations (L-8)

 ;

7D6D: 18 A3 ; Bookkeeping B.3 08 "MATCH AWARDS"

7D6F: 18 EB ; Bookkeeping B.3 28 "1 PLAYER GAMES"

7D71: 18 F1 ; Bookkeeping B.3 29 "2 PLAYER GAMES"

7D73: 18 F7 ; Bookkeeping B.3 30 "3 PLAYER GAMES"

7D75: 18 FD ; Bookkeeping B.3 31 "4 PLAYER GAMES"

7D77: 19 21 ; Bookkeeping B.5 01 "0-1.9 M. SCORE"

7D79: 19 2D ; Bookkeeping B.5 03 "3-9.9 M. SCORE"

7D7B: 19 39 ; Bookkeeping B.5 05 "20-29 M. SCORE"

7D7D: 19 45 ; Bookkeeping B.5 07 "40-49 M. SCORE"

7D7F: 19 51 ; Bookkeeping B.5 09 "70-99 M. SCORE"

7D81: 19 5D ; Bookkeeping B.5 11 "150-199 M. SCORE"

7D83: 19 69 ; Bookkeeping B.5 13 "OVER 300 MILLION"

7D85: 19 75 ; Bookkeeping B.5 15 "GAME TIME 1.0-1.5M"

7D87: 19 81 ; Bookkeeping B.5 17 "GAME TIME 2.0-2.5M"

7D89: 19 8D ; Bookkeeping B.5 19 "GAME TIME 3.0-3.5M"

7D8B: 19 99 ; Bookkeeping B.5 21 "GAME TIME 4-5 M."

7D8D: 19 A5 ; Bookkeeping B.5 23 "GAME TIME 6-8 M."

7D8F: 19 B1 ; Bookkeeping B.5 25 "GAME TIME 10-15 M"

7D91: 00 00 ; <End of data>

 ;

---;---

 ;

 ; Starting Lamp Direction

 ;-------------------------

 ; Table of Bookkeeping Storage Locations (L-8)

 ;

7D93: 18 EB ; Bookkeeping B.3 28 "1 PLAYER GAMES"

7D95: 18 F1 ; Bookkeeping B.3 29 "2 PLAYER GAMES"

7D97: 18 F7 ; Bookkeeping B.3 30 "3 PLAYER GAMES"

7D99: 18 FD ; Bookkeeping B.3 31 "4 PLAYER GAMES"

7D9B: 19 27 ; Bookkeeping B.5 02 "2-4.9 M. SCORE"

7D9D: 19 33 ; Bookkeeping B.5 04 "10-19 M. SCORE"

7D9F: 19 3F ; Bookkeeping B.5 06 "30-29 M. SCORE"

7DA1: 19 4B ; Bookkeeping B.5 08 "50-69 M. SCORE"

7DA3: 19 57 ; Bookkeeping B.5 10 "100-149 M. SCORE"

7DA5: 19 63 ; Bookkeeping B.5 12 "200-299 M. SCORE"

7DA7: 19 6F ; Bookkeeping B.5 14 "GAME TIME 0.0-1.0M"

7DA9: 19 7B ; Bookkeeping B.5 16 "GAME TIME 1.5-2.0M"

7DAB: 19 87 ; Bookkeeping B.5 18 "GAME TIME 2.5-3.0M"

7DAD: 19 93 ; Bookkeeping B.5 20 "GAME TIME 3.5-4.0M"

7DAF: 19 9F ; Bookkeeping B.5 22 "GAME TIME 5-6 M."

7DB1: 19 AB ; Bookkeeping B.5 24 "GAME TIME 8-10 M."

7DB3: 19 B7 ; Bookkeeping B.5 26 "GAME TIME > 15 M"

7DB5: 00 00 ; <End of data>

 ;

---;---

 ;

 ; Starting Lamp Pattern

 ;-----------------------

 ; Table of Bookkeeping Storage Locations (L-8)

 ;

7DB7: 18 EB ; Bookkeeping B.3 28 "1 PLAYER GAMES"

7DB9: 18 F1 ; Bookkeeping B.3 29 "2 PLAYER GAMES"

7DBB: 18 F7 ; Bookkeeping B.3 30 "3 PLAYER GAMES"

7DBD: 18 FD ; Bookkeeping B.3 31 "4 PLAYER GAMES"

7DBF: 19 21 ; Bookkeeping B.5 01 "0-1.9 M. SCORE"

7DC1: 19 27 ; Bookkeeping B.5 02 "2-4.9 M. SCORE"

7DC3: 19 39 ; Bookkeeping B.5 05 "20-29 M. SCORE"

7DC5: 19 3F ; Bookkeeping B.5 06 "30-29 M. SCORE"

7DC7: 19 51 ; Bookkeeping B.5 09 "70-99 M. SCORE"

7DC9: 19 57 ; Bookkeeping B.5 10 "100-149 M. SCORE"

7DCB: 19 69 ; Bookkeeping B.5 13 "OVER 300 MILLION"

7DCD: 19 6F ; Bookkeeping B.5 14 "GAME TIME 0.0-1.0M"

7DCF: 19 81 ; Bookkeeping B.5 17 "GAME TIME 2.0-2.5M"

7DD1: 19 87 ; Bookkeeping B.5 18 "GAME TIME 2.5-3.0M"

7DD3: 19 99 ; Bookkeeping B.5 21 "GAME TIME 4-5 M."

7DD5: 19 9F ; Bookkeeping B.5 22 "GAME TIME 5-6 M."

7DD7: 19 B1 ; Bookkeeping B.5 25 "GAME TIME 10-15 M"

7DD9: 19 B7 ; Bookkeeping B.5 26 "GAME TIME > 15 M"

7DDB: 00 00 ; <End of data>

 ;

---;---

 ;

 ; Get sum of bookkeeping values pointed to by X into A

 ;--

7DDD: 4F CLRA ; Start the sum at 0x00

 ;

7DDE: 10 AE 81 LDY ,X++ ;-\ Y gets address of RAM of next bookkeeping value

7DE1: 27 04 BEQ $7DE7 ; | If Y gets 0x0000 then we reached end of the table

7DE3: AB A4 ADDA ,Y ; | Increment A with value from Y

7DE5: 20 F7 BRA $7DDE ;-/

 ;

7DE7: 8D 59 BSR $7E42 ; Get Player's Number of Super Jackpots Addr into X

7DE9: AB 84 ADDA ,X ; Add # of player's super jackpots to the sum

 ;

7DEB: 39 RTS ;

 ;

---;---

 ;

 ; Get "random" byte from ROM for given data table X

 ;---

7DEC: 8D EF BSR $7DDD ; Call function that gets bookkeeping values sum into A

7DEE: 8E FD 00 LDX #$FD00 ; X gets address in ROM from where seed byte is loaded

7DF1: A6 86 LDA A,X ; A now gets byte from ROM

7DF3: 39 RTS ;

 ;

---;---

 ;

 ; Get variable value 0..4 for starting lamp

 ;---

7DF4: 8E 7D 6D LDX #$7D6D ; X gets address of the starting-lamp data table

7DF7: 8D F3 BSR $7DEC ; Call function that gets "random" byte from ROM into A

7DF9: 84 07 ANDA #$07 ; Mask off the low 3 bits

7DFB: 81 05 CMPA #$05 ; Compare to 05 (ie subtract 05 from A, C-set if borrow)

7DFD: 25 02 BCS $7E01 ; If C-set then skip over the following

7DFF: 80 04 SUBA #$04 ; A is 5, 6 or 7, so now subtract 4

7E01: 39 RTS ;

 ;

---;---

 ;

 ; Get "random" byte for lamp pattern determination

 ;--

7E02: 8E 7D B7 LDX #$7DB7 ; X gets address of the lamp-pattern data table

7E05: 8D E5 BSR $7DEC ; Call function that gets "random" byte from ROM into A

7E07: 39 RTS ;

 ;

---;---

 ;

 ; Get variable value 0..4 for lamp pattern (Expert)

 ;---

7E08: 8D F8 BSR $7E02 ; Get "random" byte for lamp-pattern from ROM into A

7E0A: 46 RORA ; Move high nibble into lower nibble

7E0B: 46 RORA ;

7E0C: 46 RORA ;

7E0D: 46 RORA ;

7E0E: 20 E9 BRA $7DF9 ; branch up into routine for getting 0..4 starting lamp

 ;

---;---

 ;

 ; Get variable value 0..1 for starting lamp direction

 ;---

7E10: 8E 7D 93 LDX #$7D93 ; X gets address of the lamp-direction data table

7E13: 8D D7 BSR $7DEC ; Call function that gets "random" byte from ROM into A

7E15: 84 01 ANDA #$01 ; Mask off the low 1 bit

7E17: 39 RTS ;

 ;

---;---

 ;

 ; Get variable value 0..2 for lamp pattern (Hard)

 ;---

7E18: 8D E8 BSR $7E02 ; Get "random" byte for lamp-pattern from ROM into A

7E1A: 84 03 ANDA #$03 ; Mask off the low 2 bits

7E1C: 81 03 CMPA #$03 ; Compare to 03 (ie subtract 03 from A, C-set if borrow)

7E1E: 25 02 BCS $7E22 ; If C-set then skip over the following

7E20: 80 02 SUBA #$02 ; A is 3, so now subtract 2

7E22: 39 RTS ;

 ;

---;---

 ;

 ; Super Jackpot, Illuminate first lamp

 ;

7E23: 86 04 LDA #$04 ; Start with 0x04 (5th lamp), default starting lamp

 ;

7E25: C1 03 CMPB #$03 ; Compare Super Jackpot adjustment with 03 "Medium"

7E27: 25 02 BCS $7E2B ; C-set -> adj is < 0x03, use lamp 04 & skip following

 ;

7E29: 8D C9 BSR $7DF4 ; Call function to get variable value 0..4

 ;

7E2B: 81 05 CMPA #$05 ; Check that A is not out of bounds

7E2D: 25 02 BCS $7E31 ;

7E2F: 86 04 LDA #$04 ; A was unexpectedly out of range, reset to lamp 04

 ; Now the starting lamp has been determined 0..4 in A

7E31: 8D 01 BSR $7E34 ; Branch to function to set lamp and save it in $05F9

7E33: 39 RTS ;

 ;

---;---

 ;

 ; Takes in lamp index 0..4 in A & sets lamp in 5-bank

7E34: 34 04 PSHS B ;

 ;

7E36: B7 05 F9 STA $05F9 ; Save current/starting lamp 0..4 into $05F9

7E39: 8B 11 ADDA #$11 ; Convert lamp idx 0..4 to 11..15 its lamp matrix index

7E3B: C6 18 LDB #$18 ; 0x18 == solid lamps plane

7E3D: BD 9E 7F JSR $9E7F ; ValidateThenSingleLampSetIndexAPlaneB()

 ;

7E40: 35 84 PULS B,PC ;

 ;

---;---

 ;

 ; X gets address of player‟s super jackpots counter

 ;---

7E42: 8E 05 D1 LDX #$05D1 ; Number of Super Jackpots

7E45: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

7E48: 39 RTS ;

 ;

---;---

 ;

 ; Check if adj B matches any of the "+1" settings

 ;---

7E49: C1 01 CMPB #$01 ; Check if "Original+1"

7E4B: 27 10 BEQ $7E5D ; If equal, return C-set

7E4D: C1 04 CMPB #$04 ; Check if "Medium+1"

7E4F: 27 0C BEQ $7E5D ; If equal, return C-set

7E51: C1 07 CMPB #$07 ; Check if "Hard+1"

7E53: 27 08 BEQ $7E5D ; If equal, return C-set

7E55: C1 0A CMPB #$0A ; Check if "Expert+1"

7E57: 27 04 BEQ $7E5D ; If equal, return C-set

7E59: 1C FE ANDCC #$00FE ; Clear c-bit

7E5B: 20 02 BRA $7E5F ; go to end

7E5D: 1A 01 ORCC #$0001 ; Set c-bit

7E5F: 39 RTS ; return

 ;

---;---

 ;

 ; Check if adj B matches any of the "++" settings

 ;---

7E60: C1 02 CMPB #$02 ; Check if "Original++"

7E62: 27 10 BEQ $7E74 ; If equal, return C-set

7E64: C1 05 CMPB #$05 ; Check if "Medium++"

7E66: 27 0C BEQ $7E74 ; If equal, return C-set

7E68: C1 08 CMPB #$08 ; Check if "Hard++"

7E6A: 27 08 BEQ $7E74 ; If equal, return C-set

7E6C: C1 0B CMPB #$0B ; Check if "Expert++"

7E6E: 27 04 BEQ $7E74 ; If equal, return C-set

7E70: 1C FE ANDCC #$00FE ; Clear c-bit

7E72: 20 02 BRA $7E76 ; go to end

7E74: 1A 01 ORCC #$0001 ; Set c-bit

7E76: 39 RTS ; return

 ;

---;---

 ;

 ; SleepPerSuperJackpotsAdjustment()

 ;

 ; Sleep for time based on adjustment value in B

 ;---

7E77: 34 10 PSHS X ;

 ;

7E79: 8D CE BSR $7E49 ; Check if the 'B' adj value is any of the "+1" settings

7E7B: 24 08 BCC $7E85 ; C-clr means NOT "+1" adj, skip to check "++" setting

 ;

7E7D: 8D C3 BSR $7E42 ; Get Player's Number of Super Jackpots Addr into X

7E7F: A6 84 LDA ,X ; A gets # of player's super jackpots

7E81: 27 0C BEQ $7E8F ; If A is 0x00 then go do slow/normal sleep

7E83: 20 04 BRA $7E89 ; Otherwise not first super jackpot go do fast sleep

 ;

7E85: 8D D9 BSR $7E60 ; Check if the 'B' adj value is any of the "++" settings

7E87: 24 06 BCC $7E8F ; C-clr means NOT "++" adj, skip to slow/normal sleep

 ;

7E89: BD 83 46 JSR $8346 ; Sleep()

7E8C: 10 ; 0.250 seconds fast sleep period

7E8D: 20 04 BRA $7E93 ; go to end

 ;

7E8F: BD 83 46 JSR $8346 ; Sleep()

7E92: 14 ; 0.3125 seconds slow/normal sleep period

7E93: 35 90 PULS X,PC ; Done, RTS

 ;

---;---

 ;

 ; ID 1033

 ;

 ; Start function for the super-jackpot arrow movement

 ;

7E95: 86 FF LDA #$FF ; Store 0xFF into $D3

7E97: 97 D3 STA $D3 ; Checked during huntership hit from $4BE3,31

 ;

7E99: BD 83 0C JSR $830C ; Get8BitSettingIntoBParameterByte()

7E9C: 1E ; 1E=SuperJackpot Adjustment

 ;

7E9D: 8D 84 BSR $7E23 ; Call function to illuminate the starting lamp

 ;

7E9F: C1 06 CMPB #$06 ; Compare adjustment to "Hard"

7EA1: 24 02 BCC $7EA5 ; C-clear means adjustment is 06 or higher, skip down

7EA3: 20 1C BRA $7EC1 ; Adj 00, 01, 02, 03, 04, 05, do original lamp movement

 ;

7EA5: C1 09 CMPB #$09 ; Compare adjustment to "Expert"

7EA7: 24 05 BCC $7EAE ; C-clr means adj is >=09, skip to random pattern 0..4

 ;

 ; Adj 06, 07, 08 (Hard) get random pattern 0..2

7EA9: BD 7E 18 JSR $7E18 ; Get random value 0..2 into A

7EAC: 20 03 BRA $7EB1 ;

 ; Adj 09, 0A, 0B (Expert) get random pattern 0..4

7EAE: BD 7E 08 JSR $7E08 ; Get random value 0..4 into A

 ;

7EB1: 81 04 CMPA #$04 ; Check for Expert pattern, 4253142531

7EB3: 27 74 BEQ $7F29 ; If equal, go to pattern start

7EB5: 81 03 CMPA #$03 ; Check for Expert pattern, 1352413524

7EB7: 27 6B BEQ $7F24 ; If equal, go to pattern start

7EB9: 81 02 CMPA #$02 ; Check for Medium/Hard/Expert pattern, 5432154321

7EBB: 27 35 BEQ $7EF2 ; If equal, go to pattern start

7EBD: 81 01 CMPA #$01 ; Check for Medium/Hard/Expert pattern, 1234512345

7EBF: 27 49 BEQ $7F0A ; If equal, go to pattern start

 ; Drop down to Original L-8 lamp pattern, 543212345

 ;

---;---

 ;

 ; Original L-8 lamp movement pattern, 543212345

 ;

7EC1: B6 05 F9 LDA $05F9 ; Get starting lamp 0..4 into A

7EC4: 27 19 BEQ $7EDF ; If lamp is 00 then need to start going down

7EC6: 81 04 CMPA #$04 ; Check if at lamp 4 (or higher for some reason)

7EC8: 24 05 BCC $7ECF ; C-clear means lamp is 04 (or higher?), start going up

 ;

7ECA: BD 7E 10 JSR $7E10 ; Get random value 0..1 into A

7ECD: 27 10 BEQ $7EDF ; If A is zero (Down) goto loop portion that goes down

 ;

7ECF: 8D A6 BSR $7E77 ; --\--\ SleepPerSuperJackpotsAdjustment()

7ED1: BD FD B4 JSR $FDB4 ; | | Call $6706,3B with the next 2 bytes in D

7ED4: 18 18 ; | | Lights the previously numbered lamp

7ED6: 7A 05 F9 DEC $05F9 ; | |

7ED9: B6 05 F9 LDA $05F9 ; | |

7EDC: 4D TSTA ; | |

7EDD: 26 F0 BNE $7ECF ; |--/

 ; |

7EDF: 8D 96 BSR $7E77 ; |--\ SleepPerSuperJackpotsAdjustment()

7EE1: BD FD A2 JSR $FDA2 ; | | Call $66F5,3B with the next 2 bytes in D

7EE4: 18 18 ; | | Lights the next numbered lamp

7EE6: 7C 05 F9 INC $05F9 ; | |

7EE9: B6 05 F9 LDA $05F9 ; | |

7EEC: 81 04 CMPA #$04 ; | |

7EEE: 25 EF BCS $7EDF ; |--/

 ; |

7EF0: 20 DD BRA $7ECF ; --/

 ;

---;---

 ;

 ; Medium/Hard/Expert pattern, 5432154321

 ;

7EF2: 8D 83 BSR $7E77 ; --\ SleepPerSuperJackpotsAdjustment()

7EF4: BD FD B4 JSR $FDB4 ; | Call $6706,3B with the next 2 bytes in D

7EF7: 18 18 ; | Lights the previously numbered lamp

7EF9: B6 05 F9 LDA $05F9 ; | Get currently illuminated lamp 0..4 into A

7EFC: 26 07 BNE $7F05 ; | If lamp is 01, 02, 03, 04 go down and decrement

 ; |

7EFE: 86 04 LDA #$04 ; | Reset to lamp 04

7F00: B7 05 F9 STA $05F9 ; | Save current/starting lamp 0..4 into $05F9

7F03: 20 03 BRA $7F08 ; | New next lamp is in $05F9, done with iteration

 ; |

7F05: 7A 05 F9 DEC $05F9 ; | Decrement 01, 02, 03, 04 then loop back to sleep

7F08: 20 E8 BRA $7EF2 ; --/

 ;

---;---

 ;

 ; Medium/Hard/Expert pattern, 1234512345

 ;

7F0A: BD 7E 77 JSR $7E77 ; --\ SleepPerSuperJackpotsAdjustment()

7F0D: BD FD A2 JSR $FDA2 ; | Call $66F5,3B with the next 2 bytes in D

7F10: 18 18 ; | This automatically lights the next numbered lamp

7F12: B6 05 F9 LDA $05F9 ; | Get currently illuminated lamp 0..4 into A

7F15: 81 04 CMPA #$04 ; | Check if at lamp 4 (or higher for some reason)

7F17: 25 06 BCS $7F1F ; | C-set == 00, 01, 02, 03 go down and increment

 ; |

7F19: 4F CLRA ; | Reset to lamp 00

7F1A: B7 05 F9 STA $05F9 ; | Save current/starting lamp 0..4 into $05F9

7F1D: 20 03 BRA $7F22 ; | New next lamp is in $05F9, done with iteration

 ; |

7F1F: 7C 05 F9 INC $05F9 ; |

7F22: 20 E6 BRA $7F0A ; --/

 ;

---;---

 ;

 ; Expert pattern, 1352413524 (branch point)

 ;---

7F24: 8E 7F 3E LDX #$7F3E ; X gets address of the next-lamp table for 1352413524

7F27: 20 03 BRA $7F2C ;

 ;

---;---

 ;

 ; Expert pattern, 4253142531

 ;----------------------------

7F29: 8E 7F 43 LDX #$7F43 ; X gets address of the next-lamp table for 4253142531

 ;

7F2C: BD 7E 77 JSR $7E77 ; --\ SleepPerSuperJackpotsAdjustment()

7F2F: BD 87 BE JSR $87BE ; | ExtinguishLampGroupParamBytes()

7F32: 18 18 ; | Lamp grp 18 = 5-bank hunter ship, 18 = solid lamps

7F34: B6 05 F9 LDA $05F9 ; | A gets current lamp

7F37: A6 86 LDA A,X ; | A gets 'next' lamp from X table

7F39: BD 7E 34 JSR $7E34 ; | Push updated lamp idx to $05F9 and illuminate lamp

7F3C: 20 EE BRA $7F2C ; --/

 ;

---;---

 ;

 ; 1352413524 'next' table

 ;-------------------------

7F3E: 02 ; 00 --> 02 (for 1 to 3 transition)

7F3F: 03 ; 01 --> 03 (for 2 to 4 transition)

7F40: 04 ; 02 --> 04 (for 3 to 5 transition)

7F41: 00 ; 03 --> 00 (for 4 to 1 transition)

7F42: 01 ; 04 --> 01 (for 5 to 2 transition)

 ;

---;---

 ;

 ; 4253142531 'next' table

 ;-------------------------

7F43: 03 ; 00 --> 03 (for 1 to 4 transition)

7F44: 04 ; 01 --> 04 (for 2 to 5 transition)

7F45: 00 ; 02 --> 00 (for 3 to 1 transition)

7F46: 01 ; 03 --> 01 (for 4 to 2 transition)

7F47: 02 ; 04 --> 02 (for 5 to 3 transition)

 ;

---;---

---;---

Multiball Auto-Fire Problem Fix L8.4

A bug was discovered in L-8 software regarding the auto-fire ball-saver that takes place during the first
multiball that the player achieves during a game. This bug is being investigated during L-8.4 and being
addressed as described below.

During the player’s first multiball, there is a 7 second autofire timer that is started as part of the
multiball startup. Any balls drained during this 7 second period will be returned to the playfield. In
most cases, when this happens, there is an accompanying animation as the ball is returned to the
playfield.

The problem behavior is when the multiball starts and then:

 Lock one ball into the ball-popper (skull)
 Lock one ball into a lock shot (database or left loop)

Once those 2 balls are locked, the player is given a countdown for locking the remaining ball. The
problem behavior is when this remaining ball is drained, and when such ball drain occurs during the 7-
second auto-fire timer.

The expected behavior is that the game plays the “Autofire” animation and returns the ball back onto
the playfield, allowing the player to continue their efforts at locking this remaining ball. This is the
actual behavior if the ball is drained early in the 7-second auto-fire timer (which means the other 2 balls
needed to be locked quite soon as multiball started). The problem is when the ball is drained near the
end of the 7-second auto-fire timer. When the ball is drained near the end of the 7-second auto-fire
timer, what happens is:

 The game behaves as if the ball had drained, and advances the ball in the popper to the gun for
jackpot attempt, and

 The game quietly returns the drained ball back onto the playfield without the “Autofire”
animation.

The problematic behavior, as described above, forces the player to handle both the cannon-shot for
jackpot along with the returned ball on the playfield.

Multiball Auto-Fire Code Analysis

In order to find the problematic code, the L-8 code was examined for how the auto-fire timer behaves
with regard to multiball ball saver. The problem code was identified and is described below in detail.

It does appear a likely coding error is occurring where the game is mistakenly treating the drained ball as
if the ball-saver is not running (which causes the cannon to be loaded), while a auto-fire timer secondary
mechanism (alternative ball saver code) engages which causes the ball to be returned to the playfield.

Shown below is the basic ball-saver timer logic. This logic includes logic that determines that a ball
needs to be returned to the playfield. Such ball-return in this logic is a secondary mechanism to return
the ball when other/normal ball save return code didn’t do its duty and return the ball to the playfield.

Function ID 0083

Ball-save timer start

Launch function ID 00AF

Wait for Ball Trough

activity to be idle

Balls in

trough?

Kick a ball onto

playfield

Function ID

00AF running?

Function ID 00AF

Ball-save timer

Sleep 1 second

Seconds

remaining?

Sleep 2.125 seconds

done
done

yes

no

no

yes

yes

no

Wait for Ball Trough

activity to be idle

Kick a ball onto

playfield

During this step is when the ball is normally detected and

returned to the playfield along with the “Autofire” animation.

This happens as part of ball-trough switch handling code.

This is the secondary point in which a ball can be returned to the playfield

in the event the normal method fails. This is a redundant code mechanism

to ensure ball is returned to playfield when timer is running.

As shown in the logic flowcharts, above, there are 2 separate functions that are running for auto-fire
timer:

 Function ID 0083 is a auto-fire timer maintenance function
 Function ID 00AF is simply running the timer countdown

Attentive readers might already be able to spot the possible timing condition that could occur with this
logic. The 00AF function could potential reach its end while the ID 0083 function is busy waiting for ball
trough activity to complete. Once such ball trough activity is complete (and ID 00AF had finished) the ID
0083 function would then check balls in trough and kick one onto the playfield without care or concern
that the timer function 00AF had already completed. After the 0083 function kicks the ball onto the
playfield it then checks for ID 00AF running where it finally determines the timer had expired and, itself,
also completes. This means there is a potential for a window of time where the 00AF function is not
running yet 0083 function will then kick a ball onto the playfield. This behavior, in fact, happens in the L-
8 problem where a ball may be returned onto the playfield while the cannon is being loaded.

The partially annotated code for the timer maintenance loop and timer countdown loop is shown below,
for reference. This code starts at $6E94,31, ROM offset 0x46E94. This code starts at the function ID
0083 entry point for first-multiball auto-fire timer. This is called with the timer countdown value in the
B register. In this case value 7 is in the B register for a seven second ball save timer.

---;---

 ;

6E94: 4F CLRA ;

6E95: 97 BE STA $BE ; Save 0x00 ball count into $BE

 ;---

 ;---

 ;

6E97: BD 88 D5 JSR $88D5 ; IncreaseBookkeepingCounterAddrXBy1()

6E9A: 00 0D ;

6E9C: BD 71 94 JSR $7194 ;

6E9F: BD 89 48 JSR $8948 ;

6EA2: 6E F7 31 ;

6EA5: D1 C3 CMPB $C3 ;

6EA7: 25 02 BCS $6EAB ;

6EA9: D7 C3 STB $C3 ;

 ;

6EAB: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

6EAE: 00 AF ; 00AF == Ball-saver countdown timer loop

6EB0: 6E E5 31 ; Countdown Timer Loop

 ;

6EB3: BD F7 66 JSR $F766 ; -\ BallTroughAuditUntilIdle() Trough ball count in A

6EB6: 7E 6E B9 JMP $6EB9 ; | <nop>

6EB9: 91 BE CMPA $BE ; | Compare ball trough count w/desired count in $BE

6EBB: 22 0D BHI $6ECA ; | Branch if ball trough count is > desired count

6EBD: BD 83 46 JSR $8346 ; | Sleep()

6EC0: 04 ; | 0.0625 seconds

 ; |

6EC1: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

6EC4: 00 AF ; | 00AF == Ball-saver countdown timer loop

6EC6: 25 1A BCS $6EE2 ; | Countdown timer loop has ran to completion?

6EC8: 20 E9 BRA $6EB3 ; -/

 ;

 ; Found a ball in the trough that needs kicked out

 ;--

6ECA: BD 45 0A JSR $450A ;

6ECD: BD 8B C3 JSR $8BC3 ; ScheduleFunctionCallback()

6ED0: 00 82 ; 0082 == PutATroughBallOntoPlayfield()

6ED2: 6F 0D 31 ; PutATroughBallOntoPlayfield()

 ;

6ED5: BD 83 46 JSR $8346 ; -\ Sleep()

6ED8: 03 ; |

6ED9: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-bit clear = ID found

6EDC: 00 82 ; | 0082 == PutATroughBallOntoPlayfield()

6EDE: 24 F5 BCC $6ED5 ; -/

 ;

6EE0: 20 DF BRA $6EC1 ; ^_ goto $6EC1 _^ keep checking for more balls

 ;

6EE2: 7E 99 A2 JMP $99A2 ;

 ;

---;---

 ;

 ; ID 00AF The actual countdown timer loop

 ;

6EE5: BD 9B DA JSR $9BDA ;

6EE8: BD 83 46 JSR $8346 ;--\ Sleep()

6EEB: 40 ; | 0x40 == 1 second

6EEC: 0A C3 DEC $C3 ; |

6EEE: 26 F8 BNE $6EE8 ;--/

6EF0: BD 83 46 JSR $8346 ; Sleep()

6EF3: 88 ; 2+ seconds (grace period)

6EF4: 7E 99 A2 JMP $99A2 ;

 ;

---;---

There is a complex set of code that takes place during the ball drain, which leads up to the point in
which the “Autofire” animation is to be shown and ball returned to playfield while retaining the current
ball lock countdown. Shown below is a high level breakdown of some of the involved functions that lead
up to the important parts of code related to this bug fix. This information is presented here as a starting
point for others who may want to eventually develop a more deeper understanding of how this part of
the game code operates.

The first part of the process is the ball hitting the outhole switch which causes the outhole solenoid to
kick the ball into the ball trough. Focus, below, is on what happens at this point.

The L-8 Playfield Switch Table has been depicted in the L8.3 document. The table starts at $4931,3D,
ROM offset 0x74931. In the table, data is provided for each of the playfield switches. For this analysis,
the focus is on the 3 ball trough switches:

49C3: 10 0C ; SwitchTableEntry0D, 15, Trough Left

49C5: 70 CC 3B ; SwitchMatrixHdlr_TroughLeftCenterRight()

49C8: 3C 00 00 ;

49CB: F8 00 04 ;

 ;

49CE: 10 0C ; SwitchTableEntry0E, 16, Trough Center

49D0: 70 CC 3B ;

49D3: 3C 00 00 ;

49D6: F8 00 04 ;

 ;

49D9: 10 0C ; SwitchTableEntry0F, 17, Trough Right

49DB: 70 CC 3B ;

49DE: 3C 00 00 ;

49E1: F8 00 04 ;

For all three trough switches the same callback function $70CC,3B is invoked. The common handler is
designed with the idea that the switches will open and close rapidly as the ball goes through from left to
the right in the trough. A lot of the logic is excluded from the following summary. This summary goes
through function calls that lead up to the auto-fire ball-save timer problem.

Shown below is the series of function calls involved in the Multiball Auto-Fire ball-saver bug.

$70CC,3B SwitchMatrixHdlr_TroughLeftCenterRight()

$6FAB,3B EndOfSwitchProcessing()

$FDFC, SystemModeCheckParameterByte() A=0x01 ParameterByte=0x03

$70B4,3B SystemModeCheckB() A=0x01 B=0x03

Lookup table $7F13,30 entry [A=0x01] result: $461B,31

$461B,31, GameModeTableEntry01[] callback, A=0x03

$FDFC, SystemModeCheckParameterByte() A=0x01 ParameterByte=0x02

$70B4,3B SystemModeCheckB() A=0x01 B=0x02

Lookup table $7F13,30 entry [A=0x01] result: $461B,31

$461B,31, GameModeTableEntry01[] callback, A=0x02

$4654,31, GameModeUpdate_BallStoppageAccounting()

$4628,31, GameModeUpdate_TroughAudit

Schedules “Autofire” animation, if necessary

$B213, BallAuditIntermediateFunction1()

$B218, BallAuditIntermediateFunction2()

$8621, Call Function at Vector: $8028: $63AE,3B

$63AE,3B, BallAuditIntermediateFunction3()

$6E00, BallAuditIntermediateFunction4()

 Schedules $715E,3B, BallAuditHelper1()

$715E,3B, BallAuditHelper1()

 $7169,3B, BallAuditHelper2()

 $A84D to enqueue the trough solenoid pulse

Where the “normal” ball

auto-fire ball-saver ball

kickout occurs.

Where the problem logic

occurs, causing “normal”

ball-saver logic (below) to not

occur and the secondary ball-

saver, described previously,

to return ball to playfield.

Shown above is the high level code flow in how the ball trough switches relate to the autofire ball save
timer. Highlighted in green is the “normal” code flow where the ball drain is detected during auto-fire
timer resulting in “Autofire” animation and ball being returned to the playfield. Highlighted in red is the
problematic code where logic flaw results in the lack of the “normal” flow and, as such, the previously
depicted timer code will perform its duty of backup or secondary mechanism to ensure a ball in the
trough is returned to the playfield (when the “normal” path, depicted above, fails to do its duty).

For those interested in further details about the failure path, it is worth noting that when the problem
code occurs, the entire code flow, starting at the following point, does not occur:

In the problem scenario, the code during “$6FAB,3B EndOfSwitchProcessing()” fails to detect the

presence of a scheduled function with ID 0040 <ANDed with> 01F0, and as such, the subsequent call

chain starting at the point mentioned above will not take place. This check for ID 0040 <AND> 01F0

occurs at $6FC4,3B. A detailed analysis of why, precisely, the expected function is not running is left as

an exercise to the reader.

The problem code, as mentioned, is in this point in the flow:

This accounting function appears to be designed to check for whether or not there is an imminent ball-

return to the playfield (due to auto-fire timer running) whereby logic will take a specific path in such

case. The specific path taken will result in the subsequent logic to ultimately display the “Autofire”

animation and kick the ball back into game play, while allowing the game countdown to continue for the

player to lock the 3rd ball towards 3x jackpot.

Not a lot of analysis was done into the details of how, precisely, code ultimately ends up performing the

“normal” auto-fire ball save return. Focus here is on the logic used to determine whether or not the

ball-save timer is active. The summary flowchart of the problem code is depicted below. This is for the

function at $4654,31, ROM offset 0x44654.

This function was given the name GameModeUpdate_BallStoppageAccounting() as it appears to be all

about the handling of game state when a ball has been stopped during game play. This function can be

called when a ball is stopped at any of the lock shots, ball-popper or ball trough. During this function

the game code performs an accounting of various state data, ensuring game flow is as expected.

$FDFC, SystemModeCheckParameterByte() A=0x01 ParameterByte=0x02

$4654,31, GameModeUpdate_BallStoppageAccounting()

Readers can correlate the logic, above, with the previously depicted logic for the auto-fire ball save

timer logic. The function ID 00AF is launched as a distinct function that counts down the number of

remaining seconds while the function ID 0083 is responsible for monitoring the timer, waiting for idle

ball trough switch states, and for kicking the ball onto the playfield, as described, as a secondary ball

save logic to occur if the ball trough switch handling itself did not perform such ball save.

For readers who are following along, the problem/fix is yet to be revealed and will be described in the

next section. The problem and fix, at this point, may be evident to attentive readers.

Shown below is the corresponding code for the function at $4654,31, ROM offset 0x44654. This code is

being shown for reference and future investigations. A lot of work is done in this function and, as such,

has not been fully analyzed or annotated. Some of the annotations are from various other L8.3 or L8.4

investigations. The annotations were done during various code examinations and may not be entirely

correct in what they are describing. Further study is required for full/complete analysis and annotation

of this function. The portion of this function applicable to the multiball auto-fire problem is highlighted

with red. This section of the code will be the focus of the next section of this document where the

corrected code is described.

Function $4654,31

GameModeUpdate_BallStoppageAccounting()

Initial setup of game state data

used throughout the function.

Function ID

00AF running?

Function ID

0082 running?

Proceed with remaining ball-

stoppage accounting activities.

done

Set state data for the imminent

ball-return to playfield.

Set state data for the in-progress

ball-return to playfield.

yes

yes

no

no

Function ID 0082 is

PutATroughBallOntoPlayfield()

which is responsible for

energizing shooter lane solenoid.

Function ID 00AF is the autofire

timer countdown timer function

likely, cleverly, given the ID 00AF

for “Auto Fire”.

---;---

 ;

 ; GameModeUpdate_BallStoppageAccounting()

 ;

4654: 34 76 PSHS U,Y,X,B,A ;

4656: BD F7 59 JSR $F759 ;

4659: 7E 46 5C JMP $465C ; <nop>

465C: 10 26 01 29 LBNE $4789 ;

4660: 96 BF LDA $BF ;

4662: 97 D1 STA $D1 ;

4664: 96 C0 LDA $C0 ;

4666: 97 D0 STA $D0 ;

4668: BD 88 F5 JSR $88F5 ;

466B: 70 57 3B ; BallTroughAudit() C-set if trough hdlr in progress.

 ; Function returns trough ball count in A

466E: 97 CE STA $CE ;

4670: 0F CF CLR $CF ;

 ;

4672: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4675: 00 AF ; 00AF == Ball-saver countdown timer loop

4677: 25 06 BCS $467F ; if 00AF is NOT running, go check for 0082

 ;

4679: 90 BE SUBA $BE ;

467B: 97 CF STA $CF ;

467D: 20 0F BRA $468E ;

 ;

467F: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4682: 00 82 ; 0082 == PutATroughBallOntoPlayfield()

4684: 25 08 BCS $468E ; If PutATroughBallOntoPlayfield() is not running, skip

 ;

4686: 96 C2 LDA $C2 ;

4688: 91 CE CMPA $CE ;

468A: 27 02 BEQ $468E ;

468C: 0C CF INC $CF ;

 ;

468E: BD 88 F5 JSR $88F5 ;

4691: 70 31 3B ;

4694: 9B CF ADDA $CF ;

4696: 97 C0 STA $C0 ;

4698: BD 88 F5 JSR $88F5 ;

469B: 75 DF 3B ;

469E: 90 CE SUBA $CE ;

46A0: 9B CF ADDA $CF ;

 ; Update $BF, # of balls on playfield, tracked during MB

46A2: 97 BF STA $BF ;

46A4: 96 CE LDA $CE ;

46A6: 90 CF SUBA $CF ;

46A8: 2A 01 BPL $46AB ;

46AA: 4F CLRA ;

46AB: 97 C1 STA $C1 ;

46AD: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

46B0: 00 86 ; Search for 0x0086, C-clr means multiball is running

46B2: 24 18 BCC $46CC ;

46B4: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

46B7: 00 B8 ; This lookup is one that happens at end-of-ball

46B9: 24 11 BCC $46CC ;

46BB: BD 47 92 JSR $4792 ;

46BE: BD 47 A1 JSR $47A1 ;

46C1: 86 04 LDA #$04 ;

46C3: BD 88 F5 JSR $88F5 ;

46C6: 6E 53 3B ;

46C9: 16 00 BD LBRA $4789 ;

 ;

 ; Multiball is running

 ;

46CC: 0D C0 TST $C0 ; Balls in play(?)

46CE: 10 27 00 81 LBEQ $4753 ; If zero then go to end-of-ball(?)

46D2: 96 BF LDA $BF ; Get number of balls $BF

46D4: 81 03 CMPA #$03 ;

46D6: 26 0B BNE $46E3 ;

46D8: BD 84 AD JSR $84AD ; GetMemoryFlag()

46DB: 42 ;

46DC: 24 2F BCC $470D ;

46DE: BD 48 88 JSR $4888 ;

46E1: 20 2A BRA $470D ;

 ;

 ; Get here after 2 balls drained during MB, 1 remaining

 ;

46E3: 96 C0 LDA $C0 ; Balls in play(?) 01 when 1 remaining during MB

46E5: 81 02 CMPA #$02 ;

46E7: 27 EF BEQ $46D8 ;

 ;

 ; Get here after 2 balls drained during MB, 1 remaining

46E9: 86 04 LDA #$04 ;

46EB: BD 88 F5 JSR $88F5 ;

46EE: 70 41 3B ;

46F1: 24 E5 BCC $46D8 ; When 1 ball remaining during MB, C is set, no branch

46F3: 86 02 LDA #$02 ;

46F5: BD 88 F5 JSR $88F5 ;

46F8: 70 41 3B ;

46FB: 24 03 BCC $4700 ; When 1 ball remaining during MB, C is set, no branch

46FD: BD 47 92 JSR $4792 ;

4700: 86 03 LDA #$03 ;

4702: BD 88 F5 JSR $88F5 ;

4705: 70 41 3B ;

4708: 24 03 BCC $470D ;

470A: BD 47 A1 JSR $47A1 ;

470D: 96 C0 LDA $C0 ;

470F: 81 01 CMPA #$01 ;

4711: 26 31 BNE $4744 ;

4713: D6 BF LDB $BF ;

4715: D1 D1 CMPB $D1 ;

4717: 26 04 BNE $471D ;

4719: 91 D0 CMPA $D0 ;

471B: 27 6C BEQ $4789 ;

471D: BD 84 AD JSR $84AD ; GetMemoryFlag()

4720: 42 ;

4721: 10 24 00 64 LBCC $4789 ;

4725: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4728: 00 AA ; ID 00AA Ball-In-Popper

472A: 24 18 BCC $4744 ;

472C: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

472F: 00 AB ; ID 00AB Ball-in-gun function is running

4731: 24 11 BCC $4744 ;

4733: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4736: 00 84 ; ID 0084 Ball-gun-to-Target-Period function is running

4738: 24 0A BCC $4744 ;

473A: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

473D: 00 A9 ; ID 00A9 == "LOAD THE GUN" period where there is only

 ; 1 ball remaining at end of multiball

473F: 48 AF 31 ;

4742: 20 45 BRA $4789 ;

4744: BD 86 9E JSR $869E ; CancelScheduledCallbackFunction()

4747: 00 A9 ; ID 00A9 == "LOAD THE GUN" period where there is only

 ; 1 ball remaining at end of multiball

4749: BD 86 9E JSR $869E ; CancelScheduledCallbackFunction()

474C: 00 B0 ;

474E: BD 56 9C JSR $569C ;

4751: 20 36 BRA $4789 ;

4753: 86 04 LDA #$04 ;

4755: BD 88 F5 JSR $88F5 ;

4758: 70 41 3B ;

475B: 4D TSTA ;

475C: 26 08 BNE $4766 ;

475E: BD 47 BF JSR $47BF ;

4761: BD 47 CE JSR $47CE ;

4764: 20 23 BRA $4789 ;

4766: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4769: 00 EC ;

476B: 24 1C BCC $4789 ;

 ; Following is called in MB when all 3 balls get locked

 ; If MB Init is running then skip show of jackpot values

 ; If MB init is running then jackpot values are shown

 ;

476D: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4770: 00 B8 ; ID 00B8 Multiball Init function

4772: 24 15 BCC $4789 ; If MB init is running then skip all of the following

4774: 86 04 LDA #$04 ; SolenoidTableEntry04, 04=Trough, 40

4776: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4779: 6E 6B 3B ;

477C: BD 86 9E JSR $869E ; CancelScheduledCallbackFunction()

477F: 00 A9 ; ID 00A9 == "LOAD THE GUN" period where there is only

 ; 1 ball remaining at end of multiball

4781: BD 86 9E JSR $869E ; CancelScheduledCallbackFunction()

4784: 00 B0 ;

4786: BD 56 9C JSR $569C ;

4789: 35 F6 PULS A,B,X,Y,U,PC ;

 ;

---;---

Multiball Auto-Fire Code Correction

As shown above, the GameModeUpdate_BallStoppageAccounting() function takes particular effort to see if

the auto-fire timer is running and, if so, set state information accordingly. This is done by way of

checking if the function ID 00AF is currently running. As described in detail, above, it is clearly possible

for the function ID 00AF to no longer be running while the auto-fire maintenance function ID 0083 is still

in operation.

In fact, the problem behavior is specifically due to the fact that the function ID 00AF is no longer running

while the function ID 0083 is still in operation and may still return a ball onto the playfield when it gets

the opportunity to do so. Specifically, the ID 0083 function is busy waiting for the ball trough switches

to settle after which the alternate/backup mechanism will detect the ball in the trough which needs to

be ejected (and in doing so, the problem occurs where ball is served while the cannon is loaded and

jackpot attempt is underway). It is worth noting that the ID 0083 function is busy waiting for ball trough

switch activity to complete whereby the ball trough is currently active as part of the currently running

code, GameModeUpdate_BallStoppageAccounting().

The obvious solution, therefore, is that the GameModeUpdate_BallStoppageAccounting() should not be

checking if ID 00AF is running, it should instead check if ID 0083 function is running. Checking for ID

0083 will correctly detect if the ball-saver logic is still running and whether a ball-return is imminent.

This change is depicted below.

---;---

 ;

 ; GameModeUpdate_BallStoppageAccounting()

 ;

4654: 34 76 PSHS U,Y,X,B,A ;

4656: BD F7 59 JSR $F759 ;

4659: 7E 46 5C JMP $465C ; <nop>

465C: 10 26 01 29 LBNE $4789 ;

4660: 96 BF LDA $BF ;

4662: 97 D1 STA $D1 ;

4664: 96 C0 LDA $C0 ;

4666: 97 D0 STA $D0 ;

4668: BD 88 F5 JSR $88F5 ;

466B: 70 57 3B ; BallTroughAudit() C-set if trough hdlr in progress.

 ; Function returns trough ball count in A

466E: 97 CE STA $CE ;

4670: 0F CF CLR $CF ;

 ;

4672: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4675: 00 AF ; 00AF == Ball-saver countdown timer loop

4677: 25 06 BCS $467F ; if 00AF is NOT running, go check for 0082

4672: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

4675: 00 83 ; 0083 == Ball-saver maintenance function

4677: 25 06 BCS $467F ; if 0083 is NOT running, go check for 0082

 ;

4679: 90 BE SUBA $BE ;

467B: 97 CF STA $CF ;

467D: 20 0F BRA $468E ;

...

By checking for ID 0083, the GameModeUpdate_BallStoppageAccounting() function will behave same as it

did, previously, when the ID 00AF function was running. This will result in the game showing the

“Autofire” animation, ball returned to playfield, and continuance of the timer countdown for player to

lock their 3rd ball for a 3x jackpot attempt.

Since the original L-8 code would have returned the ball to the playfield anyway (using the

alternate/redundant mechanism in the ID 0083 function itself), this code change results in no negative

or undue benefit to the user other than the correct and expected behavior where the ball is returned to

the playfield in the same way, regardless if the auto-fire timer had just begun or if it was near its end

(which is when the problem would otherwise occur).

Tournament Mode Enhancements, L8.4
The L8.4 update is made to be Tournament Mode friendly. With the fix for the “Lost Super Jackpot” and

the enhanced Super Jackpot specifically designed to be identical for all players in the same game, the

L8.4 software also includes enhancements to existing game features to make the game play more equal

for all players when adjustment A.1 26 “Tournament Play” is enabled in the game adjustments.

Throughout this text the terms “Tournament Play” and “Tournament Mode” are used interchangeably.

The extra enhancements are described in the following sections, below.

Tournament Mode Enhancement: Database Award, L8.4
In L8.4 when adjustment A.2 26 “Tournament Play” is enabled, the database award will behave in a way

that all players in a multi player game get the same database awards. The game will award seemingly

random database awards, however the first database award for all players will be the same award. The

second database award will also be seemingly random, but all players get the same award for their

second database award, and so on.

When A.2 26 “Tournament Play” is disabled, the original L-8 Database Award logic will be used which

involves an algorithm to give the player an award to help them if their game is doing poorly.

Database Award Logic L-8

The database award logic occurs in bank $31. Shown below is a partially annotated function starting at

$527E,31, ROM offset 0x4527E. This function is shown here for others who are interested to further

study and figure out what, precisely, is being done. Wherever the logic calls $FB29 function is where a

per-player game statistics is cited as part of the award determination. Others are encouraged to further

analyze the code and figure out some of the missing details.

---;---

 ;

 ; DatabaseAwardInitiate()

 ;

527E: BD 71 A3 JSR $71A3 ; Increment05BDbyPlayerIndexNumber()

5281: BD 88 D5 JSR $88D5 ; IncreaseBookkeepingCounterAddrXBy1()

5284: 00 05 ; database awards statistic(?)

 ;---

 ; Exclusion Bits

 ;------------------------------------

 ; $064F & 0x01 --> exclude "Multiball"

 ; $064F & 0x02 --> exclude "Lite Extra Ball"

 ; $064F & 0x04 --> exclude "500,000"

 ; $064F & 0x08 --> exclude "Video mode"

 ; $064F & 0x10 --> exclude "Lite kickback"

 ; $064F & 0x20 --> exclude "Special"

 ; $064F & 0x40 --> exclude "Lite hurry up"

 ; $064F & 0x80 --> exclude "3,000,000"

 ; $0650 & 0x01 --> exclude "Chase loop"

 ; $0650 & 0x02 --> exclude "Extra ball"

 ; $0650 & 0x04 --> exclude "100,000"

 ; $0650 & 0x08 --> exclude "Autofire"

 ; $0650 & 0x10 --> exclude "Security pass"

 ; $0650 & 0x20 --> exclude "Lite Special"

 ; $0650 & 0x40 --> exclude "Hurry up"

 ; $0650 & 0x80 --> exclude "1,000,000"

 ;---

5286: 7F 06 4F CLR $064F ; $064F = 0x00 Exclude nothing

5289: 7F 06 50 CLR $0650 ; $0650 = 0x00 Exclude nothing

528C: 7F 06 51 CLR $0651 ; $0651 = 0x00 Random number divisor

 ;

528F: 86 63 LDA #$63 ; A = 0x63 (99)

 ;

5291: BD A7 5B JSR $A75B ; Get16BitPseudoRandomValueintoA() random number 0..98

5294: 4C INCA ; A++ random number now 1..99

 ;

5295: 7D 05 D9 TST $05D9 ; Number of specials awarded this game (for all players)

5298: 26 19 BNE $52B3 ;

529A: BD 84 49 JSR $8449 ; GetLampLitState() C-clear when lamp is on

529D: 0A ; 0x0A "Special" lamp

529E: 24 13 BCC $52B3 ; If "Special" lamp is on, then go to $52B3

52A0: C6 01 LDB #$01 ;

52A2: BD F8 2C JSR $F82C ;

52A5: 7E 52 A8 JMP $52A8 ; <nop>

52A8: 34 04 PSHS B ;

52AA: A1 E0 CMPA ,S+ ;

52AC: 22 05 BHI $52B3 ;

52AE: C6 0E LDB #$0E ; Set winning selection: 0x0E "SPECIAL"

52B0: 7E 55 65 JMP $5565 ; Go award winning selection B

 ;

52B3: C6 20 LDB #$20 ;

52B5: FA 06 4F ORB $064F ;

52B8: F7 06 4F STB $064F ; $064F |= 0x20, exclude "Special"

 ;

52BB: 7D 05 D9 TST $05D9 ; if ($05D9 == 0x00)

52BE: 26 16 BNE $52D6 ; {

52C0: BD 84 49 JSR $8449 ; GetLampLitState() C-clear when lamp is on

52C3: 0A ; 0x0A "Special" lamp

52C4: 24 10 BCC $52D6 ; if ("Special" lamp == OFF)

 ; {

52C6: C6 06 LDB #$06 ;

52C8: F1 06 12 CMPB $0612 ;

52CB: 27 09 BEQ $52D6 ;

52CD: 81 0C CMPA #$0C ;

52CF: 22 05 BHI $52D6 ;

52D1: 7C 06 51 INC $0651 ;

52D4: 20 08 BRA $52DE ; goto $52DE

 ; }

 ; }

52D6: C6 20 LDB #$20 ;

52D8: FA 06 50 ORB $0650 ;

52DB: F7 06 50 STB $0650 ; $0650 |= 0x20, exclude "Lite Special"

 ;

52DE: C6 02 LDB #$02 ;

52E0: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x02, "Extra Ball"

52E3: 27 1B BEQ $5300 ;

52E5: BD FA 1E JSR $FA1E ;

52E8: 7E 52 EB JMP $52EB ;

52EB: 25 13 BCS $5300 ;

 ;

52ED: C6 00 LDB #$00 ;

52EF: BD F8 2C JSR $F82C ;

52F2: 7E 52 F5 JMP $52F5 ;

52F5: 34 04 PSHS B ;

52F7: A1 E0 CMPA ,S+ ;

52F9: 22 05 BHI $5300 ;

 ;

52FB: C6 02 LDB #$02 ; Set winning selection: 0x02 "EXTRA BALL"

52FD: 7E 55 65 JMP $5565 ; Go award winning selection B

 ;

5300: C6 02 LDB #$02 ;

5302: FA 06 50 ORB $0650 ;

5305: F7 06 50 STB $0650 ; $0650 |= 0x02, exclude "Extra ball"

 ;

5308: C6 0A LDB #$0A ;

530A: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x0A, "Lite Extra Ball"

530D: 27 11 BEQ $5320 ;

530F: BD FA 1E JSR $FA1E ;

5312: 7E 53 15 JMP $5315 ;

5315: 25 09 BCS $5320 ;

5317: 81 2C CMPA #$2C ;

5319: 22 05 BHI $5320 ;

531B: 7C 06 51 INC $0651 ; Increment random number divisor

531E: 20 08 BRA $5328 ;

 ;

5320: C6 02 LDB #$02 ;

5322: FA 06 4F ORB $064F ;

5325: F7 06 4F STB $064F ; $064F |= 0x02, exclude "Lite Extra Ball"

 ;

5328: C6 0C LDB #$0C ;

532A: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x0C, "Video Mode"

532D: 27 2E BEQ $535D ;

532F: 8E 05 B5 LDX #$05B5 ;

5332: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

5335: 7E 53 38 JMP $5338 ;

5338: 6D 84 TST ,X ;

533A: 26 21 BNE $535D ;

 ;

533C: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

533F: 00 86 ; Search for 0x0086, Multiball Running

5341: 24 1A BCC $535D ;

5343: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

5346: 00 A4 ;

5348: 24 13 BCC $535D ;

534A: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

534D: 00 89 ;

534F: 24 0C BCC $535D ;

5351: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

5354: 00 A9 ; ID 00A9 == "LOAD THE GUN" period at end of multiball

5356: 24 05 BCC $535D ;

5358: 7C 06 51 INC $0651 ; Increment random number divisor

535B: 20 08 BRA $5365 ;

 ;

535D: C6 08 LDB #$08 ;

535F: FA 06 4F ORB $064F ;

5362: F7 06 4F STB $064F ; $064F |= 0x08, exclude "Video mode"

 ;

5365: C6 04 LDB #$04 ;

5367: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x04, "Autofire"

536A: 27 35 BEQ $53A1 ;

536C: 8E 05 B1 LDX #$05B1 ; 0x05B1 == Number of Autofire awards given, per-player

536F: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

5372: 7E 53 75 JMP $5375 ; <nop>

5375: 6D 84 TST ,X ;

5377: 26 28 BNE $53A1 ;

 ;

5379: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

537C: 00 86 ; Search for 0x0086, Multiball running

537E: 24 21 BCC $53A1 ;

5380: BD 88 F5 JSR $88F5 ;

5383: 4C 7B 38 ; GetCurrentPlayerIndexIntoAPlayerDataTableIntox()

5386: AE 88 22 LDX $22,X ; Getting player data table byte [22]

5389: 9F CE STX $CE ;

538B: 8E 00 CE LDX #$00CE ;

538E: 6D 84 TST ,X ;

5390: 26 0F BNE $53A1 ;

5392: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

5395: C6 0A LDB #$0A ; B=0x0A

5397: 3D MUL ; D=A*B (Current Ball multiplied by 0x0A)\

5398: E1 01 CMPB $0001,X ;

539A: 23 05 BLS $53A1 ;

539C: 7C 06 51 INC $0651 ; Increment random number divisor

539F: 20 08 BRA $53A9 ;

 ;

53A1: C6 08 LDB #$08 ;

53A3: FA 06 50 ORB $0650 ;

53A6: F7 06 50 STB $0650 ; $0650 |= 0x08, exclude "Autofire"

 ;

53A9: C6 07 LDB #$07 ;

53AB: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x07, "Hurry up"

53AE: 27 1F BEQ $53CF ;

53B0: 8E 05 A9 LDX #$05A9 ; X = 0x05A9

53B3: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

53B6: 7E 53 B9 JMP $53B9 ; <nop>

53B9: 6D 84 TST ,X ; Text per-player statistic from 0x05A9

53BB: 26 12 BNE $53CF ;

53BD: BD 84 49 JSR $8449 ; GetLampLitState() C-clear when lamp is on

53C0: 0B ; 0x0B = "Left Return Lane" (lite hurry-up)

53C1: 24 0C BCC $53CF ;

 ;

53C3: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

53C6: 00 86 ; Search for 0x0086, Multiball running

53C8: 24 05 BCC $53CF ;

53CA: 7C 06 51 INC $0651 ; Increment random number divisor

53CD: 20 08 BRA $53D7 ;

 ;

53CF: 86 40 LDA #$40 ;

53D1: BA 06 50 ORA $0650 ;

53D4: B7 06 50 STA $0650 ; $0650 |= 0x40, exclude "Hurry up"

 ;

53D7: C6 0F LDB #$0F ;

53D9: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x0F, "Lite hurry up"

53DC: 27 1F BEQ $53FD ;

53DE: 8E 05 A9 LDX #$05A9 ;

53E1: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

53E4: 7E 53 E7 JMP $53E7 ;

53E7: 6D 84 TST ,X ;

53E9: 26 12 BNE $53FD ;

53EB: BD 84 49 JSR $8449 ; GetLampLitState() C-clear when lamp is on

53EE: 0B ; 0x0B = "Left Return Lane" (lite hurry-up)

53EF: 24 0C BCC $53FD ;

 ;

53F1: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

53F4: 00 86 ; Search for 0x0086, Multiball running

53F6: 24 05 BCC $53FD ;

53F8: 7C 06 51 INC $0651 ; Increment random number divisor

53FB: 20 08 BRA $5405 ;

 ;

53FD: 86 40 LDA #$40 ;

53FF: BA 06 4F ORA $064F ;

5402: B7 06 4F STA $064F ; $064F |= 0x40, exclude "Lite hurry up"

 ;

5405: C6 10 LDB #$10 ;

5407: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x10, "3,000,000"

540A: 27 16 BEQ $5422 ;

540C: 8E 05 C1 LDX #$05C1 ; X = 0x05C1

540F: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

5412: 7E 54 15 JMP $5415 ;

5415: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

5418: 48 ASLA ; Multiply current ball value in A by 2

5419: A1 84 CMPA ,X ;

541B: 25 05 BCS $5422 ;

541D: 7C 06 51 INC $0651 ; Increment random number divisor

5420: 20 08 BRA $542A ;

 ;

5422: 86 80 LDA #$80 ;

5424: BA 06 4F ORA $064F ;

5427: B7 06 4F STA $064F ; $064F |= 0x80, exclude "3,000,000"

 ;

542A: C6 0D LDB #$0D ;

542C: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x0D, "Like Kickback"

542F: 27 27 BEQ $5458 ;

5431: BD 84 49 JSR $8449 ; GetLampLitState() C-clear when lamp is on

5434: 09 ; 0x09 = Kickback"

5435: 24 21 BCC $5458 ;

5437: BD 88 F5 JSR $88F5 ;

543A: 4C 7B 38 ; GetCurrentPlayerIndexIntoAPlayerDataTableIntox()

543D: AE 88 22 LDX $22,X ;

5440: 9F CE STX $CE ;

5442: 8E 00 CE LDX #$00CE ;

5445: 6D 84 TST ,X ;

5447: 26 0F BNE $5458 ;

5449: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

544C: C6 0A LDB #$0A ;

544E: 3D MUL ;

544F: E1 01 CMPB $0001,X ;

5451: 23 05 BLS $5458 ;

5453: 7C 06 51 INC $0651 ; Increment random number divisor

5456: 20 08 BRA $5460 ;

 ;

5458: 86 10 LDA #$10 ;

545A: BA 06 4F ORA $064F ;

545D: B7 06 4F STA $064F ; $064F |= 0x10, exclude "Lite kickback"

 ;

5460: C6 0B LDB #$0B ;

5462: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x0B, "500,000"

5465: 27 05 BEQ $546C ;

5467: 7C 06 51 INC $0651 ; Increment random number divisor

546A: 20 08 BRA $5474 ;

 ;

546C: 86 04 LDA #$04 ;

546E: BA 06 4F ORA $064F ;

5471: B7 06 4F STA $064F ; $064F |= 0x04, exclude "500,000"

 ;

5474: C6 03 LDB #$03 ;

5476: F1 06 12 CMPB $0612 ;

5479: 27 05 BEQ $5480 ;

547B: 7C 06 51 INC $0651 ; Increment random number divisor

547E: 20 08 BRA $5488 ;

 ;

5480: 86 04 LDA #$04 ;

5482: BA 06 50 ORA $0650 ;

5485: B7 06 50 STA $0650 ; $0650 |= 0x04

 ;

5488: C6 01 LDB #$01 ;

548A: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x01, "Chase loop"

548D: 27 0B BEQ $549A ;

548F: BD 84 49 JSR $8449 ; GetLampLitState() C-clear when lamp is on

5492: 24 ; 0x24 = "3,000,000"

5493: 24 05 BCC $549A ;

5495: 7C 06 51 INC $0651 ; Increment random number divisor

5498: 20 08 BRA $54A2 ;

 ;

549A: 86 01 LDA #$01 ;

549C: BA 06 50 ORA $0650 ;

549F: B7 06 50 STA $0650 ; $0650 |= 0x01, exclude "Chase loop"

 ;

54A2: C6 08 LDB #$08 ;

54A4: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x08, "1,000,000"

54A7: 27 17 BEQ $54C0 ;

54A9: 8E 05 C1 LDX #$05C1 ; X = 0x05C1

54AC: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

54AF: 7E 54 B2 JMP $54B2 ;

54B2: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

54B5: 48 ASLA ;

54B6: 48 ASLA ;

54B7: A1 84 CMPA ,X ;

54B9: 25 05 BCS $54C0 ;

54BB: 7C 06 51 INC $0651 ; Increment random number divisor

54BE: 20 08 BRA $54C8 ;

 ;

54C0: 86 80 LDA #$80 ;

54C2: BA 06 50 ORA $0650 ;

54C5: B7 06 50 STA $0650 ; $0650 |= 0x80, exclude "1,000,000"

 ;

54C8: C6 09 LDB #$09 ;

54CA: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x09, "Multiball"

54CD: 27 2E BEQ $54FD ;

54CF: 8E 05 C9 LDX #$05C9 ; X = 0x05C9

54D2: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

54D5: 7E 54 D8 JMP $54D8 ;

54D8: 6D 84 TST ,X ;

54DA: 26 21 BNE $54FD ;

54DC: BD 88 F5 JSR $88F5 ;

54DF: 4C 7B 38 ; GetCurrentPlayerIndexIntoAPlayerDataTableIntox()

54E2: AE 88 22 LDX $22,X ;

54E5: 9F CE STX $CE ;

54E7: 8E 00 CE LDX #$00CE ;

54EA: 6D 84 TST ,X ;

54EC: 26 0F BNE $54FD ;

54EE: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

54F1: C6 14 LDB #$14 ;

54F3: 3D MUL ;

54F4: E1 01 CMPB $0001,X ;

54F6: 23 05 BLS $54FD ;

54F8: 7C 06 51 INC $0651 ; Increment random number divisor

54FB: 20 08 BRA $5505 ;

 ;

54FD: 86 01 LDA #$01 ;

54FF: BA 06 4F ORA $064F ;

5502: B7 06 4F STA $064F ; $064F |= 0x01, exclude "Multiball"

 ;

5505: C6 05 LDB #$05 ;

5507: F1 06 12 CMPB $0612 ; Check if previous DB award was 0x05, "Security pass"

550A: 27 1F BEQ $552B ;

550C: 8E 05 95 LDX #$0595 ; X = 0x0595

550F: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

5512: 7E 55 15 JMP $5515 ;

5515: A6 84 LDA ,X ;

5517: 8E 05 99 LDX #$0599 ;

551A: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

551D: 7E 55 20 JMP $5520 ;

5520: AB 84 ADDA ,X ;

5522: 81 07 CMPA #$07 ;

5524: 22 05 BHI $552B ;

5526: 7C 06 51 INC $0651 ; Increment random number divisor

5529: 20 08 BRA $5533 ;

 ;

552B: 86 10 LDA #$10 ;

552D: BA 06 50 ORA $0650 ;

5530: B7 06 50 STA $0650 ; $0650 |= 0x10, exclude "Security pass"

 ;

5533: B6 06 51 LDA $0651 ; Get random number divisor, 0..14 at this point

 ;

5536: BD A7 5B JSR $A75B ; Get16BitPseudoRandomValueintoA()

5539: 4C INCA ; Increment random number

553A: 97 D1 STA $D1 ; $D1 = random number

553C: 86 01 LDA #$01 ; A = 0x01

553E: 97 D0 STA $D0 ; $D0 = 0x01, Bitmask used to test bits in $0650 & $064F

5540: 5F CLRB ; B = 0x00

 ;

 ;---

 ; Exclusion Bits

 ;------------------------------------

 ; $0650 & 0x01 --> exclude "Chase loop"

 ; $0650 & 0x02 --> exclude "Extra ball"

 ; $0650 & 0x04 --> exclude "100,000"

 ; $0650 & 0x08 --> exclude "Autofire"

 ; $0650 & 0x10 --> exclude "Security pass"

 ; $0650 & 0x20 --> exclude "Lite Special"

 ; $0650 & 0x40 --> exclude "Hurry up"

 ; $0650 & 0x80 --> exclude "1,000,000"

 ;---

5541: B6 06 50 LDA $0650 ; A = $0650 (byte that got set with various bits, above)

 ;

5544: 5C INCB ;--\ B++

5545: 95 D0 BITA $D0 ; | Test $0650 byte has the current $D0 bit set

5547: 26 04 BNE $554D ; |

5549: 0A D1 DEC $D1 ; | If $0650 bit $D0 is set set then $D1--

554B: 27 18 BEQ $5565 ; | If $D1 reached 0x00 go award winning selection B

 ; |

554D: 09 D0 ROL $D0 ; | $D0 <<= 1

554F: 24 F3 BCC $5544 ;--/ Keep looping until the all 8 bits of $0650 tested

 ;

5551: 09 D0 ROL $D0 ; $D0 <<= 1 Reset the $D0 back to 0x01 w/left shift

 ;

 ;---

 ; Exclusion Bits

 ;------------------------------------

 ; $064F & 0x01 --> exclude "Multiball"

 ; $064F & 0x02 --> exclude "Lite Extra Ball"

 ; $064F & 0x04 --> exclude "500,000"

 ; $064F & 0x08 --> exclude "Video mode"

 ; $064F & 0x10 --> exclude "Lite kickback"

 ; $064F & 0x20 --> exclude "Special"

 ; $064F & 0x40 --> exclude "Lite hurry up"

 ; $064F & 0x80 --> exclude "3,000,000"

 ;---

5553: B6 06 4F LDA $064F ; A = $064F (byte that got set with various bits, above)

 ;

5556: 5C INCB ;--\ B++

5557: 95 D0 BITA $D0 ; | Test $064F byte has the current $D0 bit set

5559: 26 04 BNE $555F ; |

555B: 0A D1 DEC $D1 ; | If $064F bit $D0 is set set then $D1--

555D: 27 06 BEQ $5565 ; | If $D1 reached 0x00 go award winning selection B

 ; |

555F: 09 D0 ROL $D0 ; | $D0 <<= 1

5561: 24 F3 BCC $5556 ;--/ Keep looping until all 8 bits of $0650 tested

 ;

5563: C6 0B LDB #$0B ; No matches, so set winning selection: 0x0B "500,000"

 ;

5565: F7 06 12 STB $0612 ; Save winning # from B into $0612 for later access.

 ;---

 ; B has winning value which had also been saved in $0612

 ; 0x01 == "CHASE LOOP"

 ; 0x02 == "EXTRA BALL"

 ; 0x03 == "100,000"

 ; 0x04 == "AUTOFIRE"

 ; 0x05 == "SECURITY PASS"

 ; 0x06 == "LITE SPECIAL"

 ; 0x07 == "HURRY UP"

 ; 0x08 == "1,000,000"

 ; 0x09 == "MULTIBALL"

 ; 0x0A == "LITE EXTRA BALL"

 ; 0x0B == "500,000"

 ; 0x0C == "VIDEO MODE"

 ; 0x0D == "LITE KICKBACK"

 ; 0x0E == "SPECIAL"

 ; 0x0F == "LITE HURRY UP"

 ; 0x10 == "3,000,000"

 ;---

5568: BD A7 25 JSR $A725 ; GetPseudoRandomNumberIntoA()

556B: 84 07 ANDA #$07 ; Getting random number from 0..7 for database award

556D: 4C INCA ; Make it 1-based 1..8 value

556E: 34 02 PSHS A ; Save random number 1..8 onto stack

5570: 97 D1 STA $D1 ; Save random number 1..8 into $D1

5572: 8E 00 0C LDX #$000C ; X gets 0x000C, starting string index at "CHASE LOOP"

5575: D0 D1 SUBB $D1 ; B gets B - $D1. Subtract the (1..8) value from it

5577: C1 11 CMPB #$11 ;

5579: 23 02 BLS $557D ; If B is less than or equal to 0x11 then skip over

557B: CB 10 ADDB #$10 ; If B is greater than 0x0x11 then add 0x10 to it.

557D: 3A ABX ; Add to X

557E: 35 04 PULS B ; B gets random number 1..8 from stack

 ;

5580: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte()

5583: 1C ; 0x1C == DatabaseSelector() $72B9,33

 ;

5584: B6 06 12 LDA $0612 ;

 ;

5587: BD 8B 3D JSR $8B3D ; AddLinkedListEntry()

558A: 00 8C ; ID 008C

558C: 55 90 31 ; $5590,31

 ;

558F: 39 RTS ;

 ;

;--;--

The logic, above, has a complicated set of logic to determine the award which is finally determined

when the code reaches $5565,31 where the winning selection is stored in RAM at $0612. Once this

winning selection is determined another random number between 1 and 8 is then determined when

instruction $556E,31 is reached. This random value establishes which of the 8 shown awards is the

winner. For example if the winning selection is determined to be “1,000,000” and the random number

1..8 is determined to be 8, the remaining logic calculates starting string to be shown as “Chase Loop” so

that the 8th shown award is the winning award “1,000,000”.

Readers are encouraged to review the logic and use a pinball emulator to trace through the code to

further determine how the logic behaves, if so inclined.

Per-Player In-Game Statistics Analysis L-8

The L8.4 database award enhancement will require the game to track the number of database awards

awarded for each player throughout the game. Such statistic will be used to ensure that all players get

the same 1st database award, 2nd database award, and so on. The L-8 game code does not track this

statistic so an analysis of per-player in-game statistic memory was done to see if there are any unused

regions that the L8.4 can utilize for this purpose.

When accessing the per-player statistics the game code will:

 Load X with address of first statistic byte (for player 1)

 Call function $FB29 which increases the value of X by 0, 1, 2, 3 if current player is 1, 2, 3, 4.

After $FB29 the value of X points to the current player’s byte in the 4 bytes of memory for a given in-

game statistic.

At start of a game, the per-player statistics are reset at this code from $617C,3B, ROM offset 0x6E17C.

This code reveals the starting RAM location is $0591 and it clears out memory through $060B.

617C: 8E 05 91 LDX #$0591 ; $0591 start of per-player in-game statistics

617F: 4F CLRA ;

6180: 8C 06 0C CMPX #$060C ;-\

6183: 27 04 BEQ $6189 ; |

6185: A7 80 STA ,X+ ; | Clear out the per-player in-game stats $0591-$060B

6187: 20 F7 BRA $6180 ;-/

A survey of L-8 game ROM was done to determine the RAM locations used for per-player statistics.

Existing game code analysis and pinball emulator can be used to see when each statistic is incremented.

A preliminary result of the analysis is shown in the table below. This table is based on a search of L-8 for

calls to $FB29 and an analysis of the value used in X prior to such call. This table is only a starting point

in developing a full understanding in how the game tracks these per-player in-game statistics.

Per-Player RAM
for player 1..4

Description

$0591 - $0594 Per-player bonus-X level

$0595 - $0598 Per-player left security level lamps

$0599 - $059C Per-player right security level lamps

$059D - $05A0 Per-player jackpots awarded

$05A1 - $05A4 Per-player lit 5-bank target hits from cannon

$05A5 - $05A8 Per-player 3-bank standup target completions

$05A9 - $05AC Per-player hurry-ups achieved

$05AD - $05B0 Per-player extra-balls awarded

$05B1 - $05B4 Per-player autofire awards via database

$05B5 - $05B8 Per-player video-modes

$05B9 - $05BC Per-player kickback lit

$05BD - $05C0 Per-player lit-shot hit counter (advances at various lit shots being hit)

$05C1 - $05C4 Per-player lit-shot hit counter (advances at various lit shots being hit)

$05C5 - $05C8 Appears to be unused

$05C9 - $05CC Per-player multiballs achieved through any means

$05CD - $05D0 Per-player skill-shots made

$05D1 - $05D4 Per-player number of super jackpots awarded

$05D5 - $05D8 Per-player multiballs achieved with cannon-shots only

$05D9 Number of specials awarded this game for all players, combined

$05DA Cannon state as set by mark/home switches during its swing

$05DB - $05DF Player 1 accumulated bonus in binary coded decimal format, 5 bytes, 10 digits

$05E0 - $05E4 Player 2 accumulated bonus in binary coded decimal format, 5 bytes, 10 digits

$05E5 - $05E9 Player 3 accumulated bonus in binary coded decimal format, 5 bytes, 10 digits

$05EA - $05EE Player 4 accumulated bonus in binary coded decimal format, 5 bytes, 10 digits

$05EF - $05F3 Hurry-up countdown score value in BCD, 10 digits (first 2 digits always 00)

$05F4 - $05F8 At skill shot award this gets the points vale in BCD , 10 digits (first/last ignored)

$05F9 Stores the current super jackpot 5-bank moving lamp index

$05FA Stores the current skill shot winning lamp index

$05FB Gets set to 0x00 at 6.5 seconds after right ramp shot, not set anywhere else(?)

$05FC Right loop “millions” count-up value when repeatedly hit

$05FD Appears to be unused

$05FE Tracks next jackpot multiplier 01, 02, or 03 that will be attempted

$05FF - $0602 Per-player bitmap of 5-bank targets needed for multiball. 0x01 = Target 1 High

$0603 - $0606 Per-player number of hits remaining for multiball

$0607 Stores bad 5-bank switch count during multiball 5-bank lamp lit logic

$0608 Tracks end-of-game music playing through HSTD, match and end-of-game

$0609 Related to right chase-loop animation sequences to ensure proper display

$060A Counts pop bumper hits when 3 rollover switches are bad, to award rollover

$060B Tracks number of millions achieved during Payback Time

$060C Related to cannon. Set to 0x01 when gun is calibrating.

$060D Tracks the most recent left-loop award

$060E Related to extra-ball animation sequence to ensure proper display

$060F Used for tracking awards to give at ramp left/right ramp shots

$0610 - $0611 Two bytes used during Hurry-up countdown sequence for state tracking

$0612 Stores winning database award number during database award sequence

$0613 Flag used during escape-route left lock to determine if award is to be given

$0614 - $0617 Per-player skill-shot timer reset value

$0618 - $061B Per-player drop-target reset timer value

$061C - $061F Per-player drop-target reset timer value (init is same as $0618 - $061B)

$0620 - $0623 Per-player drop-target reset timer value (init is same as $0618 - $061B)

$0624 - $0627 Per-player hurry-up timer reset value

$0628 - $062B Per-player 3-bank timer reset value

$062C - $062F Appears to be unused

$0630 - $0633 Per-player jackpot timer reset value

As highlighted in the table above, the region from $05C5 - $05C8 is unused in L-8 and can be used in L8.4

for tracking the number of database awards for each player. The determination that this region is

unused is based on analysis of the game ROM, finding no opcodes that appear to cite these 4 bytes.

Also the emulator was used with a watchpoint set on this 4 byte region. Game was played with all

possible awards having been hit multiple times without a single read/write to this region (other than the

game-start reset of the entire block of memory).

Database Award Logic Enhancements for L8.4

For the tournament mode Database award fixups in L8.4, the previously described solution used in the

Super Jackpot lamp movements will also be used so that a seemingly “random” number can be used

while also ensuring all players in a multi-player game have identical opportunities.

The goal is that all players will have the same database award for their first achieved database. The

second database award may be different from the first database award and all players will get the same

second database award, and so on.

The game bookkeeping statistics can be used to derive a basis value and the per-player database awards

value will be used to determine the current “random” numbers that are applicable to the current

database award. For each database award there are two such “random” numbers that are used:

 Value 1..16, defining which is the winning database award, and

 Value 1..8, defining where on the list of items the winning award is shown.

The table, below, shows which of the game bookkeeping statistics are used in deriving a “random”

number for each of the two needed random numbers at each database award:

Bookkeeping Entry Addr Bookkeeping Statistic Participation

Database Award Award Position

Bookkeeping B.3 08 "MATCH AWARDS" $18A3

Bookkeeping B.3 28 "1 PLAYER GAMES" $18EB

Bookkeeping B.3 29 "2 PLAYER GAMES" $18F1

Bookkeeping B.3 30 "3 PLAYER GAMES" $18F7

Bookkeeping B.3 31 "4 PLAYER GAMES" $18FD

Bookkeeping B.5 01 "0-1.9 M. SCORE" $1921

Bookkeeping B.5 02 "2-4.9 M. SCORE" $1927

Bookkeeping B.5 03 "3-9.9 M. SCORE" $192D

Bookkeeping B.5 04 "10-19 M. SCORE" $1933

Bookkeeping B.5 05 "20-29 M. SCORE" $1939

Bookkeeping B.5 06 "30-29 M. SCORE" $193F

Bookkeeping B.5 07 "40-49 M. SCORE" $1945

Bookkeeping B.5 08 "50-69 M. SCORE" $194B

Bookkeeping B.5 09 "70-99 M. SCORE" $1951

Bookkeeping B.5 10 "100-149 M. SCORE" $1957

Bookkeeping B.5 11 "150-199 M. SCORE" $195D

Bookkeeping B.5 12 "200-299 M. SCORE" $1963

Bookkeeping B.5 13 "OVER 300 MILLION" $1969

Bookkeeping B.5 14 "GAME TIME 0.0-1.0M" $196F

Bookkeeping B.5 15 "GAME TIME 1.0-1.5M" $1975

Bookkeeping B.5 16 "GAME TIME 1.5-2.0M" $197B

Bookkeeping B.5 17 "GAME TIME 2.0-2.5M" $1981

Bookkeeping B.5 18 "GAME TIME 2.5-3.0M" $1987

Bookkeeping B.5 19 "GAME TIME 3.0-3.5M" $198D

Bookkeeping B.5 20 "GAME TIME 3.5-4.0M" $1993

Bookkeeping B.5 21 "GAME TIME 4-5 M." $1999

Bookkeeping B.5 22 "GAME TIME 5-6 M." $199F

Bookkeeping B.5 23 "GAME TIME 6-8 M." $19A5

Bookkeeping B.5 24 "GAME TIME 8-10 M." $19AB

Bookkeeping B.5 25 "GAME TIME 10-15 M" $19B1

Bookkeeping B.5 26 "GAME TIME > 15 M" $19B7

In addition to the above accumulated game statistics, the per-player database award counter is also

used when deriving both of the “random” numbers. The 8-bit sum of all of these statistics will be the

“seed” used to lookup a seemingly “random” byte from the non-banked region of ROM.

The chosen byte from ROM is passed through an algorithm specific to the value being obtained.

Variable Behavior Needed Values Formula to derive value X from byte B
(C-like syntax) Range # of values

Database Award 1..16 16 X = (B & 0x0F) + 1

Award Position 1..8 8 X = (B & 0x07) + 1

For each of these 2 “random” numbers, the “seed” value is used to lookup a byte from ROM relative to

the arbitrarily chosen address $F900 (ROM offset 0x7F900). This region of ROM appears to have a mix

of byte values with non-repeating bytes, as shown below:

To illustrate the different possible values, the table below shows all of the possible values that this

formula will produce.

Variable Behavior Formula Results

Database Award 2 9 16 10 2 9 13 11 11 2 13 6 3 11 2 16

 6 3 13 15 13 6 3 5 7 14 10 10 2 8 7 8

 4 14 10 5 7 3 5 5 11 15 9 11 11 7 5 14

 3 15 14 11 4 12 2 2 4 4 15 7 5 2 9 13

 7 16 2 13 5 1 5 7 4 8 2 6 5 11 7 7

13 8 6 14 10 10 8 8 7 6 7 5 7 14 10 10

 2 8 7 8 4 14 10 5 6 7 3 2 4 1 5 1

 5 7 7 3 5 5 15 9 13 11 11 7 5 14 11 4

 8 4 6 5 11 7 14 6 7 5 5 15 8 14 7 3

 7 8 6 12 5 12 2 12 3 12 4 1 5 11 7 4

 9 4 6 5 5 7 15 8 14 7 3 16 5 16 2 16

 3 1 5 11 7 6 16 8 6 14 9 1 14 10 10 8

 8 7 6 7 5 7 14 10 10 2 8 7 8 4 14 10

 5 14 11 4 7 5 2 9 16 3 11 5 7 3 2 16

 8 3 13 3 14 10 10 8 8 7 6 7 5 1 14 11

 4 7 4 6 1 5 7 7 8 6 2 1 5 3 6 7

Award Total
Occurrances # Name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Chase Loop
Extra Ball
100,000
Autofire
Security Pass
Lite Special
Hurry Up
1,000,000
Multiball
Lite Extra Ball
500,000
Video Mode
Lite Kickback
Special
Lite Hurry Up
3,000,000

9
18
16
16
32
18
37
21
8

16
17
5
9

18
7
9

Award Position

#2 #1 #8 #2 #2 #1 #5 #3 #3 #2 #5 #6 #3 #3 #2 #8

#6 #3 #5 #7 #5 #6 #3 #5 #7 #6 #2 #2 #2 #8 #7 #8

#4 #6 #2 #5 #7 #3 #5 #5 #3 #7 #1 #3 #3 #7 #5 #6

#3 #7 #6 #3 #4 #4 #2 #2 #4 #4 #7 #7 #5 #2 #1 #5

#7 #8 #2 #5 #5 #1 #5 #7 #4 #8 #2 #6 #5 #3 #7 #7

#5 #8 #6 #6 #2 #2 #8 #8 #7 #6 #7 #5 #7 #6 #2 #2

Column Row Total
Occurrances

#1
#2
#3
#4
#5
#6
#7
#8

Left
Left
Left
Left
Right
Right
Right
Right

1
2
3
4
1
2
3
4

17
34
33
21
41
36
44
30

#2 #8 #7 #8 #4 #6 #2 #5 #6 #7 #3 #2 #4 #1 #5 #1

#5 #7 #7 #3 #5 #5 #7 #1 #5 #3 #3 #7 #5 #6 #3 #4

#8 #4 #6 #5 #3 #7 #6 #6 #7 #5 #5 #7 #8 #6 #7 #3

#7 #8 #6 #4 #5 #4 #2 #4 #3 #4 #4 #1 #5 #3 #7 #4

#1 #4 #6 #5 #5 #7 #7 #8 #6 #7 #3 #8 #5 #8 #2 #8

#3 #1 #5 #3 #7 #6 #8 #8 #6 #6 #1 #1 #6 #2 #2 #8

#8 #7 #6 #7 #5 #7 #6 #2 #2 #2 #8 #7 #8 #4 #6 #2

#5 #6 #3 #4 #7 #5 #2 #1 #8 #3 #3 #5 #7 #3 #2 #8

#8 #3 #5 #3 #6 #2 #2 #8 #8 #7 #6 #7 #5 #1 #6 #3

#4 #7 #4 #6 #1 #5 #7 #7 #8 #6 #2 #1 #5 #3 #6 #7

The tables above show a relative mix of “random” values when the game is in Tournament mode and

players acquire a database award. The resulting look and feel will be that of random award however all

players will be given equal gameplay throughout the current game.

Extra consideration for the following awards is also given:

 Extra Ball and Lite Extra Ball. The L8.4 code will provide additional benefit during Tournament

Mode, if the game is also configured for no extra balls (through adjustment A.1 03) then these

two awards will not be given. When the algorithm is normally going to award these awards,

alternate, fixed, awards can be given instead (refer to L8.4 code, below). Although such logic

could have been moved to where all database awards are given (regardless of Tournament

Mode) the decision is to have this only in the L8.4 addition so as to retain existing L-8 behavior

when Tournament Mode is off. Later it was noted that the L-8 Database award logic already

excludes Extra Ball and Lite Extra Ball when player is ineligible for EB. This is done by use of the

$FA1E function in the original L-8 code depicted earlier.

 Special and Lite Special. Although a lot of tournaments have no benefit for players achieving

these awards, the L8.4 will allow these to be awarded in the event some tournaments might

assign certain meanings for when players achieve a special during game play. Since the L8.4 will

give all players equal database awards, the award will be evenly achievable by all players and

equally ignorable in tournaments where special has no particular benefit.

Database Award Logic Code Update for L8.4

The code changes for L8.4 will insert a function call into the existing L-8 database award logic at the

moment where original L-8 code is determining the two items, Award and Position. The code will jump

to new L8.4 code which will perform the following high-level logic:

 If Tournament Mode is off, resume original L-8 logic, else

 If Tournament Mode is on, determine new “random” values for:

o The Database Award for the current player, and

o The position on the display where the chosen award will be shown, and

o Return back to normal L-8 logic using the overridden database award data.

The new L8.4 Database award logic is placed in bank $34 where plenty of unused ROM space is available.

As shown in full above, the database award function reaches this moment when the winning award has

been determined and the award position is determined:

 ;

5563: C6 0B LDB #$0B ; No matches, so set winning selection: 0x0B "500,000"

 ;

5565: F7 06 12 STB $0612 ; Save winning # from B into $0612 for later access.

 ;---

 ; B has winning value which had also been saved in $0612

 ; 0x01 == "CHASE LOOP"

 ; 0x02 == "EXTRA BALL"

 ; 0x03 == "100,000"

 ; 0x04 == "AUTOFIRE"

 ; 0x05 == "SECURITY PASS"

 ; 0x06 == "LITE SPECIAL"

 ; 0x07 == "HURRY UP"

 ; 0x08 == "1,000,000"

 ; 0x09 == "MULTIBALL"

 ; 0x0A == "LITE EXTRA BALL"

 ; 0x0B == "500,000"

 ; 0x0C == "VIDEO MODE"

 ; 0x0D == "LITE KICKBACK"

 ; 0x0E == "SPECIAL"

 ; 0x0F == "LITE HURRY UP"

 ; 0x10 == "3,000,000"

 ;---

 ;

5568: BD A7 25 JSR $A725 ; GetPseudoRandomNumberIntoA()

556B: 84 07 ANDA #$07 ; Getting random number from 0..7 for database award

556D: 4C INCA ; Make it 1-based 1..8 value

The updated code for L8.4 is as follows:

5563: C6 0B LDB #$0B ; No matches, so set winning selection: 0x0B "500,000"

 ;

5565: F7 06 12 STB $0612 ; Save winning # from B into $0612 for later access.

5568: BD A7 25 JSR $A725 ; GetPseudoRandomNumberIntoA()

 ;

5565: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

5568: 6B C0 34 ; L84DatabaseTournamentModeEnhancement()

 ;

556B: 84 07 ANDA #$07 ; Getting random number from 0..7 for database award

556D: 4C INCA ; Make it 1-based 1..8 value

The 6 bytes where the winning award is saved to $0612 and random number is derived for display

placement is replaced with a 6-byte call to new function in bank $34. The new L8.4 code will perform

the tasks of updating $0612 and getting the random number into A before returning.

The new code in bank $34 is shown below. Note the logic for adding up bookkeeping data is copied

from previous L8.4 work done for Super Jackpot lamp movements. Rather than modify the already

established and tested Super Jackpot code, it is simply duplicated and enhanced here.

As indicated in the updated code, above, the entry point into the new code is at $6BC0,34 (ROM offset

0x52BC0). The entire set of new code is inserted into unused ROM region starting at $6B1D,34 (ROM

offset 0x52B1D).

---;---

 ;

 ; "Random" Seed Determinator 1

 ;------------------------------

 ; Table of Bookkeeping Storage Locations (L-8)

 ;

6B1D: 18 A3 ; Bookkeeping B.3 08 "MATCH AWARDS"

6B1F: 18 EB ; Bookkeeping B.3 28 "1 PLAYER GAMES"

6B21: 18 F1 ; Bookkeeping B.3 29 "2 PLAYER GAMES"

6B23: 18 F7 ; Bookkeeping B.3 30 "3 PLAYER GAMES"

6B25: 18 FD ; Bookkeeping B.3 31 "4 PLAYER GAMES"

6B27: 19 21 ; Bookkeeping B.5 01 "0-1.9 M. SCORE"

6B29: 19 2D ; Bookkeeping B.5 03 "3-9.9 M. SCORE"

6B2B: 19 39 ; Bookkeeping B.5 05 "20-29 M. SCORE"

6B2D: 19 45 ; Bookkeeping B.5 07 "40-49 M. SCORE"

6B2F: 19 51 ; Bookkeeping B.5 09 "70-99 M. SCORE"

6B31: 19 5D ; Bookkeeping B.5 11 "150-199 M. SCORE"

6B33: 19 69 ; Bookkeeping B.5 13 "OVER 300 MILLION"

6B35: 19 75 ; Bookkeeping B.5 15 "GAME TIME 1.0-1.5M"

6B37: 19 81 ; Bookkeeping B.5 17 "GAME TIME 2.0-2.5M"

6B39: 19 8D ; Bookkeeping B.5 19 "GAME TIME 3.0-3.5M"

6B3B: 19 99 ; Bookkeeping B.5 21 "GAME TIME 4-5 M."

6B3D: 19 A5 ; Bookkeeping B.5 23 "GAME TIME 6-8 M."

6B3F: 19 B1 ; Bookkeeping B.5 25 "GAME TIME 10-15 M"

6B41: 00 00 ; <End of data>

 ;

---;---

 ;

 ; "Random" Seed Determinator 2

 ;------------------------------

 ; Table of Bookkeeping Storage Locations (L-8)

 ;

6B43: 18 EB ; Bookkeeping B.3 28 "1 PLAYER GAMES"

6B45: 18 F1 ; Bookkeeping B.3 29 "2 PLAYER GAMES"

6B47: 18 F7 ; Bookkeeping B.3 30 "3 PLAYER GAMES"

6B49: 18 FD ; Bookkeeping B.3 31 "4 PLAYER GAMES"

6B4B: 19 27 ; Bookkeeping B.5 02 "2-4.9 M. SCORE"

6B4D: 19 33 ; Bookkeeping B.5 04 "10-19 M. SCORE"

6B4F: 19 3F ; Bookkeeping B.5 06 "30-29 M. SCORE"

6B51: 19 4B ; Bookkeeping B.5 08 "50-69 M. SCORE"

6B53: 19 57 ; Bookkeeping B.5 10 "100-149 M. SCORE"

6B55: 19 63 ; Bookkeeping B.5 12 "200-299 M. SCORE"

6B57: 19 6F ; Bookkeeping B.5 14 "GAME TIME 0.0-1.0M"

6B59: 19 7B ; Bookkeeping B.5 16 "GAME TIME 1.5-2.0M"

6B5B: 19 87 ; Bookkeeping B.5 18 "GAME TIME 2.5-3.0M"

6B5D: 19 93 ; Bookkeeping B.5 20 "GAME TIME 3.5-4.0M"

6B5F: 19 9F ; Bookkeeping B.5 22 "GAME TIME 5-6 M."

6B61: 19 AB ; Bookkeeping B.5 24 "GAME TIME 8-10 M."

6B63: 19 B7 ; Bookkeeping B.5 26 "GAME TIME > 15 M"

6B65: 00 00 ; <End of data>

 ;

---;---

 ;

 ; "Random" Seed Determinator 3

 ;------------------------------

 ; Table of Bookkeeping Storage Locations (L-8)

 ;

6B67: 18 EB ; Bookkeeping B.3 28 "1 PLAYER GAMES"

6B69: 18 F1 ; Bookkeeping B.3 29 "2 PLAYER GAMES"

6B6B: 18 F7 ; Bookkeeping B.3 30 "3 PLAYER GAMES"

6B6D: 18 FD ; Bookkeeping B.3 31 "4 PLAYER GAMES"

6B6F: 19 21 ; Bookkeeping B.5 01 "0-1.9 M. SCORE"

6B71: 19 27 ; Bookkeeping B.5 02 "2-4.9 M. SCORE"

6B73: 19 39 ; Bookkeeping B.5 05 "20-29 M. SCORE"

6B75: 19 3F ; Bookkeeping B.5 06 "30-29 M. SCORE"

6B77: 19 51 ; Bookkeeping B.5 09 "70-99 M. SCORE"

6B79: 19 57 ; Bookkeeping B.5 10 "100-149 M. SCORE"

6B7B: 19 69 ; Bookkeeping B.5 13 "OVER 300 MILLION"

6B7D: 19 6F ; Bookkeeping B.5 14 "GAME TIME 0.0-1.0M"

6B7F: 19 81 ; Bookkeeping B.5 17 "GAME TIME 2.0-2.5M"

6B81: 19 87 ; Bookkeeping B.5 18 "GAME TIME 2.5-3.0M"

6B83: 19 99 ; Bookkeeping B.5 21 "GAME TIME 4-5 M."

6B85: 19 9F ; Bookkeeping B.5 22 "GAME TIME 5-6 M."

6B87: 19 B1 ; Bookkeeping B.5 25 "GAME TIME 10-15 M"

6B89: 19 B7 ; Bookkeeping B.5 26 "GAME TIME > 15 M"

6B8B: 00 00 ; <End of data>

 ;

---;---

 ;

 ; Get sum of bookkeeping values pointed to by X into A

 ;--

6B8D: 10 AE 81 LDY ,X++ ;-\ Y gets address of RAM of next bookkeeping value

6B90: 27 04 BEQ $6B96 ; | If Y gets 0x0000 then reached end of the table, done

6B92: AB A4 ADDA ,Y ; | Increment A with value from Y

6B94: 20 F7 BRA $6B8D ;-/

 ;

6B96: 39 RTS ;

 ;

---;---

 ;

 ; Get "random" byte from ROM for given data table X

 ;---

6B97: 8D F4 BSR $6B8D ; Call function to get sum of bookkeeping values into A

6B99: 8E F9 00 LDX #$F900 ; X gets addr in ROM from where arbitary byte is loaded

6B9C: A6 86 LDA A,X ; A now gets byte from ROM

6B9E: 39 RTS ;

 ;

---;---

 ;

 ; Get "random" byte for use in database awards

 ;--

6B9F: 1F 12 TFR X,Y ; Save addr table start into Y

6BA1: 8D 16 BSR $6BB9 ; Get into X address of per-player DB awards

6BA3: A6 84 LDA ,X ; A gets # of player's database awards, starting seed

6BA5: 1F 21 TFR Y,X ; Get addr table start back into X

6BA7: 8D EE BSR $6B97 ; Call function that gets "random" byte from ROM into A

6BA9: 39 RTS ;

 ;

---;---

 ;

 ; Get variable value 1..16 for database award

 ;--

6BAA: 8E 6B 1D LDX #$6B1D ; X gets addr of adjustment addrs, database award seed

6BAD: 8D F0 BSR $6B9F ; Call function to get random number into A

6BAF: 84 0F ANDA #$0F ; Mask off the low 4 bits

6BB1: 4C INCA ; Make it 1..16

6BB2: 39 RTS ;

 ;

---;---

 ;

 ; For getting variable value 0..7 for database award

 ; The DB code will AND value with 0x07 to get 0..7

 ;---

6BB3: 8E 6B 43 LDX #$6B43 ; X gets addr of adjustment addrs, award position seed

6BB6: 8D E7 BSR $6B9F ; Call function to get random number into A

6BB8: 39 RTS ;

 ;

---;---

 ;

 ; Get into X the per-player DB award statistic address

 ;---

6BB9: 8E 05 C5 LDX #$05C5 ; Number of Database Awards

6BBC: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6BBF: 39 RTS ;

 ;

---;---

 ;

6BC0: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

6BC3: 9A 01 ; StandardAdjustment026, Tournament Play Adj=0x9A

6BC5: 24 07 BCC $6BCE ; C-clr, tournament mode is on, branch to L8.4 fixups

 ;

 ; c-set, here tournament mode is off, ordinary L-8 code

6BC7: F7 06 12 STB $0612 ; Save winning # from B into $0612 for later access.

6BCA: BD A7 25 JSR $A725 ; GetPseudoRandomNumberIntoA()

6BCD: 39 RTS ;

 ;

 ; Do L8.4 tournament mode database award

6BCE: 34 20 PSHS Y ; Preserve Y, caller needs A and B. X is fine.

6BD0: 8D D8 BSR $6BAA ; Get random number 1..16 into A for database award

 ;

6BD2: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

6BD5: 83 00 ; StandardAdjustment003, Max E.B. Count Adj=0x83

6BD7: 25 0C BCS $6BE5 ; C-set, extra ball is allowed, no fixup to DB award

 ;

 ; Extra-ball not allowed

6BD9: 81 02 CMPA #$02 ; Is award "Extra Ball" ?

6BDB: 26 02 BNE $6BDF ;

6BDD: 86 0D LDA #$0D ; Replace it with 0x0D, 13 "Lite Kickback"

 ;

6BDF: 81 0A CMPA #$0A ; Is award "Lite Extra Ball" ?

6BE1: 26 02 BNE $6BE5 ;

6BE3: 86 0F LDA #$0F ; Replace it with 0x0F, 15, "Lite Hurry Up"

 ;

6BE5: 1F 89 TFR A,B ; Put award number into B a calling function expects

6BE7: F7 06 12 STB $0612 ; Save winning # from B into $0612 for later access.

6BEA: 8D C7 BSR $6BB3 ; Get random number 0..7 into A for award position

 ;

6BEC: 8D CB BSR $6BB9 ; Get into X address of per-player DB awards

6BEE: 6C 84 INC ,X ; Increment per-player DB awards

 ;

6BF0: 35 A0 PULS Y,PC ;

 ;

---;---

Readers are encouraged to trace through the code starting at $6BC0,34 to see how the new L8.4 code

will derive the same “random” database award for all players when “Tournament Play” is enabled.

Tournament Mode Enhancement: Multiball Lamps, L8.4

To further improve the L8.4 during Tournament Mode, the 5-bank lamps that are needed for starting

Multiball can be made to be the same pattern for all players in a multi-player game. In doing so, this

removes any actual or perceived unfair advantage one player might get over another when the lit

targets for multiball are easier for one player while another player gets a more challenging set of lit

targets.

One example of such unfair advantage is the case where some games have a more difficult to hit top-

target (due to cannon switch adjustments or other mechanical reasons). Another example is the case

where one player gets adjacent lit targets (which could both be hit with a single cannon shot) while

another player gets a non-adjacent targets lit for their attempt to start multiball. With this L8.4

enhancement, when Tournament Mode is enabled, all players get the same opportunity whether it is an

easier or more difficult set of lamps lit to start multiball.

Multiball Lamps Logic Enhancements for L8.4

The code that determines the 5-bank lamp patterns for starting multiball employs a mechanism to pick

specific (non-random) targets when there are 1 or more of the 5-bank targets flagged as bad. The game

flags a target as bad if it has not been hit in the past 60 balls. A bad target will cause credit dot and test

report for the target.

When all 5 targets are good, then the logic will allow the game to pick a random pattern, one of 5

possible choices for each of the cases when 2, 3, or 4 targets are needed for starting multiball. The L8.4

update will remove this randomness when Tournament Mode is enabled so that all players get the same

experience for 2, 3 and 4 targets remaining for starting multiball. For L8.4 the logic will pick a seemingly

“random” choice of the 5 patterns, however all players in the multi-player game will get the same such

“random” choice.

Multiball Lamps, Existing Code L-8

The existing L-8 logic is located in bank $31. Shown below is the full set of code that is used when the

game selects the set of lamps for starting multiball. This begins at $68B6,31, ROM offset 0x468B6.

---;---

 ;

 ; FiveBankTargetLampBitmapGet()

 ; Loads per-player $05FF with bitmap

 ;

68B6: 34 16 PSHS X,B,A ;

68B8: 8E 06 03 LDX #$0603 ; #$0603 is Hunter ship hits remaining for multiball

68BB: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

68BE: 7E 68 C1 JMP $68C1 ; <nop>

68C1: 6D 84 TST ,X ;

68C3: 10 26 01 51 LBNE $6A18 ; If, somehow, zero hits remain, skip to the end

 ;

68C7: 34 10 PSHS X ; Save per-player hits-remaining addr on stack

 ;

68C9: 8E 5F 5B LDX #$5F5B ; X=0x5F5B <-- addr in $3D the following fn will access

 ;

68CC: BD 88 F5 JSR $88F5 ;

68CF: 5F 29 3D ; CheckBrokenSwitches()

 ; A gets bad switch count, C-clr if all switches bad

 ;

68D2: 25 08 BCS $68DC ; If C-set then not all switches are bad go to $68DC

 ;

 ;---

 ; All 5-bank targets bad, per-player hits-remaining = 1

 ;---

68D4: 86 01 LDA #$01 ; A = 0x01

68D6: 35 10 PULS X ;

68D8: A7 84 STA ,X ; Force hits-remaining to value 1 on stack

68DA: 20 31 BRA $690D ;

 ;

 ;---

 ; NOT all 5-bank targets bad, calculate hits-remaining

 ;---

68DC: B7 06 07 STA $0607 ; Save bad switch count into $0607

68DF: 1F 89 TFR A,B ; Save bad switch count into B

68E1: 86 05 LDA #$05 ; A = 0x05

68E3: 34 04 PSHS B ; Save bad switch count onto stack

68E5: A0 E0 SUBA ,S+ ; Subtract bad sw # from A, result is # of good sw in A

68E7: 1F 89 TFR A,B ; Save number of good switches into B

 ;

68E9: 8E 05 D5 LDX #$05D5 ; X=0x05D5

68EC: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

68EF: 7E 68 F2 JMP $68F2 ; <nop>

68F2: A6 84 LDA ,X ; A gets per-player value from $05D5

68F4: 4C INCA ; Add 1 to per-player value from $05D5

68F5: 34 04 PSHS B ; Save updated per-player value into B

68F7: A1 E0 CMPA ,S+ ; Compare per-player value w/# of good switches on stack

68F9: 23 02 BLS $68FD ;

68FB: 1F 98 TFR B,A ;

68FD: 35 10 PULS X ; Pull addr of hits-remaining off stack to update

68FF: 81 05 CMPA #$05 ; A = 0x05

6901: 22 06 BHI $6909 ;

6903: 4D TSTA ;

6904: 26 05 BNE $690B ;

6906: 4C INCA ;

6907: 20 02 BRA $690B ;

6909: 86 05 LDA #$05 ;

 ;

690B: A7 84 STA ,X ; Store new hits-remaining # it per-player storage

 ;

690D: 81 01 CMPA #$01 ;

 ;---

 ; Only 1 target remaining for multiball

 ;---

690F: 26 37 BNE $6948 ;

6911: 86 04 LDA #$04 ; 5-bank bitmap: --0--

6913: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

6916: 3B ; 0x3B = SwitchTableEntry3B, 73, Target 3

6917: 10 25 00 F2 LBCS $6A0D ;

 ;---

 ; Only 1 target remaining for multiball, Target 3 is bad

 ;---

691B: 86 08 LDA #$08 ; 5-bank bitmap: -0---

691D: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

6920: 3C ; 0x3C = SwitchTableEntry3C, 74, Target 4

6921: 10 25 00 E8 LBCS $6A0D ;

 ;---

 ; Only 1T remaining for multiball, T3 and T4 are bad

 ;---

6925: 86 02 LDA #$02 ; 5-bank bitmap: ---0-

6927: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

692A: 3A ; 0x3A = SwitchTableEntry3A, 72, Target 2

692B: 10 25 00 DE LBCS $6A0D ;

 ;---

 ; Only 1T remaining for multiball, T3 T4 T2 are bad

 ;---

692F: 86 10 LDA #$10 ; 5-bank bitmap: 0----

6931: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

6934: 3D ; 0x3D = SwitchTableEntry3D, 75, Target 5 Low

6935: 10 25 00 D4 LBCS $6A0D ;

 ;---

 ; Only 1T remaining for multiball, T3 T4 T2 T5 are bad

 ;---

6939: 86 01 LDA #$01 ; 5-bank bitmap: ----0

693B: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

693E: 39 ; 0x39 = SwitchTableEntry39, 71, Target 1 High

693F: 10 25 00 CA LBCS $6A0D ;

 ;---

 ; Only 1T remaining for multiball, T3 T4 T2 T5 T1 bad

 ;---

6943: 86 04 LDA #$04 ; 5-bank bitmap: --0-- (use center T, all Ts bad)

6945: 7E 6A 0D JMP $6A0D ;

 ;

 ;---

 ; More than 1 target remaining for multiball

 ;---

6948: 81 05 CMPA #$05 ;

694A: 26 05 BNE $6951 ;

 ;---

 ; All 5 targets remaining for multiball

 ;---

694C: 86 1F LDA #$1F ; 5-bank bitmap: 00000

694E: 7E 6A 0D JMP $6A0D ;

 ;---

 ; There are 2 or 3 or 4 targets remaining for multiball

 ;---

6951: 81 04 CMPA #$04 ;

6953: 26 10 BNE $6965 ;

 ;---

 ; There are 4 targets remaining for multiball

 ;---

6955: 7D 06 07 TST $0607 ; Check bad switch count into $0607

6958: 26 4A BNE $69A4 ;

 ;---

 ; There are 4Ts remaining for multiball, no bad targets

 ;---

695A: 86 05 LDA #$05 ; A = 0x05

695C: 8E 6A 24 LDX #$6A24 ; X = 0x6A24

695F: BD 6A 29 JSR $6A29 ; GetBitmapIndexFromMappingX()

6962: 7E 6A 0D JMP $6A0D ;

 ;---

 ; There are 2 or 3 targets remaining for multiball

 ;---

6965: 81 03 CMPA #$03 ;

6967: 26 40 BNE $69A9 ;

 ;---

 ; There are 3 targets remaining for multiball

 ;---

6969: B6 06 07 LDA $0607 ;

696C: 27 2C BEQ $699A ;

 ;---

 ; There are 3Ts remaining for MB, 1 or more bad targets

 ;---

696E: 81 01 CMPA #$01 ;

6970: 26 32 BNE $69A4 ;

 ;---

 ; There are 3Ts remaining for multiball, 1 bad target

 ;---

6972: 86 1A LDA #$1A ; 5-bank bitmap: 00-0-

6974: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

6977: 3B ; 0x3B = SwitchTableEntry3B, 73, Target 3

6978: 10 24 00 91 LBCC $6A0D ; The one bad T is not in the 00-0- bitmap, use it

 ; Else we need to come up with a different bitmap

 ;

697C: 86 07 LDA #$07 ; 5-bank bitmap: --000

697E: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

6981: 3C ; 0x3C = SwitchTableEntry3C, 74, Target 4

6982: 10 24 00 87 LBCC $6A0D ; The one bad T is not one of the --000 bitmap, use it

 ; Else we need to come up with a different bitmap

 ;

6986: 86 1C LDA #$1C ; 5-bank bitmap: 000--

6988: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

698B: 3A ; 0x3A = SwitchTableEntry3A, 72, Target 2

698C: 24 7F BCC $6A0D ; The one bad T is not one of the 000-- bitmap, use it

 ; Else we need to come up with a different bitmap

 ;

698E: 86 0E LDA #$0E ; 5-bank bitmap: -000-

6990: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

6993: 3D ; 0x3D = SwitchTableEntry3D, 75, Target 5 Low

6994: 24 77 BCC $6A0D ; The one bad T is not one of the -000- bitmap, use it

 ; Else the bad T must be T1 High, use bitmap to suit

 ;

6996: 86 1C LDA #$1C ; 5-bank bitmap: 000--

6998: 20 73 BRA $6A0D ;

 ;---

 ; There are 3Ts remaining for MB and no bad targets

 ;---

699A: 86 05 LDA #$05 ; A = 0x05

699C: 8E 6A 1F LDX #$6A1F ; X = 0x6A1F

699F: BD 6A 29 JSR $6A29 ; GetBitmapIndexFromMappingX()

69A2: 20 69 BRA $6A0D ;

 ;---

 ; There are 4Ts remaining for MB & 1 or more bad targets

 ; There are 3Ts remaining for MB & 2 or more bad target

 ; There are 2Ts remaining for MB & 3 bad targets

 ;---

69A4: BD 6A 35 JSR $6A35 ; GetBitmapOf5BankWorkingSwitchesIntoA()

 ; get bitmap of all working targets

69A7: 20 64 BRA $6A0D ;

 ;---

 ; There are 2 targets remaining for multiball

 ;---

69A9: B6 06 07 LDA $0607 ;

69AC: 27 57 BEQ $6A05 ;

 ;---

 ; There are 2Ts remaining for MB & 1 or more bad targets

 ;---

69AE: 81 03 CMPA #$03 ;

69B0: 27 F2 BEQ $69A4 ;

 ;---

 ; There are 2Ts for MB, 1 or more bad, but not 3 bad Ts

 ;---

69B2: 81 01 CMPA #$01 ;

69B4: 27 2B BEQ $69E1 ;

 ;---

 ; There are 2Ts remaining for MB and 2, 4, or 5 bad Ts

 ;---

69B6: C6 1B LDB #$1B ; 5-bank bitmap: 00-00

69B8: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

69BB: 3B ; 0x3B = SwitchTableEntry3B, 73, Target 3

69BC: 25 1A BCS $69D8 ;

 ; Target 3 is bad

69BE: C6 17 LDB #$17 ; 5-bank bitmap: 0-000

69C0: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

69C3: 3C ; 0x3C = SwitchTableEntry3C, 74, Target 4

69C4: 25 12 BCS $69D8 ;

 ; Target 4 is bad

69C6: C6 1D LDB #$1D ; 5-bank bitmap: 000-0

69C8: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

69CB: 3A ; 0x3A = SwitchTableEntry3A, 72, Target 2

69CC: 25 0A BCS $69D8 ;

 ; Target 2 is bad

69CE: C6 0F LDB #$0F ; 5-bank bitmap: -0000

69D0: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

69D3: 3D ; 0x3D = SwitchTableEntry3D, 75, Target 5 Low

69D4: 25 02 BCS $69D8 ;

 ; Target 5 is bad

69D6: C6 1E LDB #$1E ; 5-bank bitmap: 0000-

 ;

 ; We get here with a bitmap value in B that we can use

69D8: BD 6A 35 JSR $6A35 ; GetBitmapOf5BankWorkingSwitchesIntoA()

69DB: 34 04 PSHS B ; Push bitmap onto stack

69DD: A4 E0 ANDA ,S+ ; AND the retrieved bitmap with the 'good' bitmap

69DF: 20 2C BRA $6A0D ;

 ;---

 ; There are 2Ts remaining for multiball and 1 bad target

 ;---

69E1: 86 0A LDA #$0A ; 5-bank bitmap: -0-0-

69E3: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

69E6: 3B ; 0x3B = SwitchTableEntry3B, 73, Target 3

69E7: 24 24 BCC $6A0D ; Bitmap is good even with Target 3 bad, so branch

 ;

69E9: 86 06 LDA #$06 ; 5-bank bitmap: --00-

69EB: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

69EE: 3C ; 0x3C = SwitchTableEntry3C, 74, Target 4

69EF: 24 1C BCC $6A0D ; Bitmap is good even with Target 4 bad, so branch

 ;

69F1: 86 18 LDA #$18 ; 5-bank bitmap: 00---

69F3: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

69F6: 3A ; 0x3A = SwitchTableEntry3A, 72, Target 2

69F7: 24 14 BCC $6A0D ; Bitmap is good even with Target 2 bad, so branch

 ;

69F9: 86 03 LDA #$03 ; 5-bank bitmap: ---00

69FB: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-set = switch broken

69FE: 3D ; 0x3D = SwitchTableEntry3D, 75, Target 5 Low

69FF: 24 0C BCC $6A0D ; Bitmap is good even with Target 5 Low bad, so branch

 ;

 ; Assume T1 High is the bad T, use appropriate bitmap

6A01: 86 06 LDA #$06 ; 5-bank bitmap: --00-

6A03: 20 08 BRA $6A0D ;

 ;---

 ; There are 2Ts remaining for MB and no bad targets

 ;---

6A05: 86 05 LDA #$05 ; A = 0x05

6A07: 8E 6A 1A LDX #$6A1A ; X = 0x6A1A

6A0A: BD 6A 29 JSR $6A29 ;

 ;

 ; All paths get here with the desired 5-bank bitmap in A

6A0D: 8E 05 FF LDX #$05FF ;

6A10: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6A13: 7E 6A 16 JMP $6A16 ; <nop>

6A16: A7 84 STA ,X ; Store the bitmap into per-player memory at $05FF

6A18: 35 96 PULS A,B,X,PC ;

 ;

---;---

 ;

 ; Addresses to these bytes are loaded into X prior

 ; to calling $6A29 in the code above

 ;

 ; $6A1A There are 2 targets for MB and no bad targets

 ;---

6A1A: 0A ; 5-bank bitmap: -0-0-

6A1B: 18 ; 5-bank bitmap: 00---

6A1C: 0C ; 5-bank bitmap: -00--

6A1D: 06 ; 5-bank bitmap: --00-

6A1E: 03 ; 5-bank bitmap: ---00

 ;

 ; $6A1F There are 3 targets for MB and no bad targets

 ;---

6A1F: 1C ; 5-bank bitmap: 000--

6A20: 0E ; 5-bank bitmap: -000-

6A21: 07 ; 5-bank bitmap: --000

6A22: 0B ; 5-bank bitmap: -0-00

6A23: 1A ; 5-bank bitmap: 00-0-

 ;

 ; $6A24 There are 4 targets for MB and no bad targets

 ;---

6A24: 1B ; 5-bank bitmap: 00-00

6A25: 1E ; 5-bank bitmap: 0000-

6A26: 0F ; 5-bank bitmap: -0000

6A27: 1D ; 5-bank bitmap: 000-0

6A28: 17 ; 5-bank bitmap: 0-000

 ;

---;---

 ;

 ; Called from above with X pointing to one of the above

 ; 5-byte tables and A containing 0x05. This is used to

 ; come up with 5-bank bitmap to use when no bad targets

 ; have been flagged.

 ;

6A29: 34 14 PSHS X,B ;

6A2B: BD A7 5B JSR $A75B ; Get16BitPseudoRandomValueintoA() A gets random 0..4

6A2E: 1F 89 TFR A,B ; Put random 0..4 value into B

6A30: 3A ABX ; Advance X by random value

6A31: A6 84 LDA ,X ; Get the random bimap into A

6A33: 35 94 PULS B,X,PC ;

 ;

---;---

 ;

 ; GetBitmapOf5BankWorkingSwitchesIntoA()

 ;

6A35: 34 04 PSHS B ;

6A37: C6 1F LDB #$1F ; 5-bank bitmap: 00000

6A39: 34 04 PSHS B ; Push bitmap onto stack

6A3B: C6 05 LDB #$05 ; B = 0x05

6A3D: 34 04 PSHS B ; Push 0x05 onto stack

6A3F: 86 FE LDA #$FE ; A = 0xFE, clear bit is low bit

6A41: C6 39 LDB #$39 ; 0x39 = SwitchTableEntry39, 71, Target 1 High

 ;

6A43: BD 96 C3 JSR $96C3 ;--\ BrokenSwitchCheckB() // C-clr if switch is bad

6A46: 25 08 BCS $6A50 ; |

 ; | Current Target B is bad

 ; |-------------------------

6A48: 34 02 PSHS A ; | Save mask onto stack

6A4A: A4 62 ANDA $0002,S ; | Clear bit in the 0x1F mask in the stack

6A4C: A7 62 STA $0002,S ; | Update the 0x1F mask in the stack with cleared bit

6A4E: 35 02 PULS A ; | Pull mask off stack

 ; |

6A50: 1A 01 ORCC #$0001 ; | Set C-bit

6A52: 49 ROLA ; | Rotate left the clear bit mask

6A53: 5C INCB ; | Increment the to next 5-bank target

6A54: 6A E4 DEC ,S ; | Decrement the 5-switch switch counter on the stack

6A56: 26 EB BNE $6A43 ;--/ Keep going until all 5 switches have been checked

 ;

6A58: 35 04 PULS B ; Pull the 5-sw count from stack into B (should be 0x00)

6A5A: 35 02 PULS A ; Pull the updated 0x1F mask off stack into A.

 ; A has mask of all valid/working switches.

6A5C: 35 84 PULS B,PC ;

 ;

---;---

Readers are encouraged to go through the code above for better understanding of how the game works

especially when faced with bad 5-bank targets as compared to when all 5-bank targets are good.

Multiball Lamps, New Logic for L8.4

The same “random” value determinator previously described for the database award will be utilized for

deriving a seemingly random value for multiball lamp patterns. The goal is to come up with a seemingly

“random” value for where the game currently picks a random value to pick from one of 5 possible

patterns for 2, 3, or 4 lamps to light. This new logic will only occur when the game adjustments are

found to have the “Tournament Mode” enabled.

The table below shows the game bookkeeping statistics that are used for deriving the random number

for lit lamps for multiball:

Bookkeeping Entry Addr Bookkeeping Statistic
Participation

Lamp Pattern for 2, 3, 4 hits
remaining for MB start

Bookkeeping B.3 08 "MATCH AWARDS" $18A3

Bookkeeping B.3 28 "1 PLAYER GAMES" $18EB

Bookkeeping B.3 29 "2 PLAYER GAMES" $18F1

Bookkeeping B.3 30 "3 PLAYER GAMES" $18F7

Bookkeeping B.3 31 "4 PLAYER GAMES" $18FD

Bookkeeping B.5 01 "0-1.9 M. SCORE" $1921

Bookkeeping B.5 02 "2-4.9 M. SCORE" $1927

Bookkeeping B.5 03 "3-9.9 M. SCORE" $192D

Bookkeeping B.5 04 "10-19 M. SCORE" $1933

Bookkeeping B.5 05 "20-29 M. SCORE" $1939

Bookkeeping B.5 06 "30-29 M. SCORE" $193F

Bookkeeping B.5 07 "40-49 M. SCORE" $1945

Bookkeeping B.5 08 "50-69 M. SCORE" $194B

Bookkeeping B.5 09 "70-99 M. SCORE" $1951

Bookkeeping B.5 10 "100-149 M. SCORE" $1957

Bookkeeping B.5 11 "150-199 M. SCORE" $195D

Bookkeeping B.5 12 "200-299 M. SCORE" $1963

Bookkeeping B.5 13 "OVER 300 MILLION" $1969

Bookkeeping B.5 14 "GAME TIME 0.0-1.0M" $196F

Bookkeeping B.5 15 "GAME TIME 1.0-1.5M" $1975

Bookkeeping B.5 16 "GAME TIME 1.5-2.0M" $197B

Bookkeeping B.5 17 "GAME TIME 2.0-2.5M" $1981

Bookkeeping B.5 18 "GAME TIME 2.5-3.0M" $1987

Bookkeeping B.5 19 "GAME TIME 3.0-3.5M" $198D

Bookkeeping B.5 20 "GAME TIME 3.5-4.0M" $1993

Bookkeeping B.5 21 "GAME TIME 4-5 M." $1999

Bookkeeping B.5 22 "GAME TIME 5-6 M." $199F

Bookkeeping B.5 23 "GAME TIME 6-8 M." $19A5

Bookkeeping B.5 24 "GAME TIME 8-10 M." $19AB

Bookkeeping B.5 25 "GAME TIME 10-15 M" $19B1

Bookkeeping B.5 26 "GAME TIME > 15 M" $19B7

The 8-bit sum of each of these statistics along with the current player’s number of jackpots achieved are

used to then lookup a byte of ROM from starting point $F900 (ROM offset 0x7F900) in a similar way as

what is done for the L8.4 Tournament Mode Database award logic.

The resulting byte from ROM is then applied to a formula to come up with the random number 0..4, as

indicated in the table below.

Variable Behavior Needed Values Formula to derive value X from byte B
(C-like syntax) Range # of values

5-Bank 0..4 Selector 0..4 5 X = ((B & 0x0F) % 5)

The formula is to take the ROM byte, low nibble modulo 5 which results in a value 0..4. A survey of all

possible values results in the following results:

Variable Behavior Formula Results

5-Bank 0..4 Selector

1 3 0 4 1 3 2 0 0 1 2 0 2 0 1 0

0 2 2 4 2 0 2 4 1 3 4 4 1 2 1 2

3 3 4 4 1 2 4 4 0 4 3 0 0 1 4 3

2 4 3 0 3 1 1 1 3 3 4 1 4 1 3 2

1 0 1 2 4 0 4 1 3 2 1 0 4 0 1 1

2 2 0 3 4 4 2 2 1 0 1 4 1 3 4 4

0..4 Total Occurrances

0
1
2
3
4

53
60
46
42
55

1 2 1 2 3 3 4 4 0 1 2 1 3 0 4 0

4 1 1 2 4 4 4 3 2 0 0 1 4 3 0 3

2 3 0 4 0 1 3 0 1 4 4 4 2 3 1 2

1 2 0 1 4 1 1 1 2 1 3 0 4 0 1 3

3 3 0 4 4 1 4 2 3 1 2 0 4 0 1 0

2 0 4 0 1 0 0 2 0 3 3 0 3 4 4 2

2 1 0 1 4 1 3 4 4 1 2 1 2 3 3 4

4 3 0 3 1 4 1 3 0 2 0 4 1 2 1 0

2 2 2 2 3 4 4 2 2 1 0 1 4 0 3 0

3 1 3 0 0 4 1 1 2 0 1 0 4 2 0 1

As shown, there is a reasonable amount of seemingly random values 0..4 that can occur using this

formula.

Multiball Lamps, Updated Code for L8.4

The portion of lamp code applicable to the L8.4 fixup is shown below with modified code for L8.4

highlighted. This is the logic used to pick a random lamp pattern from a group of 5 possible patterns for

the cases of 2, 3 or 4 lamps to light for multiball. This code starts at $6A1A,31, ROM offset 0x46A1A.

---;---

 ;

 ; Addresses to these bytes are loaded into X prior

 ; to calling $6A29 in the code above. This is only

 ; used when no bad targets are currently flagged.

 ;

 ; $6A1A There are 2 targets remaining for multiball

 ;--

6A1A: 0A ; 5-bank bitmap: -0-0-

6A1B: 18 ; 5-bank bitmap: 00---

6A1C: 0C ; 5-bank bitmap: -00--

6A1D: 06 ; 5-bank bitmap: --00-

6A1E: 03 ; 5-bank bitmap: ---00

 ;

 ; $6A1F There are 3 targets remaining for multiball

 ;--

6A1F: 1C ; 5-bank bitmap: 000--

6A20: 0E ; 5-bank bitmap: -000-

6A21: 07 ; 5-bank bitmap: --000

6A22: 0B ; 5-bank bitmap: -0-00

6A23: 1A ; 5-bank bitmap: 00-0-

 ;

 ; $6A24 There are 4 targets remaining for multiball

 ;--

6A24: 1B ; 5-bank bitmap: 00-00

6A25: 1E ; 5-bank bitmap: 0000-

6A26: 0F ; 5-bank bitmap: -0000

6A27: 1D ; 5-bank bitmap: 000-0

6A28: 17 ; 5-bank bitmap: 0-000

 ;

---;---

 ;

 ;

 ;

 ; Called from above with X pointing to one of the above

 ; 5-byte tables and A containing 0x05. This is used to

 ; come up with 5-bank bitmap to use when no bad targets

 ; have been flagged.

 ;

6A29: 34 14 PSHS X,B ;

 ;

6A2B: BD A7 5B JSR $A75B ; Get16BitPseudoRandomValueintoA() 0..4 into A

6A2E: 1F 89 TFR A,B ; Put random 0..4 value into B

6A30: 3A ABX ; Advance X by random value

 ;

6A2B: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

6A2E: 6C 0C 34 ; L84MultiballLampsTournamentModeEnhancement()

 ;

6A31: A6 84 LDA ,X ; Get the random bimap into A

6A33: 35 94 PULS B,X,PC ;

 ;

---;---

The old L-8 code is replaced with a jump to the new L8.4 code located in bank $34. The new L8.4 code

checks for Tournament Mode and performs either the original L-8 logic or performs new fixup logic as

described.

The new code entry point is at $6C0C,34. The full set of new code added to bank $34 is as follows.

---;---

 ;

 ; Get variable value 0..4 for multiball lamp pattern

 ;--

6BF2: 34 30 PSHS Y,X ; Preserve Y and X

6BF4: 8E 05 9D LDX #$059D ; Number of Jackpots

6BF7: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6BFA: A6 84 LDA ,X ; A gets # of player's jackpots, starting seed value

6BFC: AE E4 LDX ,S ; Get X original value from the stack

6BFE: 8D 97 BSR $6B97 ; Call function that gets "random" byte from ROM into A

 ;

6C00: 84 0F ANDA #$0F ; Just mask off the low 4 bits

6C02: 81 04 CMPA #$04 ;

6C04: 23 04 BLS $6C0A ; If A is less then or equal to 4 then we are done

6C06: 80 05 SUBA #$05 ;

6C08: 20 F8 BRA $6C02 ; Keep looping until A is 0..4

6C0A: 35 B0 PULS X,Y,PC ;

 ;

---;---

 ;

6C0C: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

6C0F: 9A 01 ; StandardAdjustment026, Tournament Play Adj=0x9A

6C11: 24 05 BCC $6C18 ; C-clr, tournament mode is on, branch to L8.4 fixups

 ;

 ; c-set, here tournament mode is off, do L-8 code

6C13: BD A7 5B JSR $A75B ; Get16BitPseudoRandomValueintoA() // gets random 0..4

6C16: 20 09 BRA $6C21 ; Go put 0..4 into B and advance X by random value

 ;

 ; Do L8.4 tournament mode multiball lamps

6C18: 34 10 PSHS X ; Save x as we need to return updated X value to caller

6C1A: 8E 6B 1D LDX #$6B1D ; X gets addr of adjustment addresses for MB award seed

6C1D: 8D D3 BSR $6BF2 ; Get random number 0..4 into A

6C1F: 35 10 PULS X ;

 ;

6C21: 1F 89 TFR A,B ; Put random 0..4 value into B

6C23: 3A ABX ; Advance X by random value

6C24: 39 RTS ;

 ;

---;---

The code for multiball tournament mode chooses a “random” value 0..4 based on the game

bookkeeping 8-bit sum with lookup into the ROM at $F900, then proceeds with the algorithm previously

described. The result is a value 0..4 that the calling code can use to pick one of 5 lamp patterns when

there are 2, 3, or 4 hits remaining for starting multiball. The same 8-bit sum is calculated for all players

in the same tournament mode game which results in the same 2-lamp, 3-lamp and 4-lamp patterns for

all players in the tournament mode game.

Tournament Mode Enhancement: Jackpot Lamp, L8.4

To further improve the L8.4 fixups for Tournament Mode, the jackpot lamp selector is updated in L8.4 so

that all players are given the same “random” lamp for each successive jackpot. This refers to the single

5-bank lamp the game will illuminate when the player is going for 1X, 2X or 3X jackpot during multiball.

Normally each player gets a randomly lit target, however for L8.4 when Tournament Mode is enabled,

the game will ensure all players have the same lamp for their first jackpot. For the second jackpot a

different “random” lamp may be chosen while all players get the same such “random” lamp for their

second jackpot, and so on.

The per-player number of jackpots statistic is used in the determination of the “random” number in

order to get the expected behavior for L8.4.

Jackpot Lamp, Existing Code L-8

The game uses a set of logic to check for failed 5-bank target switches in order to pick a jackpot target

lamp that is not associated with a failed target switch. When all 5 targets are good, then the game picks

a random value 0..4 to pick one of the 5 targets that will be used for the jackpot attempt.

---;---

 ;

5876: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

5879: 00 86 ; ID 0086 is Multiball running

587B: 24 34 BCC $58B1 ; MB is running go to $58B1 for jackpot attempt

 ;

587D: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

5880: 48 ;

5881: 24 2E BCC $58B1 ;

5883: BD 87 BE JSR $87BE ; ExtinguishLampGroupParamBytes()

5886: 18 10 ;

5888: 0F D3 CLR $D3 ; Clears the super-jackpot flag $D3

588A: 8E 05 FF LDX #$05FF ; Per-player 5-bank lamps bitmap for MB, 01 = top lamp

588D: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

5890: 7E 58 93 JMP $5893 ; <nop>

5893: E6 84 LDB ,X ;

5895: 34 04 PSHS B ;

5897: 86 11 LDA #$11 ;

5899: 34 02 PSHS A ; --\

589B: A6 61 LDA $0001,S ; |

589D: 85 01 BITA #$01 ; |

589F: 35 02 PULS A ; |

58A1: 27 05 BEQ $58A8 ; |

58A3: C6 40 LDB #$40 ; |

58A5: BD 9E 7F JSR $9E7F ; | ValidateThenSingleLampSetIndexAPlaneB()

58A8: 4C INCA ; |

58A9: 64 E4 LSR ,S ; |

58AB: 26 EC BNE $5899 ; --/

 ;

58AD: 35 04 PULS B ;

58AF: 20 5C BRA $590D ;

 ;

58B1: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

58B4: 42 ; Flag 0x42 is RAM $0328 bit 0x02

58B5: 25 08 BCS $58BF ; C-set then not in super jackpot, skip to $58BF

58B7: BD 89 48 JSR $8948 ; Schedules function that sets super-jackpot mode and

58BA: 59 26 34 ; cycles the arrow

58BD: 20 4E BRA $590D ;

 ;

58BF: BD 87 BE JSR $87BE ; ExtinguishLampGroupParamBytes()

58C2: 18 10 ; 5-bank target lamps

 ;

58C4: 7D 06 07 TST $0607 ; Check bad 5-bank switch count, set at $68DC,31

58C7: 27 32 BEQ $58FB ; If no bad switches jump over the bad sw checks

 ;

58C9: 86 02 LDA #$02 ; A=0x02 for lamp 3

58CB: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

58CE: 3B ; 0x3B = SwitchTableEntry3B, 73, Target 3

58CF: 10 25 00 2D LBCS $5900 ; Target 3 is active, use target 3

 ;

58D3: 86 03 LDA #$03 ; A=0x03 for lamp 4

58D5: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

58D8: 3C ; 0x3C = SwitchTableEntry3C, 74, Target 4

58D9: 10 25 00 23 LBCS $5900 ; Target 4 is active, use target 4

 ;

58DD: 86 01 LDA #$01 ; A=0x01 for lamp 2

58DF: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

58E2: 3A ; 0x3A = SwitchTableEntry3A, 72, Target 2

58E3: 10 25 00 19 LBCS $5900 ; Target 2 is active, use target 2

 ;

58E7: 86 04 LDA #$04 ; A=0x04 for lamp 5

58E9: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

58EC: 3D ; 0x3D = SwitchTableEntry3D, 75, Target 5 Low

58ED: 10 25 00 0F LBCS $5900 ; Target 5 is active, use target 5

 ;

58F1: 86 00 LDA #$00 ; A=0x00 for lamp 1

58F3: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-clr = switch broken

58F6: 39 ; 0x39 = SwitchTableEntry39, 71, Target 1 High

58F7: 10 25 00 05 LBCS $5900 ; Target 1 is active, use target 1

 ;

58FB: 86 05 LDA #$05 ; A=0x05

58FD: BD A7 5B JSR $A75B ; Get16BitPseudoRandomValueintoA() // gets random 0..4

 ;

5900: C6 3D LDB #$3D ; Starting lamp Target 1 High

5902: 34 04 PSHS B ;

5904: AB E0 ADDA ,S+ ; A gets set to $3D..$41 to correspond to value 0..4

5906: 97 D3 STA $D3 ;

5908: C6 40 LDB #$40 ; Lamp plane 0x40 (blinky lamps)

590A: BD AD F9 JSR $ADF9 ; Light the single 5-bank lamp for jackpot

 ;

590D: BD 83 92 JSR $8392 ; -\

5910: 06 ; |

5911: BD 83 46 JSR $8346 ; | Sleep()

5914: 04 ; |

5915: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-clr means ID is found

5918: 00 AB ; |

591A: 24 F1 BCC $590D ; |

591C: BD 86 90 JSR $8690 ; | SearchLinkedListForId() // c-clr means ID is found

591F: 00 84 ; |

5921: 24 EA BCC $590D ; -/

 ;

5923: 7E C6 5F JMP $C65F ;

 ;

---;---

The function, above contains checks for whether multiball is running and, if so, whether to go for Super

Jackpot or for ordinary jackpot. When going for ordinary jackpot the game then picks a random value

0..4 to use as the lit lamp, converting it to lamp index $3D..$41.

Multiball Lamps, New Logic for L8.4

For L8.4 the logic for choosing random value 0..4 is same as that used for the Multiball hits lamp

patterns except a different set of bookkeeping statistics are used to create the seed value used to look

up a “random” byte from ROM.

The table below shows game bookkeeping statistics that are used for deriving the random number for

jackpot lamp. This is same set of statistics used for the hits-remaining random number.

Bookkeeping Entry Addr Bookkeeping Statistic
Participation

Jackpot Lamp

Bookkeeping B.3 08 "MATCH AWARDS" $18A3

Bookkeeping B.3 28 "1 PLAYER GAMES" $18EB

Bookkeeping B.3 29 "2 PLAYER GAMES" $18F1

Bookkeeping B.3 30 "3 PLAYER GAMES" $18F7

Bookkeeping B.3 31 "4 PLAYER GAMES" $18FD

Bookkeeping B.5 01 "0-1.9 M. SCORE" $1921

Bookkeeping B.5 02 "2-4.9 M. SCORE" $1927

Bookkeeping B.5 03 "3-9.9 M. SCORE" $192D

Bookkeeping B.5 04 "10-19 M. SCORE" $1933

Bookkeeping B.5 05 "20-29 M. SCORE" $1939

Bookkeeping B.5 06 "30-29 M. SCORE" $193F

Bookkeeping B.5 07 "40-49 M. SCORE" $1945

Bookkeeping B.5 08 "50-69 M. SCORE" $194B

Bookkeeping B.5 09 "70-99 M. SCORE" $1951

Bookkeeping B.5 10 "100-149 M. SCORE" $1957

Bookkeeping B.5 11 "150-199 M. SCORE" $195D

Bookkeeping B.5 12 "200-299 M. SCORE" $1963

Bookkeeping B.5 13 "OVER 300 MILLION" $1969

Bookkeeping B.5 14 "GAME TIME 0.0-1.0M" $196F

Bookkeeping B.5 15 "GAME TIME 1.0-1.5M" $1975

Bookkeeping B.5 16 "GAME TIME 1.5-2.0M" $197B

Bookkeeping B.5 17 "GAME TIME 2.0-2.5M" $1981

Bookkeeping B.5 18 "GAME TIME 2.5-3.0M" $1987

Bookkeeping B.5 19 "GAME TIME 3.0-3.5M" $198D

Bookkeeping B.5 20 "GAME TIME 3.5-4.0M" $1993

Bookkeeping B.5 21 "GAME TIME 4-5 M." $1999

Bookkeeping B.5 22 "GAME TIME 5-6 M." $199F

Bookkeeping B.5 23 "GAME TIME 6-8 M." $19A5

Bookkeeping B.5 24 "GAME TIME 8-10 M." $19AB

Bookkeeping B.5 25 "GAME TIME 10-15 M" $19B1

Bookkeeping B.5 26 "GAME TIME > 15 M" $19B7

The 8-bit sum of each of these statistics are then added to the per-player jackpots counter and the

resulting sum is used to lookup a byte of ROM from starting point $F900 (ROM offset 0x7F900).

The resulting byte from ROM is then applied to a formula to come up with the random number 0..4, as

indicated in the table below.

Variable Behavior Needed Values Formula to derive value X from byte B
(C-like syntax) Range # of values

Jackpot 0..4 Selector 0..4 5 X = ((B & 0x0F) % 5)

The resulting value is simply the low nibble modulo 5 which results in a value of 0..5 for any value. This

formula results in a relatively even number of values 0..4 from ROM $F900 that can be obtained as

shown in the table of possible values below.

Variable Behavior Formula Results

Jackpot 0..4 Selector

0 = Target 1 High
1 = Target 2
2 = Target 3
3 = Target 4
4 = Target 5 Low

1 3 0 4 1 3 2 0 0 1 2 0 2 0 1 0

0 2 2 4 2 0 2 4 1 3 4 4 1 2 1 2

3 3 4 4 1 2 4 4 0 4 3 0 0 1 4 3

2 4 3 0 3 1 1 1 3 3 4 1 4 1 3 2

1 0 1 2 4 0 4 1 3 2 1 0 4 0 1 1

2 2 0 3 4 4 2 2 1 0 1 4 1 3 4 4

1 2 1 2 3 3 4 4 0 1 2 1 3 0 4 0

4 1 1 2 4 4 4 3 2 0 0 1 4 3 0 3

2 3 0 4 0 1 3 0 1 4 4 4 2 3 1 2

1 2 0 1 4 1 1 1 2 1 3 0 4 0 1 3

3 3 0 4 4 1 4 2 3 1 2 0 4 0 1 0

2 0 4 0 1 0 0 2 0 3 3 0 3 4 4 2

2 1 0 1 4 1 3 4 4 1 2 1 2 3 3 4

4 3 0 3 1 4 1 3 0 2 0 4 1 2 1 0

2 2 2 2 3 4 4 2 2 1 0 1 4 0 3 0

3 1 3 0 0 4 1 1 2 0 1 0 4 2 0 1

0..4 Total Occurrances

0
1
2
3
4

53
60
46
42
55

As shown, a mix of possible values are possible with a mix of different values with a mix of repeating and

mismatched values. This will give the players in Tournament Mode a fair mix of “random” behavior

while giving all players in the same tournament mode game the same experience.

Jackpot Lamp, Updated Code for L8.4

The applicable portion of the jackpot lamp code is shown below with modification for L8.4. This

depicted code starts at $58F1,34, ROM offset 0x518F1.

58F1: 86 00 LDA #$00 ; A=0x00 for lamp 1

58F3: BD 83 39 JSR $8339 ; BrokenSwitchCheckParameterByte() C-set if switch

 ; active. C-clr is switch broken.

58F6: 39 ; 0x39 = SwitchTableEntry39, 71, Target 1 High

58F7: 10 25 00 05 LBCS $5900 ; Target 1 is active, use target 1

 ;

58FB: 86 05 LDA #$05 ; A=0x05

58FD: BD A7 5B JSR $A75B ; Get16BitPseudoRandomValueintoA() // gets 0..4 in A

58FD: BD 6C 25 JSR $6C25 ; L84JackpotLampJumpPoint()

 ;

5900: C6 3D LDB #$3D ; Starting lamp Target 1 High

5902: 34 04 PSHS B ;

5904: AB E0 ADDA ,S+ ; A gets set to $3D..$40 to correspond to 0..4

5906: 97 D3 STA $D3 ;

5908: C6 40 LDB #$40 ;

590A: BD AD F9 JSR $ADF9 ; Light the single 5-bank lamp for jackpot

The L8.4 code jumps to new code in the same bank $34 which performs original L-8 code if Tournament

Mode is not set. If Tournament Mode is set, then a “random” value 0..4 is chosen using the described

formula.

The new function at $6C25,34, ROM offset 0x52C25, is as follows:

---;---

 ;

6C25: BD 86 5B JSR $865B ; LookupGameAdjustmentParameter1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

6C28: 9A 01 ; StandardAdjustment026, Tournament Play Adj=0x9A

6C2A: 24 05 BCC $6C31 ; C-clr, tournament mode is on, branch to L8.4 fixups

 ;

 ; c-set, here tournament mode is off, do L-8 code

6C2C: BD A7 5B JSR $A75B ; Get16BitPseudoRandomValueintoA() // gets random 0..4

6C2F: 20 09 BRA $6C3A ; done

 ;

 ; Do L8.4 tournament mode jackpot lamp

6C31: 34 10 PSHS X ; Save x in case caller needs it unmodified

6C33: 8E 6B 67 LDX #$6B67 ; X gets addr of adjustment addresses for jackpot seed

6C36: 8D BA BSR $6BF2 ; Get random number 0..4 into A

6C38: 35 10 PULS X ;

 ;

6C3A: 39 RTS ;

 ;

---;---

The jackpot lamp function for L8.4 checks for tournament mode. If tournament mode is not set, then

the original L-8 code proceeds where a genuine random value is obtained. If tournament mode is set

then a “random” value is chosen based on the logic previously described.

Tournament Mode Enhancement: Video Mode, L8.4

The L8.4, out of completeness and fairness to players in a tournament, enhances the Video Mode when

Tournament Mode is enabled so that all players in a multiplayer game get the same video mode

experience. The L-8 video mode utilizes 4 different random numbers to determine various

characteristics of the video mode experience:

 Maximum number of terminator kills before video mode ends

 Number of terminator kills before hunter ship appears

 Number of terminator kills before head popup appears

 Whether or not the head popup will occur

 Number of terminator kills before EB award appears

 Direction of next terminator appearing from left or right

 Timing of next terminator how it steps before firing

For L8.4 the Tournament Mode will use a similar mechanism described previously to ensure that all

players in a tournament mode game will have identical video mode opportunities thereby removing the

actual or perceived unfairness that one player might otherwise have over another player when their

video mode is easier to acquire more points.

Video Mode, Existing Code L-8

Below is video mode code from bank $2B. This code starts at $42E8,2B, ROM offset 0x2C2E8. The code

is partially annotated and serves as a starting point for readers interested in how the T2 Video Mode

works.

---;---

 ;

 ; VideoMode()

 ;

42E8: BD FB AE JSR $FBAE ; ClearDisplayMemory()

42EB: 7E 42 EE JMP $42EE ; <nop>

 ;

42EE: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

42F1: AB ; 0xAB = “Video mode activated”

 ;

42F2: BD 88 D5 JSR $88D5 ; IncreaseBookkeepingCounterAddrXBy1ParamBytes()

42F5: 00 22 ; Video Mode Started

 ;

42F7: BD D7 99 JSR $D799 ; Print string on DMD

42FA: 00 C2 ; 0xC2 "VIDEO MODE"

42FC: 09 ; font

42FD: 40 0A ; coordinates

42FF: BD D3 B7 JSR $D3B7 ;

4302: BD D7 99 JSR $D799 ; Print string on DMD

4305: 00 C3 ; 0xC3 "USE FLIPPER BUTTONS"

4307: 01 ; font

4308: 40 13 ; coordiates

430A: BD D7 99 JSR $D799 ; Print string on DMD

430D: 00 C4 ; 0xC4 "TO MOVE SIGHT"

430F: 01 ; font

4310: 40 1D ; coordinates

4312: C6 14 LDB #$14 ;

 ;

4314: BD E2 74 JSR $E274 ;--\ dmd update related

 ; |

4317: BD 83 46 JSR $8346 ; |

431A: 06 ; | 0.09375 seconds

421B: 5A DECB ; |

431C: 26 F6 BNE $4314 ;--/

 ;

431E: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

4321: B9 ; 0xB9 = “Destroy everything”

 ;

4322: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4325: 49 58 2A ;

 ;

4328: 7F 06 44 CLR $0644 ;

432B: 7F 06 43 CLR $0643 ;

432E: 7F 06 45 CLR $0645 ;

4331: 7F 06 48 CLR $0648 ;

4334: 8E 06 4E LDX #$064E ;

4337: CC 00 30 LDD #$0030 ;

433A: A7 84 STA ,X ;

433C: ED 01 STD $0001,X ;

433E: A7 03 STA $0003,X ;

4340: A7 04 STA $0004,X ;

 ;

4342: BD 89 48 JSR $8948 ;

4345: 44 AE 2B ;

 ;

4348: 8E 00 31 LDX #$0031 ;

434B: 10 8E 00 1C LDY #$001C ;

434F: C6 11 LDB #$11 ;

 ;

4351: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4354: 49 6C 2A ;

 ;

4357: 86 33 LDA #$33 ;

4359: A7 C8 15 STA $15,U ;

435C: 6F 4C CLR $000C,U ;

435E: FF 06 38 STU $0638 ;

 ;

4361: BD 89 48 JSR $8948 ;

4364: 42 5B 2B ;

 ;

4367: BD 89 48 JSR $8948 ;

436A: 42 BF 2B ;

 ;

436D: BD A7 25 JSR $A725 ; GetPseudoRandomNumberIntoA()

4370: 84 07 ANDA #$07 ; Make it 0..7 random number basis for:

 ; max number of terminator kills (0..7 plus 0x14)

 ; number of terminator kills before ship appears

4372: 34 02 PSHS A ;

 ;

4374: 8B 14 ADDA #$14 ;

4376: B7 06 46 STA $0646 ; $0646 gets max num of kills 14 + 0..7 random number

 ;

4379: 48 ASLA ;

437A: B7 06 4B STA $064B ; $064B gets 2x max number of terminator kills allowed

 ;

437D: A6 E0 LDA ,S+ ;

437F: 8B 05 ADDA #$05 ;

4381: B7 06 47 STA $0647 ; $0647 gets num of kills before flying ship appears

 ;

4384: 34 02 PSHS A ;

4386: BD A7 25 JSR $A725 ; GetPseudoRandomNumberIntoA()

4389: 84 03 ANDA #$03 ; Make it 0..3 random number basis for:

 ; number of terminator kills before head popup

 ; whether or not head-popup will appear

 ; number of terminator kills before EB appears

438B: 34 02 PSHS A ;

438D: 8B 02 ADDA #$02 ;

438F: AB 61 ADDA $0001,S ;

4391: B7 06 49 STA $0649 ; $0649 gets number of kills before head popup

 ;

4394: 84 07 ANDA #$07 ;

4396: B7 06 4A STA $064A ; Random number 0..7, when 0 no head popup will happen

 ;

4399: A6 E1 LDA ,S++ ;

439B: 8B 02 ADDA #$02 ;

439D: B7 06 4D STA $064D ; $064D gets number of kills before EB shown

 ;

43A0: 4F CLRA ;

43A1: BD FA 1E JSR $FA1E ; Checking if Video Mode should include Extra Ball

43A4: 7E 43 A7 JMP $43A7 ; <nop>

43A7: 25 01 BCS $43AA ;

43A9: 4C INCA ;

43AA: B7 06 4C STA $064C ; $064C non-zero if extra ball should be included

 ;

43AD: BD FB AE JSR $FBAE ; ClearDisplayMemory()

43B0: 7E 43 B3 JMP $43B3 ; <nop>

 ;

43B3: B6 06 44 LDA $0644 ;--\ $0644 = kills, $0646 max kills

43B6: B1 06 46 CMPA $0646 ; | If $0644 is <= $0646 video mode keeps running

43B9: 25 05 BCS $43C0 ; |

43BB: BD 9E 0A JSR $9E0A ; | CancelSelf()

43BE: 20 54 BRA $4414 ; | Brach to End-of-Video-mode, with award

 ; |

43C0: 86 03 LDA #$03 ; |

43C2: B1 06 43 CMPA $0643 ; | if ($0643 == 0x03) True = cracked glass

43C5: 26 1B BNE $43E2 ; | {

43C7: BD 9E 0A JSR $9E0A ; | CancelSelf()

43CA: 7F 06 43 CLR $0643 ; | Reset $0643 to 0x03

43CD: BE 06 38 LDX $0638 ; |

43D0: 86 12 LDA #$12 ; |

43D2: A7 01 STA $0001,X ; |

43D4: 86 01 LDA #$01 ; |

43D6: A7 84 STA ,X ; |

43D8: A7 0C STA $000C,X ; |

43DA: 6F 02 CLR $0002,X ; |

43DC: 6F 03 CLR $0003,X ; |

43DE: BD 85 46 JSR $8546 ; | DoSoundTableParameterByte()

43E1: B6 ; | 0xB6=Smashey

 ; | }

 ; |

43E2: BE 06 38 LDX $0638 ; | if (player got shot, ending video mode)

43E5: A6 01 LDA $0001,X ; | {

43E7: 81 12 CMPA #$12 ; |

43E9: 26 06 BNE $43F1 ; |

43EB: A6 84 LDA ,X ; |

43ED: 81 08 CMPA #$08 ; |

43EF: 27 7A BEQ $446B ; | Goto End-of-Video mode, no award

 ; | }

 ; |

43F1: BD D3 60 JSR $D360 ; | Clear512BytesFrom1799Pointer()

43F4: BD 88 F5 JSR $88F5 ; | CallBankedFunction_Param_WPCAddr()

43F7: 49 B2 2A ; |

 ; |

43FA: B6 06 43 LDA $0643 ; |

43FD: B1 06 45 CMPA $0645 ; | Checking if current crosshairs is on a target?

4400: 27 09 BEQ $440B ; | {

4402: BD FB CB JSR $FBCB ; | getting here flashes display and kills robot

4405: 7E 44 08 JMP $4408 ; | <nop>

4408: B7 06 45 STA $0645 ; |

 ; | }

440B: BD E2 74 JSR $E274 ; | display related

440E: BD 83 46 JSR $8346 ; | Sleep()

4411: 04 ; | 0.0625 seconds

4412: 20 9F BRA $43B3 ;--/

 ;

4414: BD FB AE JSR $FBAE ; ClearDisplayMemory()

4417: 7E 44 1A JMP $441A ; <nop>

441A: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

441D: BA ; 0xBA = “Well done”

441E: BD 88 D5 JSR $88D5 ; IncreaseBookkeepingCounterAddrXBy1ParamBytes()

4421: 00 23 ; Video Mode End

4423: BD D7 99 JSR $D799 ; Print string on DMD

4426: 00 C1 ; 0xC1 "YOU WIN"

4428: 10 ;

4429: 40 0E ;

442B: BD D7 99 JSR $D799 ; Print string on DMD

442E: 00 C6 ; 0xC6 "5\,000\,000"

4430: 10 ;

4431: 40 1F ;

4433: BD 85 46 JMP $8546 ; DoSoundTableParameterByte()

4436: B3 ; 0xB3 = Dat dat dat do woo

4437: 8E 06 4E LDX #$064E ;

443A: BD F7 82 JSR $F782 ; Copy BCD score bytes from X to $0577

443D: 7E 44 40 JMP $4440 ; <nop>

4440: 8E 05 7C LDX #$057C ;

4443: CC 00 05 LDD #$0005 ;

4446: ED 84 STD ,X ;

4448: A7 02 STA $0002,X ;

444A: A7 03 STA $0003,X ;

444C: A7 04 STA $0004,X ;

444E: BD F7 A7 JSR $F7A7 ;

4451: 7E 44 54 JMP $4454 ; <nop>

4454: 8E 06 4E LDX #$064E ;

4457: BD F7 CD JSR $F7CD ; <Puts skill shot score in X> during ss call to this fn

445A: 7E 44 5D JMP $445D ; <nop>

445D: C6 0B LDB #$0B ;

 ;

445F: BD E2 74 JSR $E274 ;--\ display related

4462: BD 83 46 JSR $8346 ; | Sleep()

4465: 08 ; | 0.125 seconds

4466: 5A DECB ; |

4467: 26 F6 BNE $445F ;--/

 ;

4469: 20 04 BRA $446F ;

446B: BD 83 46 JSR $8346 ; Sleep()

446E: 20 ; 1/2 second

 ;

446F: BD FB AE JSR $FBAE ; ClearDisplayMemory()

4472: 7E 44 75 JMP $4475 ; <nop>

4475: F6 06 44 LDB $0644 ; Get number of kills into B

4478: BD D7 99 JSR $D799 ; Print string on DMD

447B: 00 C5 ; 0xC5 "%b TERMINATORS"

447D: 09 ; font

447E: 40 0C ; coordinates

4480: 10 8E 06 4E LDY #$064E ;

 ;

4484: BD D7 99 JSR $D799 ; Print string on DMD

4487: 00 26 ; 0x26 "%ixy"

4489: 10 ; font

448A: 40 1D ; coordinates

 ;

448C: BD D3 B7 JSR $D3B7 ; display related

448F: BD FB CB JSR $FBCB ;

4492: 7E 44 95 JMP $4495 ; <nop>

4495: C6 3C LDB #$3C ;

 ;

4497: BD E2 74 JSR $E274 ;--\ display text related

449A: BD 83 46 JSR $8346 ; | Sleep()

449D: 03 ; | 0.046875 seconds

449E: 5A DECB ; |

449F: 26 F6 BNE $4497 ;--/

 ;

44A1: 86 05 LDA #$05 ;

44A3: C6 01 LDB #$01 ;

44A5: 8E 06 4E LDX #$064E ;

44A8: BD BA CD JSR $BACD ;

44AB: 7E C9 52 JMP $C952 ; <nop>

 ;

---;---

 ;

 ; Loop that periodically puts things on the display

 ; during video mode

 ;

44AE: 7F 06 3A CLR $063A ;

 ;

44B1: B6 06 44 LDA $0644 ;--\

44B4: BB 06 3A ADDA $063A ; |

44B7: B1 06 46 CMPA $0646 ; | $0646 is max number of terminator kills

44BA: 25 03 BCS $44BF ; |

44BC: 7E 99 A2 JMP $99A2 ; |

 ; |

44BF: B6 06 3A LDA $063A ; |

44C2: 81 06 CMPA #$06 ; |

44C4: 10 24 01 42 LBCC $460A ; | C-clear? Done with this pass

44C8: B6 06 44 LDA $0644 ; | A gets $0644, number of terminators hit

44CB: B1 06 47 CMPA $0647 ; | Compare kills w/$0647 (hits until flying ship)

44CE: 25 32 BCS $4502 ; | If kills not at $0647 limit, skip over this section

 ; |

 ; | Kills reached $0647 limit, now show flying ship

44D0: 8E 00 80 LDX #$0080 ; |

44D3: 10 8E 00 1F LDY #$001F ; |

44D7: C6 13 LDB #$13 ; |

44D9: BD 88 F5 JSR $88F5 ; |

44DC: 49 ROLA ; |

44DD: 6C 2A INC $000A,Y ; |

44DF: 10 25 01 27 LBCS $460A ; | C-set? Done with this pass

44E3: 86 FF LDA #$FF ; |

44E5: B7 06 47 STA $0647 ; | Load 0xFF into $0647 so no more ships will appear

44E8: BD 85 46 JSR $8546 ; |

44EB: B1 86 17 CMPA $8617 ; |

44EE: A7 4C STA $000C,U ; |

44F0: 86 FC LDA #$FC ; |

44F2: A7 48 STA $0008,U ; |

44F4: 8E 47 03 LDX #$4703 ; |

44F7: C6 2B LDB #$2B ; |

44F9: AF C8 11 STX $11,U ; |

44FC: E7 C8 13 STB $13,U ; |

44FF: 16 00 FB LBRA $45FD ; |

 ; |

4502: B1 06 49 CMPA $0649 ; | Compare kills w/$0649 limit (hits until head popup)

4505: 25 37 BCS $453E ; |

 ; |

 ; | Kills reached $0649 limit, now show head popup

4507: 7D 06 4A TST $064A ; | Check random number 0..7 in $064A

450A: 27 32 BEQ $453E ; | If random number is 00 then NO head this time

450C: 8E 00 60 LDX #$0060 ; |

450F: 10 8E 00 3F LDY #$003F ; |

4513: C6 15 LDB #$15 ; |

4515: BD 88 F5 JSR $88F5 ; |

4518: 49 6C 2A ; |

451B: 10 25 00 EB LBCS $460A ; | C-set? Done with this pass

451F: 86 FF LDA #$FF ; |

4521: B7 06 49 STA $0649 ; | Load 0xFF into $0649 so no more head will appear

4524: BD 85 46 JSR $8546 ; | DoSoundTableParameterByte()

4527: B4 ; | 0xB4 = Elevating wribble

4528: 86 02 LDA #$02 ; |

452A: A7 4C STA $000C,U ; |

452C: 86 F8 LDA #$F8 ; |

452E: A7 4A STA $000A,U ; | U[A] re dir and pos on the DMD of the animation

4530: 8E 46 91 LDX #$4691 ; | $4691,2B handles head popup animation

4533: C6 2B LDB #$2B ; |

4535: AF C8 11 STX $11,U ; |

4538: E7 C8 13 STB $13,U ; |

453B: 16 00 BF LBRA $45FD ; |

 ; |

453E: B1 06 4D CMPA $064D ; | Compare kills w/$064D limit (hits until EB)

4541: 25 46 BCS $4589 ; |

 ; |

4543: 7D 06 4C TST $064C ; | Test $064C to see if EB should be in video mode

4546: 27 41 BEQ $4589 ; |

4548: 10 BE 06 38 LDY $0638 ; | Adding "EB" to video mode

454C: 6D 22 TST $0002,Y ; |

454E: 26 0B BNE $455B ; |

4550: A6 23 LDA $0003,Y ; |

4552: 81 40 CMPA #$40 ; |

4554: 25 05 BCS $455B ; |

4556: 8E 00 10 LDX #$0010 ; |

4559: 20 03 BRA $455E ; |

455B: 8E 00 60 LDX #$0060 ; |

455E: 10 8E 00 00 LDY #$0000 ; |

4562: C6 14 LDB #$14 ; |

4564: BD 88 F5 JSR $88F5 ; |

4567: 49 6C 2A ; |

456A: 10 25 00 9C LBCS $460A ; | C-set? Done with this pass

456E: 86 FF LDA #$FF ; |

4570: B7 06 4D STA $064D ; | Load 0xFF into $064D so no more EB will appear

4573: 86 04 LDA #$04 ; |

4575: A7 4C STA $000C,U ; |

4577: 86 04 LDA #$04 ; |

4579: A7 4A STA $000A,U ; |

457B: 8E 47 03 LDX #$4703 ; |

457E: C6 2B LDB #$2B ; |

4580: AF C8 11 STX $11,U ; |

4583: E7 C8 13 STB $13,U ; |

4586: 16 00 74 LBRA $45FD ; |

 ; |

4589: 8E 46 11 LDX #$4611 ; |

458C: 10 8E FF E6 LDY #$FFE6 ; |

4590: BD A7 25 JSR $A725 ; | GetPseudoRandomNumberIntoA()

4593: 84 01 ANDA #$01 ; | Make it 0..1, 0=Robot enters from left. 1=right

4595: F6 06 49 LDB $0649 ; |

4598: C1 F0 CMPB #$F0 ; |

459A: 23 01 BLS $459D ; |

459C: 4F CLRA ; |

459D: B7 06 3B STA $063B ; |

45A0: 27 07 BEQ $45A9 ; |

45A2: 8E 46 51 LDX #$4651 ; |

45A5: 10 8E 00 80 LDY #$0080 ; |

45A9: BD A7 25 JSR $A725 ; | GetPseudoRandomNumberIntoA()

45AC: 34 02 PSHS A ; |

45AE: B6 06 44 LDA $0644 ; |

45B1: B1 06 4B CMPA $064B ; | $064B is 2x max number of terminator kills allowed

45B4: 23 08 BLS $45BE ; |

45B6: 35 04 PULS B ; |

45B8: C4 07 ANDB #$07 ; | Make it 0..7, robot distance, 0=shorter. 7=farther

45BA: CB 08 ADDB #$08 ; |

45BC: 20 04 BRA $45C2 ; |

45BE: 35 04 PULS B ; |

45C0: C4 0F ANDB #$0F ; |

45C2: 3A ABX ; |

45C3: 3A ABX ; |

45C4: 3A ABX ; |

45C5: 3A ABX ; |

45C6: EC 02 LDD $0002,X ; |

45C8: B7 06 3C STA $063C ; |

45CB: F7 06 3D STB $063D ; |

45CE: AE 84 LDX ,X ; |

45D0: 1E 12 EXG X,Y ; |

45D2: 7D 06 3B TST $063B ; |

45D5: 27 04 BEQ $45DB ; |

45D7: C6 0D LDB #$0D ; |

45D9: 20 02 BRA $45DD ; |

45DB: C6 0E LDB #$0E ; |

45DD: BD 88 F5 JSR $88F5 ; |

45E0: 49 6C 2A ; |

45E3: 25 25 BCS $460A ; | C-set? Done with this pass

45E5: B6 06 3C LDA $063C ; |

45E8: A7 4C STA $000C,U ; |

45EA: B6 06 3D LDA $063D ; |

45ED: A7 48 STA $0008,U ; |

45EF: E7 C8 14 STB $14,U ; |

45F2: 8E 46 C5 LDX #$46C5 ; |

45F5: C6 2B LDB #$2B ; |

45F7: AF C8 11 STX $11,U ; |

45FA: E7 C8 13 STB $13,U ; |

 ; |

45FD: 8E 47 07 LDX #$4707 ; |

4600: C6 2B LDB #$2B ; |

4602: AF 4E STX $000E,U ; |

4604: E7 C8 10 STB $10,U ; |

4607: 7C 06 3A INC $063A ; | Increment the loop counter

460A: BD 83 46 JSR $8346 ; | Sleep()

460D: 1D ; | 0.453125 seconds

460E: 16 FE A0 LBRA $44B1 ;--/

 ;

---;---

The video mode code, above, has a fair amount of code not yet annotated. Readers are encouraged to

follow through the code and with a pinball emulator to discover more about how the code works.

Highlighted in green is where the L-8 code retrieves 4 random values while performing the video mode.

These highlighted instructions are subject of the L8.4 fix and will be described in detail below.

Video Mode, New Logic for L8.4

For L8.4 the 4 random number retrievals that L-8 code performs will be replaced with calls to new L8.4

function that gets either:

 The normal L-8 random number if Tournament Mode is not enabled, or

 A “random” number that is same for all players when Tournament Mode is enabled.

In a manner similar to the previously described L8.4 enhancements, game bookkeeping statistics are

used to derive a “seed’ value which is then added to the per-player statistic tracking the number of

video modes played. This “seed” value is then used to lookup a byte in ROM which is then applied to a

formula in order to derive a seemingly “random” number in the same range as the original L-8 code

expects.

The table below shows which of the various game bookkeeping values are used for each of the 4

random numbers needed during video mode. Note the random number for robot timing is masked with

0x07 or 0x0F depending on game conditions so both possibilities are shown.

Bookkeeping Entry Addr Bookkeeping Statistic Participation

Mode
Init 0..7

Mode
Init 0..3

Robot
Left/Right 0..1

Robot Timing
0..7/0..15

Bookkeeping B.3 08 "MATCH AWARDS" $18A3

Bookkeeping B.3 28 "1 PLAYER GAMES" $18EB

Bookkeeping B.3 29 "2 PLAYER GAMES" $18F1

Bookkeeping B.3 30 "3 PLAYER GAMES" $18F7

Bookkeeping B.3 31 "4 PLAYER GAMES" $18FD

Bookkeeping B.5 01 "0-1.9 M. SCORE" $1921

Bookkeeping B.5 02 "2-4.9 M. SCORE" $1927

Bookkeeping B.5 03 "3-9.9 M. SCORE" $192D

Bookkeeping B.5 04 "10-19 M. SCORE" $1933

Bookkeeping B.5 05 "20-29 M. SCORE" $1939

Bookkeeping B.5 06 "30-29 M. SCORE" $193F

Bookkeeping B.5 07 "40-49 M. SCORE" $1945

Bookkeeping B.5 08 "50-69 M. SCORE" $194B

Bookkeeping B.5 09 "70-99 M. SCORE" $1951

Bookkeeping B.5 10 "100-149 M. SCORE" $1957

Bookkeeping B.5 11 "150-199 M. SCORE" $195D

Bookkeeping B.5 12 "200-299 M. SCORE" $1963

Bookkeeping B.5 13 "OVER 300 MILLION" $1969

Bookkeeping B.5 14 "GAME TIME 0.0-1.0M" $196F

Bookkeeping B.5 15 "GAME TIME 1.0-1.5M" $1975

Bookkeeping B.5 16 "GAME TIME 1.5-2.0M" $197B

Bookkeeping B.5 17 "GAME TIME 2.0-2.5M" $1981

Bookkeeping B.5 18 "GAME TIME 2.5-3.0M" $1987

Bookkeeping B.5 19 "GAME TIME 3.0-3.5M" $198D

Bookkeeping B.5 20 "GAME TIME 3.5-4.0M" $1993

Bookkeeping B.5 21 "GAME TIME 4-5 M." $1999

Bookkeeping B.5 22 "GAME TIME 5-6 M." $199F

Bookkeeping B.5 23 "GAME TIME 6-8 M." $19A5

Bookkeeping B.5 24 "GAME TIME 8-10 M." $19AB

Bookkeeping B.5 25 "GAME TIME 10-15 M" $19B1

Bookkeeping B.5 26 "GAME TIME > 15 M" $19B7

Different sets of bookkeeping values are used for each “random” number seed to add to the uncertainty

of each of the four random numbers. As shown in the L-8 code, above, the L-8 game code uses bitwise

AND to reduce the resulting random number to 0..7, 0..3, 0..1 or 0..15 range.

For each of these 4 “random” numbers, the “seed” value is used to lookup a byte from ROM relative to

the arbitrarily chosen address $F900 (ROM offset 0x7F900). This is same region of ROM used by other

L8.4 “random” number logic described previously. This region of ROM appears to have a mix of byte

values with non-repeating bytes, as shown below:

Given this set of 256 bytes and using simple lookup of each byte allowing the existing L-8 video mode

code to simply mask off the low bits of the “random” byte, the table below reports the possible values

that can be derived and the number of each possible “random” value that will be used.

The chosen byte from ROM is passed through an algorithm specific to the value being obtained.

Variable Behavior Needed Values Formula to derive value X from byte B
(C-like syntax) Range # of values

Mode Init 0..7 0..7 8 X = (B & 0x07)

Mode Init 0..3 0..3 4 X = (B & 0x03)

Robot Left/Right 0..1 0..1 2 X = (B – (++Increment) & 0x01)

Robot Timing 0..7 0..7 8 X = (B + (++Increment) & 0x07)

Robot Timing 0..15 0..15 16 X = (B + (++Increment) & 0x0F)

The final L8.4 code will NOT perform the masking of the resulting value with 0x07, 0x03, 0x01 or 0x0F

since the original L-8 code takes the “random” number and performs such masking itself. The masking is

depicted here for completeness as it is conceptually taking place as part of the L8.4 logic but is being

deferred to the original L-8 code.

The first two “Mode Init” random values are only derived a single time at start of video mode. The

random numbers related to robot movement are retrieved for each robot appearance. Each robot

appearance is associated with a random number retrieval for left/right and for timing. In order to have

variance between each robot movement, the use of “Increment” item is used to cause each “random”

byte lookup into the 256-byte ROM region select a different byte. The “Increment” is a byte in RAM that

increments each time it is read. This resulting “Increment” byte is then subtracted from the sum of

bookkeeping values for robot left/right. The resulting “Increment” byte is added to the sum of

bookkeeping values for robot timing. This method results in unpredictable and variable robot

movements while also giving each player in a multi-player tournament game the same video mode

experience since the “Increment” value is set to 0 at the start of each video mode.

In order to safely use a byte in RAM for purposes of this “Increment” counter, the existing video mode

code was surveyed and it was discovered that the current video mode utilizes a single 8-bit RAM byte to

track whether or not the video mode will present the “EB” award. This byte gets set at video mode start

based on how many extra balls the player currently has and game adjustments defining whether the

player can be awarded a new extra ball. For L8.4, this byte in RAM is being repurposed so that only its

high bit 0x80 is used to flag whether or not the player can be presented with “EB” during the video

mode while the lower 7-bits will track a 7-bit sum that represents the “Increment” value for robot

movements. The code changes, depicted below, will show how the game code is updated for this.

An analysis of all possible values, using the previously depicted formulas, was done with results shown

below.

Variable Behavior Formula Results

Mode Init 0..7

1 0 7 1 1 0 4 2 2 1 4 5 2 2 1 7

5 2 4 6 4 5 2 4 6 5 1 1 1 7 6 7

3 5 1 4 6 2 4 4 2 6 0 2 2 6 4 5

0..7 Total Occurrances

2 6 5 2 3 3 1 1 3 3 6 6 4 1 0 4

6 7 1 4 4 0 4 6 3 7 1 5 4 2 6 6

4 7 5 5 1 1 7 7 6 5 6 4 6 5 1 1

1 7 6 7 3 5 1 4 5 6 2 1 3 0 4 0

4 6 6 2 4 4 6 0 4 2 2 6 4 5 2 3

7 3 5 4 2 6 5 5 6 4 4 6 7 5 6 2

6 7 5 3 4 3 1 3 2 3 3 0 4 2 6 3

0 3 5 4 4 6 6 7 5 6 2 7 4 7 1 7

2 0 4 2 6 5 7 7 5 5 0 0 5 1 1 7

7 6 5 6 4 6 5 1 1 1 7 6 7 3 5 1

4 5 2 3 6 4 1 0 7 2 2 4 6 2 1 7

7 2 4 2 5 1 1 7 7 6 5 6 4 0 5 2

3 6 3 5 0 4 6 6 7 5 1 0 4 2 5 6

0
1
2
3
4
5
6
7

17
34
33
21
41
36
44
30

Mode Init 0..3 1 0 3 1 1 0 0 2 2 1 0 1 2 2 1 3

1 2 0 2 0 1 2 0 2 1 1 1 1 3 2 3

3 1 1 0 2 2 0 0 2 2 0 2 2 2 0 1

2 2 1 2 3 3 1 1 3 3 2 2 0 1 0 0

2 3 1 0 0 0 0 2 3 3 1 1 0 2 2 2

0 3 1 1 1 1 3 3 2 1 2 0 2 1 1 1

1 3 2 3 3 1 1 0 1 2 2 1 3 0 0 0

0 2 2 2 0 0 2 0 0 2 2 2 0 1 2 3

3 3 1 0 2 2 1 1 2 0 0 2 3 1 2 2

2 3 1 3 0 3 1 3 2 3 3 0 0 2 2 3

0 3 1 0 0 2 2 3 1 2 2 3 0 3 1 3

2 0 0 2 2 1 3 3 1 1 0 0 1 1 1 3

3 2 1 2 0 2 1 1 1 1 3 2 3 3 1 1

0 1 2 3 2 0 1 0 3 2 2 0 2 2 1 3

3 2 0 2 1 1 1 3 3 2 1 2 0 0 1 2

3 2 3 1 0 0 2 2 3 1 1 0 0 2 1 2

0..3 Total Occurrances

0
1
2
3

58
70
77
51

Robot Left/Right 0..1

0 = Robot enters from Left
1 = Robot enters from Right

1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1

1 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0

0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0

0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1

1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0

0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1

0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1

0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1

1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1

0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1

1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0

1 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0

0..1 Total Occurrances

0
1

135
121

Robot Timing 0..7

0 = Slowest
7 = Fastest

2 1 0 2 2 1 5 3 3 2 5 6 3 3 2 0

6 3 5 7 5 6 3 5 7 6 2 2 2 0 7 0

4 6 2 5 7 3 5 5 3 7 1 3 3 7 5 6

3 7 6 3 4 4 2 2 4 4 7 7 5 2 1 5

7 0 2 5 5 1 5 7 4 0 2 6 5 3 7 7

5 0 6 6 2 2 0 0 7 6 7 5 7 6 2 2

2 0 7 0 4 6 2 5 6 7 3 2 4 1 5 1

5 7 7 3 5 5 7 1 5 3 3 7 5 6 3 4

0 4 6 5 3 7 6 6 7 5 5 7 0 6 7 3

7 0 6 4 5 4 2 4 3 4 4 1 5 3 7 4

1 4 6 5 5 7 7 0 6 7 3 0 5 0 2 0

3 1 5 3 7 6 0 0 6 6 1 1 6 2 2 0

0 7 6 7 5 7 6 2 2 2 0 7 0 4 6 2

5 6 3 4 7 5 2 1 0 3 3 5 7 3 2 0

0 3 5 3 6 2 2 0 0 7 6 7 5 1 6 3

4 7 4 6 1 5 7 7 0 6 2 1 5 3 6 7

0..7 Total Occurrances

0
1
2
3
4
5
6
7

30
17
34
33
21
41
36
44

Depending on game conditions, video mode may use random

number 0..7 or 0..15 for robot timing. This random

number affects how far the robot will move and how close

it appears to the next or previous robot. Further code

analysis is needed to describe this with more detail.

Robot Timing 0..15

0 = Slowest
15 = Fastest

 1 8 15 9 1 8 12 10 10 1 12 5 2 10 1 15

 5 2 12 14 12 5 2 4 6 13 9 9 1 7 6 7

 3 13 9 4 6 2 4 4 10 14 8 10 10 6 4 13

 2 14 13 10 3 11 1 1 3 3 14 6 4 1 8 12

 6 15 1 12 4 0 4 6 3 7 1 5 4 10 6 6

12 7 5 13 9 9 7 7 6 5 6 4 6 13 9 9

 1 7 6 7 3 13 9 4 5 6 2 1 3 0 4 0

 4 6 6 2 4 4 14 8 12 10 10 6 4 13 10 3

 7 3 5 4 10 6 13 5 6 4 4 14 7 13 6 2

 6 7 5 11 4 11 1 11 2 11 3 0 4 10 6 3

 8 3 5 4 4 6 14 7 13 6 2 15 4 15 1 15

 2 0 4 10 6 5 15 7 5 13 8 0 13 9 9 7

 7 6 5 6 4 6 13 9 9 1 7 6 7 3 13 9

 4 13 10 3 6 4 1 8 15 2 10 4 6 2 1 15

 7 2 12 2 13 9 9 7 7 6 5 6 4 0 13 10

 3 6 3 5 0 4 6 6 7 5 1 0 4 2 5 6

0..15 Total Occurrances

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

9
18
16
16
32
18
37
21
8

16
17
5
9

18
7
9

Video Mode, Updated Code for L8.4

The logic described above for L8.4 Video Mode is implemented in code changes to the L-8 video mode

code in bank $2B. The code changes consist of these overall changes:

 Replace the 4 “random” number retrievals with 4 calls into new L8.4 code.

 Update the “EB” award byte init code so it sets byte to 0x80 when EB should be shown.

 Replace the “EB” award byte check with call to new L8.4 code to check if EB should be shown.

 Insert new L8.4 code that provides the 4 “random” numbers or original L-8 random number.

 Insert new L8.4 code that reads the “EB” byte to indicate if EB should be shown.

Video Mode, Updated 4 “random” number calls with 4 new calls into L8.4 code

The four random number retrievals are replaced in L8.4 as shown below. The old code is in red coloring

and the new code is in green. These changes are at $436D,2B (ROM offset 0x2C36D), $4386,2B (ROM

offset 0x2C386), $4590,2B (ROM offset 0x2C590), and $45A9,2B (ROM offset 0x2C5A9).

436D: BD A7 25 JSR $A725 ; GetPseudoRandomNumberIntoA()

436D: BD 49 E7 JSR $49E7 ; L84TournamentModeVideoModeInit07()

4386: BD A7 25 JSR $A725 ; GetPseudoRandomNumberIntoA()
4386: BD 49 EE JSR $49EE ; L84TournamentModeVideoModeInit03()

4590: BD A7 25 JSR $A725 ; GetPseudoRandomNumberIntoA()

4590: BD 4A 1E JSR $4A1E ; L84TournamentModeVideoModeRobotDir()

45A9: BD A7 25 JSR $A725 ; GetPseudoRandomNumberIntoA()

45A9: BD 4A 25 JSR $4A25 ; L84TournamentModeVideoModeRobotTiming()

Video Mode, Updated “EB” award byte init code

As described, a RAM byte is needed to track an incrementing value for the L8.4 “random” robot

movements. The RAM byte at $064C is used by L-8 to track if “EB” award should be shown during the

video mode. For L8.4 this byte is repurposed whereby the low 7-bits are an incrementing sum used to

get different “random” bytes from ROM for each robot random number retrieval while the high 0x80 bit

is still used to indicate whether an “EB” award should be shown during the video mode.

The initialization of the $064C byte is updated so that the byte is set to 0x80 if an EB should be shown or

0x00 if no EB should be shown during the video mode. Below is the original L-8 code starting at

$43A0,2B, ROM offset 0x2C3A0:

43A0: 4F CLRA ;

43A1: BD FA 1E JSR $FA1E ; Checking if Video Mode should include Extra Ball

43A4: 7E 43 A7 JMP $43A7 ; <nop>

43A7: 25 01 BCS $43AA ;

43A9: 4C INCA ; Set A to non-zero to flag that EB is allowed

43AA: B7 06 4C STA $064C ; $064C non-zero if extra ball should be included

Below is the new L8.4 code:

43A0: 4F CLRA ;

43A1: BD FA 1E JSR $FA1E ; Checking if Video Mode should include Extra Ball

43A4: 25 04 BCS $43AA ;

43A6: 8A 80 ORA #$80 ; Set 0x80 bit to flag EB is allowed during video mode

43A8: 20 00 BRA $43AA ; <nop>

43AA: B7 06 4C STA $064C ; $064C high-bit set if extra ball should be included

Video Mode, Replace the “EB” byte check with new L8.4 function to check the byte

As shown, above, the $064C byte changed from L-8 where it was zero or non-zero for “EB” to be shown

to L8.4 where the 0x80 bit needs to be set for “EB to be shown or cleared for “EB” not to be shown. This

logic change requires a modification to the original L-8 code so it now checks for 0x80 bit of $064C when

it is determining whether or not to show “EB” during video mode.

The original L-8 code does a TST instruction on $064C when determining if “EB” should be shown. This

code is at $4543,2B, ROM offset 0x2C543:

4543: 7D 06 4C TST $064C ; Test $064C to see if EB should be in video mode

4546: 27 41 BEQ $4589 ;

The replacement L8.4 code, below, replaces the TST instruction with a jump to new L8.4 code (depicted

later) that looks at the 0x80 bit of $064C and returning, thus allowing the follow-up BEQ instruction to

proceed based on the 0x80 bit set/clear status.

4543: BD 4A 2C JSR $4A2C ; Call L8.4 function to see if EB is to be allowed

4546: 27 41 BEQ $4589 ;

Video Mode, Insert new L8.4 code to provide Tournament mode or original L-8 random numbers

As shown above, there are 4 separate calls into new L8.4 code that each will either return the original L-

8 random number (when Tournament Mode is not set) or return a L8.4 “random” number for all players

to have same video mode (if Tournament Mode is set). This block of code is added in unused ROM

space in bank $2B starting at $491E,2B, ROM offset 0x2C91E, as shown below.

---;---

 ;

 ; Video Mode Init 0..7

 ;----------------------

 ; Table of Bookkeeping Storage Locations (L-8)

 ;

491E: 18 A3 ; Bookkeeping B.3 08 "MATCH AWARDS"

4920: 18 EB ; Bookkeeping B.3 28 "1 PLAYER GAMES"

4922: 18 F1 ; Bookkeeping B.3 29 "2 PLAYER GAMES"

4924: 18 F7 ; Bookkeeping B.3 30 "3 PLAYER GAMES"

4926: 18 FD ; Bookkeeping B.3 31 "4 PLAYER GAMES"

4928: 19 21 ; Bookkeeping B.5 01 "0-1.9 M. SCORE"

492A: 19 2D ; Bookkeeping B.5 03 "3-9.9 M. SCORE"

492C: 19 39 ; Bookkeeping B.5 05 "20-29 M. SCORE"

492E: 19 45 ; Bookkeeping B.5 07 "40-49 M. SCORE"

4930: 19 51 ; Bookkeeping B.5 09 "70-99 M. SCORE"

4932: 19 5D ; Bookkeeping B.5 11 "150-199 M. SCORE"

4934: 19 69 ; Bookkeeping B.5 13 "OVER 300 MILLION"

4936: 19 75 ; Bookkeeping B.5 15 "GAME TIME 1.0-1.5M"

4938: 19 81 ; Bookkeeping B.5 17 "GAME TIME 2.0-2.5M"

493A: 19 8D ; Bookkeeping B.5 19 "GAME TIME 3.0-3.5M"

493C: 19 99 ; Bookkeeping B.5 21 "GAME TIME 4-5 M."

493E: 19 A5 ; Bookkeeping B.5 23 "GAME TIME 6-8 M."

4940: 19 B1 ; Bookkeeping B.5 25 "GAME TIME 10-15 M"

4942: 00 00 ; <End of data>

 ;

---;---

 ;

 ; Video Mode Init 0..3

 ;----------------------

 ; Table of Bookkeeping Storage Locations (L-8)

 ;

4944: 18 EB ; Bookkeeping B.3 28 "1 PLAYER GAMES"

4946: 18 F1 ; Bookkeeping B.3 29 "2 PLAYER GAMES"

4948: 18 F7 ; Bookkeeping B.3 30 "3 PLAYER GAMES"

494A: 18 FD ; Bookkeeping B.3 31 "4 PLAYER GAMES"

494C: 19 27 ; Bookkeeping B.5 02 "2-4.9 M. SCORE"

494E: 19 33 ; Bookkeeping B.5 04 "10-19 M. SCORE"

4950: 19 3F ; Bookkeeping B.5 06 "30-29 M. SCORE"

4952: 19 4B ; Bookkeeping B.5 08 "50-69 M. SCORE"

4954: 19 57 ; Bookkeeping B.5 10 "100-149 M. SCORE"

4956: 19 63 ; Bookkeeping B.5 12 "200-299 M. SCORE"

4958: 19 6F ; Bookkeeping B.5 14 "GAME TIME 0.0-1.0M"

495A: 19 7B ; Bookkeeping B.5 16 "GAME TIME 1.5-2.0M"

495C: 19 87 ; Bookkeeping B.5 18 "GAME TIME 2.5-3.0M"

495E: 19 93 ; Bookkeeping B.5 20 "GAME TIME 3.5-4.0M"

4960: 19 9F ; Bookkeeping B.5 22 "GAME TIME 5-6 M."

4962: 19 AB ; Bookkeeping B.5 24 "GAME TIME 8-10 M."

4964: 19 B7 ; Bookkeeping B.5 26 "GAME TIME > 15 M"

4966: 00 00 ; <End of data>

 ;

---;---

 ;

 ; Robot Left/Right 0..1

 ;-----------------------

 ; Table of Bookkeeping Storage Locations (L-8)

 ;

4968: 18 A3 ; Bookkeeping B.3 08 "MATCH AWARDS"

496A: 18 EB ; Bookkeeping B.3 28 "1 PLAYER GAMES"

496C: 18 F1 ; Bookkeeping B.3 29 "2 PLAYER GAMES"

496E: 18 F7 ; Bookkeeping B.3 30 "3 PLAYER GAMES"

4970: 18 FD ; Bookkeeping B.3 31 "4 PLAYER GAMES"

4972: 19 21 ; Bookkeeping B.5 01 "0-1.9 M. SCORE"

4974: 19 27 ; Bookkeeping B.5 02 "2-4.9 M. SCORE"

4976: 19 39 ; Bookkeeping B.5 05 "20-29 M. SCORE"

4978: 19 3F ; Bookkeeping B.5 06 "30-29 M. SCORE"

497A: 19 51 ; Bookkeeping B.5 09 "70-99 M. SCORE"

497C: 19 57 ; Bookkeeping B.5 10 "100-149 M. SCORE"

497E: 19 69 ; Bookkeeping B.5 13 "OVER 300 MILLION"

4980: 19 6F ; Bookkeeping B.5 14 "GAME TIME 0.0-1.0M"

4982: 19 81 ; Bookkeeping B.5 17 "GAME TIME 2.0-2.5M"

4984: 19 87 ; Bookkeeping B.5 18 "GAME TIME 2.5-3.0M"

4986: 19 99 ; Bookkeeping B.5 21 "GAME TIME 4-5 M."

4988: 19 9F ; Bookkeeping B.5 22 "GAME TIME 5-6 M."

498A: 19 B1 ; Bookkeeping B.5 25 "GAME TIME 10-15 M"

498C: 19 B7 ; Bookkeeping B.5 26 "GAME TIME > 15 M"

498E: 00 00 ; <End of data>

 ;

---;---

 ;

 ; Robot Speed 0..7/0..15

 ;------------------------

 ; Table of Bookkeeping Storage Locations (L-8)

 ;

4990: 18 EB ; Bookkeeping B.3 28 "1 PLAYER GAMES"

4992: 18 F1 ; Bookkeeping B.3 29 "2 PLAYER GAMES"

4994: 18 F7 ; Bookkeeping B.3 30 "3 PLAYER GAMES"

4996: 18 FD ; Bookkeeping B.3 31 "4 PLAYER GAMES"

4998: 19 2D ; Bookkeeping B.5 03 "3-9.9 M. SCORE"

499A: 19 33 ; Bookkeeping B.5 04 "10-19 M. SCORE"

499C: 19 45 ; Bookkeeping B.5 07 "40-49 M. SCORE"

499E: 19 4B ; Bookkeeping B.5 08 "50-69 M. SCORE"

49A0: 19 5D ; Bookkeeping B.5 11 "150-199 M. SCORE"

49A2: 19 63 ; Bookkeeping B.5 12 "200-299 M. SCORE"

49A4: 19 75 ; Bookkeeping B.5 15 "GAME TIME 1.0-1.5M"

49A6: 19 7B ; Bookkeeping B.5 16 "GAME TIME 1.5-2.0M"

49A8: 19 8D ; Bookkeeping B.5 19 "GAME TIME 3.0-3.5M"

49AA: 19 93 ; Bookkeeping B.5 20 "GAME TIME 3.5-4.0M"

49AC: 19 A5 ; Bookkeeping B.5 23 "GAME TIME 6-8 M."

49AE: 19 AB ; Bookkeeping B.5 24 "GAME TIME 8-10 M."

49B0: 00 00 ; <End of data>

 ;

---;---

 ;

 ; Get sum of bookkeeping values pointed to by X into A

 ;--

49B2: 10 AE 81 LDY ,X++ ;-\ Y gets address of RAM of next bookkeeping value

49B5: 27 04 BEQ $49BB ; | If Y gets 0x0000 then we reached table end, done

49B7: AB A4 ADDA ,Y ; | Increment A with value from Y

49B9: 20 F7 BRA $49B2 ;-/

 ;

49BB: 39 RTS ;

 ;

---;---

 ;

 ; Get "random" byte from ROM for given data table X

 ;---

49BC: 8D F4 BSR $49B2 ; Call function that gets bookkeeping sum into A

49BE: 8E F9 00 LDX #$F900 ; X gets addr in ROM from where arbitary byte is loaded

49C1: A6 86 LDA A,X ; A now gets byte from ROM

49C3: 39 RTS ;

 ;

---;---

 ;

 ; Get into X the per-player Video Mode statistic address

 ;---

49C4: 34 10 PSHS X ;

49C6: 8E 05 B5 LDX #$05B5 ; Number of per-player Video Modes

49C9: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

49CC: A6 84 LDA ,X ; Init A with gets per-player video modes stat

49CE: 35 90 PULS X,PC ;

 ;

---;---

 ;

 ;---

 ; Get Video Mode Random Number: Common handler, all

 ;---

49D0: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

49D3: 9A 01 ; StandardAdjustment026, Tournament Play, Adj=0x9A

49D5: 24 07 BCC $49DE ; If c-clr then tournament mode do new L8.4 code

 ;

 ; Do L-8 original code

49D7: BD A7 25 JSR $A725 ; GetPseudoRandomNumberIntoA()

49DA: 32 62 LEAS $0002,S ; Fixup stack so we don't RTS back to L8.4 caller, below

49DC: 35 30 PULS X,Y ; Restore X and Y before returning to L-8 code

 ;

49DE: 39 RTS ; done, return to L-8 or L8.4 code

 ;

---;---

 ;

 ;---

 ; Get Video Mode Random Number: Mode Init Common handler

 ;---

49DF: 8D EF BSR $49D0 ; Check if tournament mode. If return here then do L8.4.

 ;

 ; Do L8.4 tournament mode "random" number

49E1: 8D E1 BSR $49C4 ; Init A with per-player number of video modes

49E3: 8D D7 BSR $49BC ; Call function to get random number into A from ROM

49E5: 35 B0 PULS X,Y,PC ; Return random number, L-8 code ANDs A with mask

 ;

---;---

 ;

 ;--

 ; Get Video Mode Random Number: Mode Init 0..7

 ;--

49E7: 34 30 PSHS Y,X ;

49E9: 8E 49 1E LDX #$491E ; X gets addr for bookkeeping addrs for 0..7

49EC: 20 F1 BRA $49DF ; Go to common handler for geting random number

 ;

---;---

 ;

 ;--

 ; Get Video Mode Random Number: Mode Init 0..3

 ;--

49EE: 34 30 PSHS Y,X ;

49F0: 8E 49 44 LDX #$4944 ; X gets addr for bookkeeping addrs for 0..3

49F3: 20 EA BRA $49DF ; Go to common handler for geting random number

 ;

---;---

 ;

 ;---

 ; Get Video Mode Random Number: Robot Common handler

 ;---

49F5: 8D D9 BSR $49D0 ; Check if tournament mode. If returns here then do L8.4.

 ;

 ; Do L8.4 tournament mode "random" number

 ;

49F7: B6 06 4C LDA $064C ; Get saved incrementing value from $064C

49FA: 85 80 BITA #$80 ; check if EB flag 0x80 is set

49FC: 27 05 BEQ $4A03 ;

49FE: 4C INCA ;

49FF: 8A 80 ORA #$80 ; Make sure 80 bit is still set as it should be

4A01: 20 03 BRA $4A06 ;

4A03: 4C INCA ;

4A04: 84 7F ANDA #$7F ; Make sure 80 bit is cleared as it should be

4A06: B7 06 4C STA $064C ; Store updated incremented value back into $064C

 ;

4A09: 84 7F ANDA #$7F ; Make sure 80 bit is cleared so we just have 7-bit sum

4A0B: 34 02 PSHS A ; Store the 7-bit $064C sum value onto stack

 ;

4A0D: 8D B5 BSR $49C4 ; Load A with per-player number of video modes

 ;

4A0F: 8C 49 68 CMPX #$4968 ; Robot left/right?

4A12: 27 04 BEQ $4A18 ;

 ;

4A14: AB E0 ADDA ,S+ ; For robot timing, add 7-bit sum to video modes count

4A16: 20 02 BRA $4A1A ;

 ;

4A18: A0 E0 SUBA ,S+ ; For robot left/right, subtract 7-bit sum

 ;

4A1A: 8D A0 BSR $49BC ; Call function to get random number into A from ROM

4A1C: 35 B0 PULS X,Y,PC ; Return random number, L-8 code ANDs A with mask

 ;

---;---

 ;

 ;--

 ; Get Video Mode Random Number: Robot Left/Right 0..1

 ;--

4A1E: 34 30 PSHS Y,X ;

4A20: 8E 49 68 LDX #$4968 ; X gets addr for bookkeeping addrs for robot left/right

4A23: 20 D0 BRA $49F5 ; Go to common handler for geting random number

 ;

---;---

 ;

 ;--

 ; Get Video Mode Random Number: Robot Timing 0..7/0..15

 ;--

4A25: 34 30 PSHS Y,X ;

4A27: 8E 49 90 LDX #$4990 ; X gets addr for bookkeeping addrs for robot timing

4A2A: 20 C9 BRA $49F5 ; Go to common handler for geting random number

 ;

---;---

Readers are encouraged to trace through the L8.4 code, above for developing a full understanding of

how the L8.4 code behaves. The four entry points are shown above along with all of the subsequent

code as described for the L8.4 video mode tournament mode logic.

Video Mode, Insert new L8.4 code to read the EB byte to see if EB should be shown

Lastly, the new function that the L8.4 code now calls is added in unused ROM space immediately after

the previously depicted new L8.4 code. This function checks the 0x80 bit of $064C so the normally

running video mode code knows whether or not it should show the “EB” during video mode. This code

starts at $4A2C,2B, ROM offset 0x2CA2C.

---;---

 ;

 ; Function to check if EB can be shown during video mode

4A2C: 34 02 PSHS A ;

4A2E: B6 06 4C LDA $064C ; Get saved incrementing value from $064C

4A31: 85 80 BITA #$80 ; Check if 80 bit is set

4A33: 35 82 PULS A,PC ;

 ;

---;---

The original L-8 code, as shown previously, performs a BEQ instruction after calling the L8.4 function.

The BEQ will branch depending on the Z-bit having been set or cleared based on the BITA instruction

that was performed in this new function.

Extra Ball Award Improvements for L8.4
The T2 software has several adjustments regarding how extra ball is handled. These adjustments allow

the game to restrict the amount of extra balls the player can have accumulated or win on a per-ball-in-

play basis.

Originally while going over L8.4 it was assumed that A.1 03 adjustment limited the number of extra balls

that a player can win per game however it was later understood that A.1 03 adjustment actually adjusts

the maximum number of extra balls a player can have accumulated (remaining to play out) at any given

moment.

In addition to the above adjustments for limiting the number of extra balls, the game also offers an

adjustment that allows the game to award an extra ball when the replay score has been reached, as

depicted below:

For L8.4, with its several enhancements related to Tournament Mode, some consideration was given to

how the game is typically used in a tournament setting. As a lot of tournaments have restrictions on

extra ball awards such as requiring them to be drained and not played. Some improvements were made

in L8.4 for how the game behaves when the A.1 03 adjustment is set to disallow all extra balls, as

depicted below:

With an assumption that people using tournament mode might also want to set A.1 03 to “NO EX BALL”,

some changes were put in place to make the game behave better when the game is set to disallow extra

balls in this way.

The goal of the L8.4 changes are to keep the changes simple, and not to alter any game rules. The L8.4

changes are mainly about preventing the player from having to see the extra ball animation when the

A.1 03 adjustment is set to “NO EX BALL”. The changes for L8.4 have been carefully considered and the

following assumptions are being made:

 It is unlikely that A.1 03 is set to a very low number, robbing players of extra balls.

 It is unlikely that A.1 04 is set to a very low number, robbing players of extra balls.

 It is unlikely that A.1 14 is set to award EB at replay and A.1 03/04 set to limit extra balls.

Because of these assumptions, no specific L8.4 changes are in place to deal with odd game behaviors

such as when the A.1 03/04 are set to restrict extra balls and player is still allowed to light the EB lamp

(in some cases the player can still collect such lit EB at a subsequent ball-in-play). It is also not worth

addressing issues when A.1 14 is set to award EB at replay score but player is then blocked from

receiving such EB due to restrictive settings of A.1 03/04.

It would seem that somebody restricting the EB awards with A.1 03/04 is either unfairly robbing the

player of their extra balls, or it may be that such setting of the game is commonly known by its players

and they would, therefore, not be surprised by the game not giving them their extra ball. In some ways

players may even work such restrictive settings into their game play strategy.

The L8.4 changes are only focused on improving the game behavior when A.1 03 is set to “NO EX BALL”

and, as such, the following issues are being addressed:

 When player is ineligible for receiving an extra ball and the skull shot is hit (drop target or ball

popper), the L-8/L8.3 software will extinguish the EB lamp, play the EB animation, and NOT

award the EB to the player. For L8.4, the changes will simply exclude the EB animation from

being shown in this case. This change will apply no matter what the settings are for A.1 03/04.

 When player is ineligible for receiving an extra ball and the left-loop shot is hit to award Extra

Ball, the L-8/L8.3 software will show the EB animation and NOT award the EB to the player. For

L8.4, the changes will simply exclude the EB animation from being shown in this case. This

change will apply no matter what the settings are for A.1 03/04. The same code change from

previous bullet item will automatically apply to this item, fixing both with single code change.

 When player is ineligible for receiving an extra ball and the bonus-x multipliers are advanced to

the point of where EB-lit normally occurs, the L-8/L8.3 software will light the EB lamp. For L8.4

in this case only if A.1 03 is set to “NO EX BALL” then the EB lamp will not be lit. For all other

adjustment values the EB will still be allowed to be lit. As previously stated, in some scenarios

the player could still collect the lit EB at a subsequent ball-in-play.

 When player is ineligible for receiving an extra ball, the flipper-button status-report will report

the bonus-x value for lighting the EB is shown. For L8.4 in this case only if A.1 03 is set to “NO EX

BALL” then the status report will exclude the bonus-x level for lighting extra ball. For all other

adjustment values the status report will still show the bonus-x needed for lighting the extra ball.

 When player is ineligible for receiving an extra ball and the player is doing poorly at the start of

the last ball (usually ball 3), the L-8/L8.3 software will give a consolidation “Extra Ball is Lit” even

though subsequent skull-shot will not award the extra ball. For L8.4 in this case only if A.1 03 is

set to “NO EX BALL” then the game will not give a consolidation “Extra Ball is Lit”.

These simple set of changes are designed to prevent the game from doing anything related to extra ball

when the A.1 03 is set to “NO EX BALL” since it makes no sense for the game, in such case, to imply to

the player that it is possible to win an extra ball while it will never actually be awarded. To be clear, in L-

8/L8.3 the game already prevents the player from being awarded the extra ball in these cases, however

the L-8/L8.3 software would annoyingly play the extra ball award animation while not giving the player

any such extra ball (when player is ineligible for an extra ball due to A.1 03/04 settings). The L8.4

changes also prevent the bonus-x rollovers from unnecessarily lighting the EB since the EB will not

actually be awarded. For completeness it makes sense to prevent the flipper-button status-report from

reporting the bonus-x value to light extra ball since the L8.4 will no longer light extra ball and also since

the EB will never be awarded (again, due to A.1 03 being set to “NO EX BALL”). Lastly, the consolidation

“Extra Ball Lit” at last ball will not be given since is makes no sense to do so when the game is set to “NO

EX BALL” (this is also referred to as a Lit Consolidation Ball).

For cases where the A.1 03 is set to anything other than “NO EX BALL” the game will still allow the extra

ball to be lit even though subsequent skull shot may not actually award the extra ball. However in this

case the changes, described above, will prevent the skull shot from playing the EB animation if the

player is not eligible for receiving the extra ball. In such cases the skull shot will result in the EB lamp

being extinguished and the game will proceed without the extra ball animation (since the player is being

prevented from receiving the EB).

It is worth noting that the L-8/L8.3 software already has the following provisions:

 The DB award will not give extra ball or lite extra ball if player is ineligible for EB, and

 The Video Mode will not present EB award if player is ineligible for extra ball.

The L8.4 does not need any new code to exclude the extra ball from database award or video mode.

Extra Ball Award Improvement: No Extra Ball Animation
If the skull shot is hit while it has the extra ball lamp lit or left-loop award for extra ball has been reached,

the L8.4 code will prevent the EB animation from playing when the player is ineligible for extra ball. The

L-8/L8.3 code, in this case, will play the EB animation but not actually award the player the extra ball, so

this change in L8.4 will make the code behave in a slightly better way although the player would still

have the sense of being robbed of the EB since it was lit when they hit the skull shot (drop target or ball-

popper).

As previously described, for L8.4 the focus is on improving the game when adjustment A.1 03 is set to

“NO EX BALL” where the goal of L8.4 is to remove all game-play references to extra ball. In other cases

where the game A.1 03/04 limit the extra ball awards, this L8.4 code change will also be used to prevent

the game from displaying the extra ball animation while not actually awarding the extra ball. In such

cases the result is simply that the extra ball lamp is extinguished and game play resumes.

The applicable code is shown below. It is used when the EB is being awarded for hits to the drop-target,

ball-popper, left-loop, or from the database award. Since the database award code already prevents the

player from getting Extra Ball or Lite Extra Ball, it is not expected that this code will be used in a way

where the Database award will have to inhibit the EB animation. When the drop-target or ball-popper

reaches this code, there is a chance that the player may not be eligible for EB award and, as such, the

code as shown below will result in animation being played while the player actually is not given the EB.

---;---

 ;

 ; AwardExtraBall()

 ;

 ; Called when awarding extra ball at ball-popper shot

 ; Called when awarding extra ball at database award

 ; Called when awarding extra ball at left-loop shot

 ;

573B: 34 10 PSHS X ;

573D: BD 84 8F JSR $848F ; ClearMemoryFlag()

5740: D8 ;

5741: 20 06 BRA $5749 ;

 ;

5743: 34 10 PSHS X ; Called here from drop-target switch handler

5745: BD 84 80 JSR $8480 ; SetMemoryFlag()

5748: D8 ;

 ;

5749: BD B3 83 JSR $B383 ; TestCurrentPlayerAllowedExtraBallAndAwardEb()

 ; c-set if extra ball not allowed

574C: 8E 05 AD LDX #$05AD ; 0x05AD == Extra balls awarded to current player

574F: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

5752: 7E 57 55 JMP $5755 ; <nop>

5755: 6C 84 INC ,X ;

 ;

5757: BD 52 6D JSR $526D ; WaitForAnimationCompletionE8()

575A: BD 6C DD JSR $6CDD ; WaitForBallStoppageCompletion()

575D: 24 1E BCC $577D ;

575F: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

5762: D8 ;

5763: 24 10 BCC $5775 ; If 0xD8 flag is set, drop-target-down caused the EB

 ; Two different EB effects, differ in playfield lighting

5765: 96 C0 LDA $C0 ;

5767: 81 01 CMPA #$01 ;

5769: 22 0A BHI $5775 ;

576B: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

576E: 6D ; 0x6D = "Extra ball"

576F: BD 85 B2 JSR $85B2 ; ScheduleFnFrom5A0ABank34LookupTableParameterByte()

5772: 33 ; 0x33: $5F4E,34 ExtraBallAwardB() ball-popper / db EB

5773: 20 08 BRA $577D ;

 ;

5775: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

5778: 6D ; 0x6D = "Extra ball"

5779: BD 85 B2 JSR $85B2 ; ScheduleFnFrom5A0ABank3DLookupTableParameterByte()

577C: 32 ; 0x32: $5F52,34 ExtraBallAwardA() drop-target-down EB

 ;

577D: BD 71 94 JSR $7194 ; Increment per-player stat $05C1

5780: BD 71 94 JSR $7194 ; Increment per-player stat $05C1

5783: BD 71 94 JSR $7194 ; Increment per-player stat $05C1

5786: BD 71 94 JSR $7194 ; Increment per-player stat $05C1

5789: 35 90 PULS X,PC ;

 ;

---;---

The highlighted portion of code shows where the problem behavior is taking place in L-8. The call to

$B383 is to a function that ultimately gives the player the EB or not, depending on player eligibility. In

the case that the $B383 function did not give the player their EB, the function returns with C-bit set to

indicate as such. The code here, however, pays no attention to the state of the C-bit and proceeds with

the further code to display the Extra Ball animation. This means the EB animation is shown even if the

player was not awarded an extra ball. There are two possible EB animation effects, depending on

whether the ball is stopped on in the playfield (database award, left-loop, or ball-popper) or whether

the ball is still in play such as after knocking the drop-target down to get the extra ball. The different EB

effects differ in how they control playfield lighting during the EB animation.

For L8.4 the code is updated so it checks the C-bit and goes to end of function if C-bit is set. Since the

nearby code has a dummy JMP instruction, the 3 bytes of such dummy instruction are utilized for this

new L8.4 logic as follows.

The original code is as follows:

5749: BD B3 83 JSR $B383 ; TestCurrentPlayerAllowedExtraBallAndAwardEb()

 ; c-set if extra ball not allowed

574C: 8E 05 AD LDX #$05AD ; 0x05AD == Extra balls awarded to current player

574F: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

5752: 7E 57 55 JMP $5755 ; <nop>

5755: 6C 84 INC ,X ;

Replacement L8.4 code is as follows:

5749: BD B3 83 JSR $B383 ; TestCurrentPlayerAllowedExtraBallAndAwardEb()

 ; c-set if extra ball not allowed

574C: 25 3B BCS $5789 ; If c-set branch to end of function, skip animation

574E: 12 NOP ;

574F: 8E 05 AD LDX #$05AD ; 0x05AD == Extra balls awarded to current player

5752: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

5755: 6C 84 INC ,X ;

With the above change in place, the EB animation is not shown when the $B383 function returns C-bit

set which occurs when $B383 bypassed the EB award due to player not being eligible for EB due to the

game adjustments and with checking how many EBs the player has accumulated or achieved in the

current current ball in play. Instead of announcing the Extra Ball award with animation (and then not

awarding the EB to the player) the L8.4 will silently proceed without any extra ball fanfare when it was

not going to give the player the extra ball anyway (due to player exceeding thresholds established by the

A.1 03/04 adjustments).

Extra Ball Award Improvement: No EB Lit at Bonus-X
As mentioned, one of the L8.4 EB improvements is to fix so that the EB will not be lit when player gets

bonus-x multiplier normally needed to light extra ball while the game adjustment A.1 03 is set to “NO EX

BALL”. The goal of this code change is to simply improve the game play experience when the game

adjustments are set to disallow all extra balls by removing mention of “extra ball” to the player at all

times. There is no benefit to the player by allowing the extra ball to become lit in this case since the

player will never be awarded the extra ball due to A.1 03 adjustment.

The applicable portion of code for bonus-x multiplier advancement regarding “lite extra ball” is shown

below. This is the original L-8/L8.3 code located at $5B97,31, ROM offset 0x45B97:

5B97: 8D 3E BSR $5BD7 ; Loads B with 3-bank completions for bonus-x lite-EB

5B99: 34 04 PSHS B ;

5B9B: A1 E0 CMPA ,S+ ; Compare completions with num needed to lite EB

5B9D: 35 02 PULS A ;

5B9F: 26 0B BNE $5BAC ;

5BA1: BD 84 80 JSR $8480 ; SetMemoryFlag()

5BA4: 49 ; 0x49 flag player reached bonus-x lite-EB this game

5BA5: BD 84 80 JSR $8480 ; SetMemoryFlag()

5BA8: 4A ; 0x4A bonus-x lite-EB flag, cleared at eob when

 ; "Hold Bonus" lamp is not lit

5BA9: BD 57 2E JSR $572E ; LiteExtraBall()

5BAC: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte()

5BAF: 2A ; 0x2A bonus-x advancement animation

This code is exercised when the 3-bank lamps have been completed. The shown code will determine

how many 3-bank completions are needed to lite the extra ball and proceeds accordingly. When the EB

is to be lit then 2 flags are set and the LiteExtraBall() function is called. The two flags are:

 0x49, flag that is set to indicate player has achieved at least 1 “lite extra ball” using bonus-x

advancement. This flag allows subsequent 3-bank completions to require the next higher level

of bonus-x to be reached for a subsequent “lite extra ball” during the current game for the

player.

 0x4A, flag that is set to indicate that the player has already reached “lite extra ball” on the

current set of bonus-x advancement. This prevents multiple “lite extra balls” from happening as

the player goes from 2x, 4x, 6x, 8x. At the end of ball, as long as “Hold Bonus” is not lit, this flag

gets cleared so player can reach “lite extra ball” again through the bonus-x advancement.

To keep the L8.4 code change simple, the code in this region is replaced with a call to a new function

that will determine if the “lite extra ball” should be called depending on the A.1 03 adjustment value.

This code change will retain the current way in which the game sets flags 0x49 and 0x4A which should

be of zero consequence since the game uses these flags in determining whether or not to award player

“lite extra ball” which, with this change will never happen anyway when the A.1 03 is set to “NO EX

BALL”. Due to lack of available space in bank $31, the new code is located in bank $3B alongside other

new L8.4 code. This requires using the $88F5 function to call the new function which requires additional

3 bytes for the JMP instruction. The new function in bank $2B will perform the flag set function calls

which were replaced by the JMP instruction. The new function simply returns C-bit set if it is okay to

light the extra ball. The new function returns C-bit clear if the bonus-x should NOT light the extra ball.

For this change the updated code is as follows, updated code is highlighted:

5B97: 8D 3E BSR $5BD7 ; Loads B with 3-bank completions for bonus-x lite-EB

5B99: 34 04 PSHS B ;

5B9B: A1 E0 CMPA ,S+ ; Compare completions with 0x04 or 0x00

5B9D: 35 02 PULS A ;

5B9F: 26 0B BNE $5BAC ;

5BA1: BD 84 80 JSR $8480 ; SetMemoryFlag()

5BA4: 49 ; 0x49 flag player reached bonus-x lite-EB this game

5BA5: BD 84 80 JSR $8480 ; SetMemoryFlag()

5BA8: 4A ; 0x4A bonus-x lite-EB flag, cleared at eob when

 ; "Hold Bonus" lamp is not lit

5BA1: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

5BA4: 4A 35 2B ; BonusXLiteExtraBallDeterminator() // c-set if EB okay

5BA7: 24 03 BCC $5BAC ; If C-clear then skip the LiteExtraBall()

5BA9: BD 57 2E JSR $572E ; LiteExtraBall()

5BAC: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte()

5BAF: 2A ; 0x2A bonus-x advancement animation at $7203,35

The above change will result in new code located at $4A35,2B being called which will set the flags and

then check if the A.1 03 adjustment is set to “NO EX BALL”, returning c-bit clear if set as such. If

adjustment A.1 03 is set to anything else then C-bit is set. Upon return, the c-bit is analyzed and if set,

the LiteExtraBall() function is called to illuminate the EB lamp, otherwise it is skipped so the EB lamp is

not illuminated.

The new function is at $4A35,2B, ROM offset 0x2CA35 in previously unused ROM space, as shown below:

---;---

 ;

 ; BonusXLiteExtraBallDeterminator()

 ;

 ; Returns C-set if okay to lite extra ball

 ; Returns C-clr if no lite extra ball

 ;

4A35: BD 84 80 JSR $8480 ; SetMemoryFlag()

4A38: 49 ; 0x49 flag player reached bonus-x lite-EB this game

4A39: BD 84 80 JSR $8480 ; SetMemoryFlag()

4A3C: 4A ; 0x4A bonus-x lite-EB flag, cleared at eob when

 ; "Hold Bonus" lamp is not lit

4A3D: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

4A40: 83 00 ; StandardAdjustment003, Max E.B. Count, Adj=0x83

4A42: 39 RTS ;

 ;

---;---

As shown, the new function simply checks the “Max E.B. Count” adjustment checking for value 0x00

which is “NO EX BALL”. The result of the adjustment lookup is that C-bit is set when the adjustment is

anything other than 0x00. The resulting C-bit state is then retained as the code returns back to the

calling function depicted previously.

As it turns out, the above change effectively ensures the Extra Ball lamp is not illuminated when bonus-x

reaches the “lite extra ball” level while adjustment A.1 03 is set to “NO EX BALL”, however after the

display shows the new bonus-x animation, it will proceed and display “Extra ball is lit” on the display. A

further survey of the game code reveals additional changes are needed to properly ensure the “Extra

ball is lit” text is not shown in this case.

Depicted above, when the bonus-x is advanced, the following function is invoked:

5BAC: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte()

5BAF: 2A ; 0x2A bonus-x advancement animation at $7203,35

The above 0x2A index is an index to cause code to call function at $7203,35, offset 0x57203. This

function displays the bonus-x animation and follows it up with the “Extra ball is lit” display when it

determines the new bonus-x is at the level needed to light the extra ball lamp.

Towards the end of the $7203,35 function is the following code where the decision is made to display

“Extra ball is lit”.

72AB: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

72AE: 5B D7 31 ; Audit 3-rollover to see if extra ball should be lit

72B1: 34 04 PSHS B ;

72B3: A1 E0 CMPA ,S+ ; See if 3-rollover completions matches the value in A

72B5: 26 06 BNE $72BD ; If no match, skip to the end

72B7: 86 37 LDA #$37 ; If match, A gets 0x37

72B9: 97 B4 STA $B4 ; Store 0x37 into $B4

72BB: 20 6D BRA $732A ;

72BD: 7E C9 52 JMP $C952 ;

Readers following along may notice this code calls the $5BD7,31 function to check if extra ball should be

lit. This is the same function depicted earlier in code that lead up the illumination (or lack thereof) of

the extra ball lamp. In this case, logic proceeds to compare the extra ball lit level with the current/new

bonus-x level to determine if “Extra ball is lit” text should be shown.

When the level deserves the display of “Extra ball is lit” code at $72B7,35 proceeds and sets up for the

display of the text by loading $B4 with 0x37 and then branching to $732A to further proceed with the

display of “Extra ball is lit” along with audio dialog “Get the extra ball”.

Note in this code path, the code ends up jumping to $C952 when done. Note that code simply branches

to $732A and doesn’t expect to return. For completeness, the $732A,35 function is shown below:

---;---

 ;

732A: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

732D: 6B ; 0x6B == “Get the extra ball”

732E: 8E 00 23 LDX #$0023 ;

7331: BD FB AE JSR $FBAE ; ClearDisplayMemory()

7334: 7E 73 37 JMP $7337 ; <nop>

7337: C6 10 LDB #$10 ;

7339: 10 8E 40 0F LDY #$400F ;

733D: BD D7 DB JSR $D7DB ;

7340: BD D7 99 JSR $D799 ; Prints string on display

7343: 00 24 ; String index for "Extra ball is lit"

7345: 10 ; Font

7346: 40 1F ; Coordinates

7348: C6 0A LDB #$0A ; Play splat sound 10 times

734A: C5 01 BITB #$01 ;-\

734C: 26 04 BNE $7352 ; |

734E: BD 85 46 JSR $8546 ; | DoSoundTableParameterByte()

7351: 49 ; | 0x49 == Computer splat

7352: BD E2 74 JSR $E274 ; |

7355: BD 83 46 JSR $8346 ; | Sleep

7358: 08 ; | 0.125 seconds

7359: 5A DECB ; |

735A: 26 EE BNE $734A ;-/

735C: 7E C9 52 JMP $C952 ;

 ;

---;---

For L8.4 to remove the “Extra ball is lit” portion of bonus-x during A.1 03 “NO EX BALL”, the previously

shown code is updated as shown below, with changes highlighted.

72AB: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

72AE: 5B D7 31 ; Audit 3-rollover to see if extra ball should be lit

72B1: 34 04 PSHS B ;

72B3: A1 E0 CMPA ,S+ ; See if 3-rollover completions matches the value in A

72B5: 26 06 BNE $72BD ; If no match, skip to the end

72B7: 86 37 LDA #$37 ; If match, A gets 0x37

72B9: 97 B4 STA $B4 ; Store 0x37 into $B4

72B7: 7E 7E E8 JMP $7EE8 ; Go to L8.4 intermediate function

72BA: 12 NOP ; filler instruction

72BB: 20 6D BRA $732A ;

72BD: 7E C9 52 JMP $C952 ;

The code will jump to new L8.4 code at $7EE8,35, ROM offset 0x57EE8. This happens to be code that

was made available/unused as part of L8.3 code changes. In L8.3 the fan-club code was completely

removed and made into unused ROM bytes. With limited amount of free space in bank $35, the L8.4 is

able to take advantage of this available ROM space for dealing with this “Extra ball is lit” code change.

The new code at $7EE8,35 is as follows:

---;---

 ;

 ; New L8.4 code shown here for reference

 ;

7EE8: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

7EEB: 83 00 ; StandardAdjustment003, Max E.B. Count, Adj=0x83

7EED: 25 03 BCS $7EF2 ; If C-set then proceed to normal L-8 code

7EEF: 7E C9 52 JMP $C952 ; C-clr then "NO EX BALL", done, go to $C952

7EF2: 86 37 LDA #$37 ; If match, A gets 0x37

7EF4: 97 B4 STA $B4 ; Store 0x37 into $B4

7EF6: 7E 73 2A JMP $732A ; Continue with regular "Extra ball is lit" code

 ;

---;---

With the above code in place, when the adjustment A.1 03 is set to “NO EX BALL”, the bonus-x will no

longer award extra ball or report that extra ball is lit.

Extra Ball Award Improvement: No EB Info in Flipper-Button Status-Report
To complement the changes shown above, the L8.4 will also ensure that when the A.1 03 is set to “NO

EX BALL” that the flipper-button status-report will no longer give a report of the bonus-x level needed to

achieve the lit extra ball. This refers to the following screen shown in the status report that is shown

when a flipper button is held down during game play:

When adjustment A.1 03 is set to “NO EX BALL” it makes no sense to report this to the player especially

considering that the previous set of L8.4 changes will prevent the game from reporting that the extra

ball is lit when the game adjustment is set this way.

Code has been surveyed to determine that the applicable portion of code for the flipper button status

report is located at $539B,24, ROM offset 0x1139B, as depicted below:

539B: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

539E: 5B D7 31 ; Audit 3-rollover to see if extra ball should be lit

53A1: 58 ASLB ;

53A2: 34 04 PSHS B ;

53A4: A1 E0 CMPA ,S+ ;

53A6: 24 1A BCC $53C2 ;

 ;

53A8: BD D3 60 JSR $D360 ; Clear512BytesFrom1799Pointer()

53AB: BD D7 99 JSR $D799 ; Prints string on DMD

53AE: 00 F4 ; String index 0xF4: "%bX LITES"

53B0: 09 ; Font

53B1: 40 0B ; Coordinates

 ;

53B3: BD D7 99 JSR $D799 ; Prints string on DMD

53B6: 00 23 ; String index 0x23: "EXTRA BALL"

53B8: 09 ; Font

53B9: 40 1A ; Coordinates

 ;

53BB: BD E2 74 JSR $E274 ;

53BE: BD 83 46 JSR $8346 ; Sleep

53C1: 80 ; 2.0 seconds

53C2: 35 F6 PULS A,B,X,Y,U,PC ;

For L8.4 a small change is added to this code to get into new L8.4 code that will check if the adjustment

A.1 03 is set to “NO EX BALL” and, if so, finish without displaying this status report message. The

updated code is highlighted below:

539B: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

539E: 5B D7 31 ; Audit 3-rollover to see if extra ball should be lit

53A1: 58 ASLB ;

53A2: 34 04 PSHS B ;

53A4: A1 E0 CMPA ,S+ ;

53A6: 24 1A BCC $53C2 ;

 ;

53A8: BD D3 60 JSR $D360 ; Clear512BytesFrom1799Pointer()

53A8: 7E 57 57 JMP $5757 ; Go to L8.4 code to check for "NO EX BALL" setting

53AB: BD D7 99 JSR $D799 ; Prints string on DMD

53AE: 00 F4 ; String index 0xF4: "%bX LITES"

53B0: 09 ; Font

53B1: 40 0B ; Coordinates

 ;

53B3: BD D7 99 JSR $D799 ; Prints string on DMD

53B6: 00 23 ; String index 0x23: "EXTRA BALL"

53B8: 09 ; Font

53B9: 40 1A ; Coordinates

 ;

53BB: BD E2 74 JSR $E274 ;

53BE: BD 83 46 JSR $8346 ; Sleep

53C1: 80 ; 2.0 seconds

53C2: 35 F6 PULS A,B,X,Y,U,PC ;

The updated L8.4 code will jump into new code at $5757,24 which is unused ROM space in L-8. The new

L8.4 function is shown below.

---;---

 ;

 ; The L8.4 $5757 code is shown here

 ;

5757: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

575A: 83 00 ; StandardAdjustment003, Max E.B. Count, Adj=0x83

575C: 25 03 BCS $5761 ; If C-set then proceed to normal L-8 code

575E: 7E 53 C2 JMP $53C2 ; C-clr then "NO EX BALL", done, go to $53C2 to finish

5761: BD D3 60 JSR $D360 ; Clear512BytesFrom1799Pointer()

5764: 7E 53 AB JMP $53AB ; Go back and finish displaying the bonus-x report

 ;

---;---

An examination of the code will show how the code will simply end the attempt to show the flipper-

button bonus-x report when the adjustment A.1 03 is set to “NO EX BALL” (value 0x00). When the

adjustment is set to anything else, then the original L-8 code is performed. This logic is utilizing the JMP

instruction to allow the new L8.4 function to wedge itself into the logic.

Extra Ball Award Improvement: No Lit Consolidation Ball
For L8.4 when the adjustment A.1 03 is set to “NO EX BALL” the code is updated so that players

experiencing a poor game are not teased with the “Extra Ball is Lit” message when the final ball in play

begins. In such case, in L-8, the player is given such message however they will not actually be awarded

the extra ball when adjustment A.1 03 is set to “NO EX BALL”. To improve the player experience, the

L8.4 code is updated to ensure that no such lit extra ball will take place in this situation.

The applicable portion of code is shown below. This is a piece of code that is executed at the start of

every ball. Code has a handful of checks that is performs in order to determine whether or not to give

the player a “Extra ball is lit” as a consolidation for poor performance. This code starts at $625B,3B,

ROM offset 0x6E25B:

---;---

 ;

 ; StartOfBallCurrentPlayer_ResetPlayfieldState()

625B: 34 16 PSHS X,B,A ;

625D: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

6260: D0 ; 0xD0 == First Ball Started

6261: 24 04 BCC $6267 ; If already started first ball skip "Los Angeles" msg

6263: BD 85 53 JSR $8553 ; ShowMonochromeAnimationParameterByte()

6266: 34 ; 0x34 == Show "Los Angeles July 11, 2029"

6267: BD 84 8F JSR $848F ; ClearMemoryFlag()

626A: D1 ; 0xD1 == Lit Consolidation Ball

626B: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

626E: 04 00 ; FeatureAdjustment004, Consolation Ball, Adj=0x04

6270: 24 49 BCC $62BB ; If Consolidation ball is off then branch to $62BB

 ;

 ;--

 ; Consolidation ball enabled, check if EB should be lit

 ;--

6272: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

 ; C-clear if on last ball

6275: 25 44 BCS $62BB ; No consolidation ball for player, skip to $62BB

6277: BD B3 CA JSR $B3CA ; Get extra balls remaining to play

627A: 4D TSTA ; Check if any extra balls remaining to play

627B: 26 3E BNE $62BB ; If there are extra balls, then no consolidation ball

627D: 8E 05 AD LDX #$05AD ; 0x05AD == Extra balls awarded to current player

6280: BD FB 29 JSR $FB29 ; IncrementXByPlayerIndexNumber()

6283: 7E 62 86 JMP $6286 ; <nop>

6286: 6D 84 TST ,X ; Check if player won any extra balls this game

6288: 26 31 BNE $62BB ; If player won any EBs then no consolidation ball

628A: BD B1 AB JSR $B1AB ; GetCurrentPlayerIndexIntoA()

628D: BD BB 3E JSR $BB3E ; GetPlayerScoreIndexAintoU()

6290: 6D C4 TST ,U ; i.e. U --> 00 02 08 02 70 == 2,080,270 points.

6292: 26 27 BNE $62BB ; If score fills 1st score byte, no consolidation ball

6294: A6 41 LDA $0001,U ; Score is >= 100,000,000 points, no consolidation ball

6296: 81 03 CMPA #$03 ; If score next two digits >= 03, no consolidation ball

6298: 24 21 BCC $62BB ; Score is >= 3,000,000 points, no consolidation ball

629A: BD 88 F5 JSR $88F5 ;

629D: 4C 7B 38 ; Gets X per-player game state data

62A0: 6D 88 22 TST $22,X ; game-time high-byte non-zero, no consolidation ball

62A3: 26 16 BNE $62BB ; player game-time is >= 256 seconds, 4m16s

62A5: EC 88 22 LDD $22,X ; Check low byte of player game-time

62A8: C1 1E CMPB #$1E ; Compare player time with 30 seconds

62AA: 22 0F BHI $62BB ; If higher than 30 then no consolidation ball

62AC: BD 88 D5 JSR $88D5 ; IncreaseBookkeepingCounterAddrXBy1ParamBytes()

62AF: 00 1F ; 31. Lit consolidation ball counter

62B1: BD 84 80 JSR $8480 ; SetMemoryFlag()

62B4: D1 ; 0xD1 == Lit Consolidation Ball

62B5: BD 88 F5 JSR $88F5 ;

62B8: 57 23 31 ; LiteExtraBallWithExtraBallIsLitMessage()

 ;

62BB: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

62BE: 03 01 ; FeatureAdjustment003, Extra Ball Memory, Adj=0x03

As can be seen in the above logic, the game will only present the player with a free “Extra Ball is Lit” at

ball start when all of the following criteria are true:

 Game adjustment A.2 04 Consolidation Ball is set to “On”, and

 It is start of last ball in play for the current game, and

 There are zero extra balls for the current player to play out, and

 The player has won zero extra balls in the current game, and

 The player’s score is less than 3,000,000 points, and

 The player’s game time is 30 seconds of less

A simple code change is added where the a new function will be called that will check if game

adjustment A.1 03 is set to “NO EX BALL” so that the consolidation ball can be skipped if this is the case.

The altered code is shown, highlighted, below:

626B: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

626E: 04 00 ; FeatureAdjustment004, Consolation Ball, Adj=0x04

6270: 24 49 BCC $62BB ; If Consolidation ball is off then branch to $62BB

 ;

 ;--

 ; Consolidation ball enabled, check if EB should be lit

 ;--

6272: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

6272: BD 78 DA JSR $78DA ; ConsolidationBallCheckL84()

 ; C-clear if consolidation ball is allowed

6275: 25 44 BCS $62BB ; No consolidation ball for player, skip to $62BB

6277: BD B3 CA JSR $B3CA ; Get extra balls remaining to play

The L8.4 fix simply calls a new L8.4 function which will check if lit consolidation ball may occur. The new

function will include the check for last ball since the original such check was replaced with the call to the

new function. The new function is as shown below:

---;---

 ;

 ; ConsolidationBallCheckL84()

 ; returns C-clr if lit consolidation ball is allowed

 ; returns C-set if lit consolidation ball disallowed

 ;

78DA: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

78DD: 83 00 ; StandardAdjustment003, Max E.B. Count, Adj=0x83

78DF: 25 04 BCS $78E5 ; If c-bit is set, consolidation ball may take place

78E1: 1A 01 ORCC #$0001 ; C-clr, no consolidation ball, set the C-bit and return

78E3: 20 03 BRA $78E8 ;

78E5: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

 ; C-clear if on last ball

78E8: 39 RTS ;

 ;

---;---

The L8.4 function checks if adjustment A.1 03 is set to “NO EX BALL” and, if so, returns right away with

C-bit set to signal the calling function that consolidation ball is not to be allowed so no extra ball will be

lit if player is doing poorly at last ball. If the A.1 03 is not set to “NO EX BALL” then the original logic

from L-8 will resume where the $B1D1 function is called to check if player is on the last ball, returning C-

bit clear if on last ball (signaling the calling function that consolidation ball is allowed).

With this and all of the preceding changes in place, the L8.4, when A.1 03 is set to “NO EX BALL” will not

award an extra ball or lit extra ball to the player at any point during game play.

Skill-Shot 5-Bank Failure Investigation, L8.4
As part of L8.4, an investigation was made into how the game handles the failure scenario where none

of the 5-bank targets are hit during skill shot. No code changes were done in L8.4 as a result of this

investigation however the results are briefly documented here for posterity.

What was noticed is that when none of the 5-bank targets are hit during skill shot, the 5-bank targets

continue to cycle even as other playfield switches are being hit. The database award could even be

collected while the 5-bank targets continue to cycle due to the missed 5-bank at skill shot.

Eventually, the 5-bank targets stop cycling, yet the conditions, at first, appear to be random under what

condition the targets stop cycling. At first it seemed as if this could be an unintentional and random way

in which the game behaves since it seemed reasonable that the first non-5-bank target should

immediately stop the 5-bank cycling targets.

What was discovered is that the current game behavior is intentional and specifically designed to

behave this way. What is actually happening is that the game simply tracks the playfield switches that

are hit after the ball is launched and as soon as 3 unique playfield switches have been hit, the code

necessarily ends the 5-bank skill shot target cycling. It happens to be that some shots such as left-loop

and left ramp/inlane shots cause 3 unique switches to close (which ends the 5-bank cycling) while other

shots such as drop-target and then left lock, only consist of 2 unique switches which is why the 5-bank

targets continue to cycle even as the database is being awarded. As soon as a 3rd playfield switch is hit,

the 5-bank cycling will explicitly stop.

These findings reveal the game is behaving in the way intended and, as such, no code changes for L8.4

are done to change this behavior.

Attract Mode Improvements, L8.4
For L8.4 some improvements to the attract mode are added, with the following goals:

 Fix issue where start-button w/zero credits makes sound even if attract sounds are disabled.

 Add support for start-button sound when zero credits, allow sound to play up to 3 times.

 Add support for gun-trigger sound during attract mode.

 Add support for Tournament Mode display of previous game scores when gun-trigger is pulled.

The desire is to have a little bit of added user-interaction during attract mode to add a little fun for those

who try to interact with the game during attract mode. The Indiana Jones game is appropriate game to

follow since it has a gun trigger similar to Terminator 2. For L8.4 the changes in attract mode can be

selectable by selecting L8.4 from the “Attract Mode” adjustment. The bug-fix for the start-button sound

takes effect regardless of the “Attract Mode” adjustment since it represents a bug-fix and not an added

feature for L8.4. It may be debatable if this is truly a bug however during L8.4 development the decision

was that “Attract Sounds” being set to “Off” should mean that no sounds are emitted unless a game is in

play.

The table below shows some of the differences in behavior in existing L-8 code as compared to IJ L-7:

Activity T2 L-8/L8.3 Indiana Jones L-7

Start Button Press during Attract Mode when game is reporting zero credits

Number of times allowed Single sound Single sound

When can initially play
sounds

At game-over attract mode start At every attract mode start

When can play sounds
again after silent period

When main attract mode loop cycles
twice, when “I am the future” plays

After 4m41s has passed since previous
sound

Gun Trigger Press during Attract Mode

Number of times allowed No gun trigger sound Three sounds

When can initially play
sounds

n/a At every attract mode start

Reinitialized, can play
sounds again

n/a After 2m48s has passed since previous 3
sounds had played

Flipper Button Left/Right during Attract Mode

Number of times allowed No flipper button sounds Three sounds

When can initially play
sounds

n/a At every attract mode start

When can play sounds
again

n/a After 4m41s has passed since previous 3
sounds had played

Since Terminator 2 uses different flipper circuitry than Indiana Jones, it is not possible for T2 to detect

flipper button presses without actually allowing the flippers to be powered. The T2 flipper end-of-stroke

switch is what actually feeds into the CPU board as the flipper button left or right switch closures.

Because of this, the idea for L8.4 is to give a little more fun to the attract mode by combining some of

what was done in Indiana Jones with T-2, resulting in the following goals for L8.4 when the game

adjustment for “Attract Mode” is set to “L8.4”:

Activity T2 L-8/L8.3 T2 L8.4

Start Button Press during Attract Mode when game is reporting zero credits

Number of times allowed Single sound Three sounds

When can initially play
sounds

At game-over attract mode start At every attract mode start

When can play sounds
again

When main attract mode loop cycles
twice, when “I am the future” plays

After 4m41s has passed since previous 3
sounds had played

Gun Trigger Press during Attract Mode

Number of times allowed No gun trigger sound Three sounds

When can initially play
sounds

n/a At every attract mode start

When can play sounds
again

n/a After 2m48s has passed since previous 3
sounds had played

In addition to these changes for L8.4, there is added improvement that will be pulled in from IJ L-7. The

IJ code, when flipper button is pressed in attract mode while “Tournament Mode” is enabled, will show

on the display the scores from the most recently played game. After a short while, the attract mode will

resume from the top of the current loop (main loop or game-over loop). For L8.4, since the flipper

buttons cannot be used in this way, the gun-trigger can be used in this way to allow previously played

scores to be shown when the gun trigger is pulled during attract mode when Tournament Mode is

enabled.

After a careful survey of IJ and T2 code, the following is a list of the needed work for L8.4:

 Add “L8.4” as a possible selection for the “Attract Mode” setting.

 Work and code changes affecting both start-button and gun-trigger:

o Identify bytes in RAM that are suitable for L8.4 start-button and trigger switch logic.

o Identify 2 function ID values that can be used for start/trigger reset timer functions.

o Put in code to initialize the RAM counter bytes at every attract mode start.

 Code changes specific to start-button handling

o Put in code to relocate the existing start-button sound to different bank with more room.

o Enhance the start-button sound code to check attract-mode for L8.4

o Have the start-button handler, in L8.4 mode, play up to 3 sounds & reset timer code.

o Fix bug for all cases so start-button only makes sound when Attract Sounds are enabled.

 Code changes specific to gun-trigger handling

o Gun-trigger switch table metadata so its callback is used even at game-over.

o Gun-trigger callback function checks for attract mode.

o Gun-trigger callback function during attract mode, check attract-mode for L8.4.

o Gun-trigger callback function L8.4 mode, play up to 3 sounds and reset timer code.

o Gun-trigger callback function in Tournament mode, shows previously played scores.

Attract Mode Improvement: Adding “L8.4” Attract Mode Setting
The new L8.3 adjustment “Attract Mode” is updated in L8.4 to support a new setting for “L8.4” attract

mode. This requires a change to the adjustment metadata to increase the maximum value by 1. Out of

completeness, the factory setting will also be changed to the new “L8.4” value. This change in factory

setting only takes effect when the game resets its settings back to factory default.

The L8.4 updated row of adjustment metadata is highlighted below, allowing maximum value 03. This

row of table data starts at $7117,3D, ROM offset 0x77117.

710B: 00 00 00 00 00 01 74 13 3A 72 70 3A ; Feature Adjustments, A2.22, Profanity

7117: 00 02 00 00 00 02 00 01 00 65 7C 3D ; Feature Adjustments, A2.23, Attract Mode

7117: 00 03 00 00 00 03 00 01 00 65 7C 3D ; Feature Adjustments, A2.23, Attract Mode

7123: 00 01 00 00 00 01 00 01 00 65 C5 3D ; Feature Adjustments, A2.24, Animation Code

As shown in the metadata table entry, the handler for showing this adjustment in the menu system is at

$657C,3D. This function was previously described in the L8.3 code changes and now must undergo

some changes to accommodate the new menu selection. The first change is to simply move the strings

that it cites to a region later in the ROM image so that the function has room for a new check for L8.4

setting. The change of addresses is highlighted below, starting address of old strings was at $65AB,3D,

and they are moved to a region of unused bytes starting at $66E0,3D, ROM offset 0x766E0.

--------------------------------;---

 ;

65AB: 4D 45 4E 55 20 45 52 52 4F 52 00 ; "MENU ERROR"

65B6: 4C 38 2E 31 00 ; "L8.1"

65BB: 4C 38 2E 32 00 ; "L8.2"

65C0: 4C 38 2E 33 00 ; "L8.3"

66E0: 4D 45 4E 55 20 45 52 52 4F 52 00 ; "MENU ERROR"

66EB: 4C 38 2E 31 00 ; "L8.1"

66F0: 4C 38 2E 32 00 ; "L8.2"

66F5: 4C 38 2E 33 00 ; "L8.3"

66FA: 4C 38 2E 34 00 ; "L8.4"

 ;

--------------------------------;---

With the moved strings, the updated menu handler code is shown below with modifications from its

L8.3 version highlighted. Shown below is the portion of the entire menu handling code that requires

modification. Refer to the new attract mode setting described in the L8.3 document for a more

thorough description of the “Attract Mode” menu handler function. The portion shown below starts at

$658A,3D, ROM offset 0x7658A.

--------------------------------;---

 ;

 ;

658A: 8E 65 AB LDX #$65AB ; Load default/error string

658A: 8E 66 E0 LDX #$66E0 ; Load default/error string

658D: 11 83 00 00 CMPU #$0000 ; Check if at "L8.1"

6591: 26 04 BNE $6597 ;

6593: 8E 65 B6 LDX #$65B6 ;

6593: 8E 66 EB LDX #$66EB ;

6596: 39 RTS ;

6597: 11 83 00 01 CMPU #$0001 ; Check if at "L8.2"

659B: 26 04 BNE $65A1 ;

659D: 8E 65 BB LDX #$65BB ;

659D: 8E 66 F0 LDX #$66F0 ;

65A0: 39 RTS ;

65A1: 11 83 00 02 CMPU #$0002 ; Check if at "L8.3"

65A5: 26 03 BNE $65AA ;

65A5: 26 04 BNE $65AB ;

65A7: 8E 65 C0 LDX #$65C0 ;

65A7: 8E 66 F5 LDX #$66F5 ;

65AA: 39 RTS ;

65AB: 11 83 00 03 CMPU #$0003 ; Check if at "L8.4"

65AF: 26 03 BNE $65B4 ;

65B1: 8E 66 FA LDX #$66FA ;

65B4: 39 RTS ;

 ;

--------------------------------;---

With the above changes in place, code may now read the “Attract Mode” setting value to determine

next course of action. A survey of the L8.3 code changes regarding attract mode reveals that the L8.3

code changes that performs certain attract mode sequences based on “Attract Mode” setting do so in

such a way that any checks for “L8.3” will automatically include “L8.4” due to the way in which the code

checks for values greater or less-than instead of checking or absolute values of the adjustment. This

means there are no corrections needed to the existing L8.3 code related to the “Attract Mode” setting.

Attract Mode Improvement: Overall Changes for Start-Button and Gun-Trigger
This section covers work items applicable to both the start-button and the gun-trigger enhancements to

the L8.4 attract mode. This covers (a) identifying bytes in RAM to use for tracking number of start-

button and gun-trigger switches, (b) identifying 2 function ID values to use for start-button and gun-

trigger timers, and (c) adding code to ensure the RAM bytes are reset at the appropriate times so attract

mode will allow them to count up to 3 switch closures before starting its respective quiet timer.

Attract Mode Improvement: Overall Changes: Identifying available RAM Bytes

For L8.4 attract mode changes, two bytes of RAM are needed to keep track of the number of start-

button and gun-trigger switch closures. By counting the number of closures, then code can know when

3 closures have occurred and can then stop playing sounds for a while (based on a timer that gets set).

Additionally, two more bytes of RAM are needed to store the previously played sound effect identifier to

prevent the same sound from playing two times in a row.

An additional 1 byte of RAM is needed to store whether the L8.4 attract mode enhancement is handling

the start-button or the gun-trigger. This ended up being needed in order to allow the single attract-

mode interrupt function to be used for either start-button or gun-trigger. This allows the attract-mode

to be interrupted by either the normal start-button “Insert coin” message or the L8.4 gun-trigger display

of previous game scores (when tournament mode is enabled).

With L8.4 having recently added code in Video Mode (for Tournament Mode fixups) some relatively

“safe” RAM bytes are already apparent. There are a handful of RAM bytes used by video mode for

purpose of tracking the video mode progress. A scan of the ROM of other locations where such RAM

bytes reveals they are not used elsewhere for any other purpose. In fact, after the video mode, the

bytes are left in RAM, unchanged, until the next video mode starts up. They remain in their most-

recently used state even into the game-over and attract mode.

The table below captures identified Video Mode RAM bytes that may safely be used for this purpose:

RAM Byte Video Mode
Usage

Number of references in ROM L8.4 Attract Mode

$0643 Tallied hits on
player

5 references, bank $2B, all used in
Video Mode

Stores number of start-
button sounds played so far.

$0644 Number of
terminator kills

7 references, bank $2B, all used in
Video Mode

Stores number of gun-trigger
sounds played so far.

$0645 Current of hits on
player

3 references, bank $2B, all used in
Video Mode

Stores last played start-
button sound index.

$0646 Max terminator
kills

3 references, bank $2B, all used in
Video Mode

Stores last played gun-
trigger sound index.

$0647 Kills until Hunter
ship appears

3 references, bank $2B, all used in
video Mode

Indicates if start-button or
gun-trigger is being handled.

Reference count is only counting where the RAM byte is referenced in an opcode. Other occurrences of

the 2-byte RAM byte addresses in ROM are not in relation to accessing these RAM bytes.

The L8.4 can neatly use these RAM bytes during attract mode for purpose of counting start-button and

gun-trigger switch closures and during game play these RAM bytes can simply be used in the way

currently are used without any code changes to accommodate their extra use in L8.4 attract mode.

As a side note, it was noticed that the RAM bytes that IJ L-7 uses to count attract mode flipper-button

and gun-trigger switch closures are also used during regular game-play (such as in mode for crossing the

rope bridge). This method of using video mode RAM bytes in L8.4 is consistent with IJ L-7.

Rows 3 and 4 in the table above identify RAM bytes that L8.4 can used to track the previously played

sound so that the same sound doesn’t play two times in a row. This is also consistent with what IJ L-7

does for flipper-button sounds during attract mode.

Attract Mode Improvement: Overall Changes: Identifying 2 Function ID values

As suggested, the L8.4 code will mimic what was observed in Indiana Jones L-7 code whereby the attract

mode will count the button hits and when their hit limit is reached, then a timer is set during which

subsequent button closures will not cause sound to play.

As described in L8.3 documentation and in earlier parts of L8.4 documentation, the WPC code will assign

a scheduled function with a 16-bit identifier value. Typically this is important during game play so that

code knows if a particular feature is active by checking if the given 16-bit ID value is currently in the

scheduler. Because of this it is important to choose the ID value carefully so as not to cause inadvertent

game logic when existing code checks for running ID values. During attract mode, the likelihood of

trouble is less of a concern since there is no game play taking place however the ID values still need to

be considered carefully to avoid any unintended behaviors.

It should be noted that in IJ L-7 upon game-play startup, the active running timers are cancelled as part

of game startup procedures. A sweeping cancellation of active running functions takes place. The

sweeping cancellation includes any of the 3 possible attract mode timer functions that might be active

at the moment of game start. For reference, the table below summarizes the function ID values used in

IJ L-7 for attract mode timers.

IJ L-7 Attract Mode Feature Used in ROM Bank Function ID Timer Period

Start-Button Sound Bank $30 Function ID: 00 04 0x4650

Flipper-Button Sounds Bank $36 Function ID: 00 F0 0x4650

Gun Trigger Sounds Bank $36 Function ID: 00 E9 0x2A30

For those curious about the cancellation of startup timers at game start, below is the IJ L-7 function that

starts the cancellation of all scheduled functions. This is located in IJ L-7 at $4B4A,38, ROM offset

0x60B4A.

---;--

 ; IJ L-7

 ; GameStartupCancelCallbacks()

 ;

4B4A: 34 26 PSHS Y,B,A ;

4B4C: 10 8E BF FF LDY #$BFFF ;

4B50: CC 40 00 LDD #$4000 ;

4B53: BD 9A A8 JSR $9AA8 ; CancelAllCallbacksIdYMaskD

4B56: 35 A6 PULS A,B,Y,PC ;

 ;

---;--

The function gets called through a call chain of other initialization code that takes place when a game is

starting up.

A survey of T2 L-8 code reveals it has the same sweeping cancellation of timer functions. This means no

special code is needed other than starting up the timer functions in a similar manner as IJ code. The

corresponding function in T2 L-8 code is located at $4B7F,38, ROM offset 0x60B7F as shown below:

---;---

 ; T2 L-8

 ; GameStartupCancelCallbacks()

 ;

4B7F: 34 26 PSHS Y,B,A ;

4B81: 10 8E BF FF LDY #$BFFF ;

4B85: CC 40 00 LDD #$4000 ;

4B88: BD 9A FD JSR $9AFD ; CancelAllCallbacksIdYMaskD()

4B8B: 35 A6 PULS A,B,Y,PC ;

 ;

---;---

As mentioned earlier in this document, the ID/Mask are used in the following way. All scheduled

callback functions are examined, and for each existing scheduled function ID:

 IF <existing ID> AND <yyyy> EQUALS <xxxx> AND <yyyy>, then function is cancelled.

Readers are encouraged to experiment with emulator and set breakpoints to see how this code behaves,

being called at game startup, and to see how it ultimately cancels functions. After this function has

completed, the timer functions are no longer running.

For T2 L8.4 a survey of ROM code of the usual byte patterns where function IDs are specified is done to

see if the IJ L-7 function IDs can be carried into L8.4. Initial checking for IDs 00E9 and 00F0 indicate they

are already used in T2 L-8. Other nearby ID values were checked until two were found to be unused by

existing code, 00F2 and 00F3. Check of all places where IDs are cited shows they are unused in T2 L-8

and should be able to be used in L8.4 safely. Results are shown below.

Function Name L-8 Function
Usage Signature

Description Search Result

ScheduleFunctionStart() BD 8B 77 xx xx yy yy yy Schedules function ID xx
xx to start at WPC Addr
yy yy yy

No occurrence of:
BD 8B 77 00 F2 or BD 8B 77 00 F3

SearchLinkedListForId() BD 86 90 xx xx Searches for scheduled
function ID xx xx

No occurrence of:
BD 86 90 00 F2 or BD 86 90 00 F3

CancelScheduled
CallbackFunction()

BD 86 9E xx xx Cancels scheduled
function ID xx xx

No occurrence of:
BD 86 9E 00 F2 or BD 86 9E 00 F3

UpdateCurrentRunningSchedule
FunctionIDParameterBytes()

BD 86 AC xx xx Sets currently running
function ID to xx xx

No occurrence of:
BD 86 AC 00 F2 or BD 86 AC 00 F3

TBD() BD 86 BA xx xx TBD, where xx xx is
function ID

No occurrence of:
BD 86 BA 00 F2 or BD 86 BA 00 F3

CancelScheduledCallbackID
ParameterBytes()

BD 86 D0 xx xx Cancels scheduled ID xx
xx

No occurrence of:
BD 86 D0 00 F2 or BD 86 D0 00 F3

CancelAllCallbacksIdMask
ParameterBytes()

BD 8A 9A xx xx yy yy Cancels scheduled
functions matching ID
pattern of xx xx bitwise-
and yy yy

No occurrence of:
BD 8A 9A 00 Fx,

SearchLinkedListAndMask
ParameterBytes()

BD 8A AA xx xx yy yy Searches for schedule
functions matching ID
pattern of xx xx bitwise-
and yy yy

No occurrence of:
BD 8A AA 00 Fx

AddLinkedListEntry() BD 8B 3D xx xx yy yy
yy

Adds function yy yy yy to
linked list as ID xx xx

No occurrence of:
BD 8B 3D 00 F2 or BD 8B 3D 00 F3

ScheduleFunctionStart() BD 8B 77 xx xx yy yy yy Schedules function yy yy
yy ID xx xx

No occurrence of:
BD 8B 77 00 F2 or BD 8B 77 00 F3

TBD() BD 8B 9D xx xx yy yy
yy

TBD, where xx xx is ID
and yy yy yy is addr.

No occurrence of:
BD 8B 9D 00 F2 or BD 8B 9D 00 F3

ScheduleFunctionCallback() BD 8B C3 xx xx yy yy
yy

Schedules function yy yy
yy ID xx xx

No occurrence of:
BD 8B C3 00 F2 or BD 8B C3 00 F3

TBD() BD 8B F7 xx xx yy yy yy Schedules function yy yy
yy ID xx xx

No occurrence of:
BD 8B F7 00 F2 or BD 8B F7 00 F3

With the above information 5 RAM bytes and 2 function ID values for L8.4 attract mode are now

identified and can be used in code shown next.

Attract Mode Improvement: Overall Changes: Initialize the RAM bytes at attract mode start

The final set of L8.4 attract mode work that is applicable to both start-button and gun-trigger involves

inserting new code that ensures the RAM bytes that count number of switch closures are cleared to

0x00 so that L8.4 attract mode can then increase these counters to track number of start-button presses

and gun-trigger pulls.

Initially the L8.4 was going to match IJ L-7 and reset the counters at attract mode start, however it was

discovered this method would not allow the start-button count to accumulate. This is because the start-

button (when zero credits) will show “Insert Coins” message for a short period and then restart attract

mode. The restart of attract mode then (in IJ L-7) resets the switch counters. Astute readers will see

that on IJ L-7 the start-button (when zero credits) results in the counters being reset so they can play two

flipper-button sounds and get two gun-trigger clicks and then use the start-button to reset the counts,

then get two more flipper-button and gun-trigger sounds, repeat, without incurring the timeout period

where no sounds are allowed from flipper-button and gun-trigger.

For reference, the IJ L-7 code that resets the two counters (for start-button and gun-trigger) is shown

below. In IJ L-7 this is done at $6D4D,36, as shown below:

6D4D: BD 83 99 ; Sleep(0x01)

6D50: 01 ; Parameter 0x01

6D51: 7F 0A AB CLR $0AAB ; $0AAB gets 0x00, clears attract-mode flipper-button

 ; sounds counter at attract mode start

6D54: 7F 0A A4 CLR $0AA4 ; $0AA4 gets 0x00, clears attract-mode gun-trigger

 ; sounds counter at attract mode start

6D57: BD 67 6A JSR $676A ; InitDMDAndCycleC7andClockItIn()

6D5A: 7E 6D 5D JMP $6D5D ; <nop>

For T2 L8.4 the clearing of the RAM must be done prior to the invocation of the attract-mode so that the

start-button and its subsequent restart of attract-mode does not cause the counters to get reset.

In order to ensure the L8.4 code update for clearing the start-button and gun-trigger RAM values is done

correctly, the L-8 code was analyzed for full understanding in all ways in which the attract mode gets

started. The flowchart, below, depicts the various paths that can start attract mode.

As shown in the attract mode logic diagram above, the AttractModeMainLoop() can be started from

various sources. The one-coin buy-in option introduces an interesting behavior where the game-over

code schedules the OneCoinBuyInPerform() function and then calls AttractModeEnter() which schedules

the AttractModeMainLoop() however the OneCoinBuyInPerform() function then proceeds to cancel the

AttractModeMainLoop() function before presenting the player with the option to buy a credit for a coin.

Once the player has inserted a coin or the 10 second timeout expires, then the OneCoinBuyInPerform()

will then schedule the AttractModeMainLoop() itself. This is awkward design in that the attract mode is

started then cancelled and restarted. To get one-coin buy-in, it must be enabled in Pricing Adjustments

along with the pricing type specifically set to 2/$1.00 (and free-play is not enabled). When the

adjustments are set this way, the game offers the player the opportunity to get 1 credit for a single coin

AttractModeMainLoop()

$793F,30, Function ID 1060

$5D1A,3D Indexed Function 04

OneCoinBuyInPerform()

1. $602E,39 Cancels current

AttractModeMainLoop()

2. $6078,39, Function ID 0073

After coin-up or 10-sec timeout

Calls $8553 which calls $C791 with 04

to schedule AttractModeMainLoop()

AttractModeEnter()

Start: $4613,38, at $4630,38

Calls $C791 with 04 to schedule

AttractModeMainLoop()

Initialization & Startup

Proceedings

$8DC1 $9C3C $B15E

At $B168, Calls

AttractModeEnter()

End of Game Proceedings

1. $47D5,38 Schedules

OneCoinBuyInPerform()

2. $47E4,38 Calls

AttractModeEnter()

AttractModeRescheduler()

$C989 $C9A1

Reschedules Function 04

AttractModeMainLoop()

Power-Up Slam-Tilt

Show

Credits

Large Font

End Of Game Exit Test Mode

Coin

Inserted

Start Button

w/insufficient

credits

Show Credits

Medium Font, and

“Insert Coin” or “Press Start”

at the end of a game. The one credit for one coin occurs only during the 10 second buy-in period and

may only be done for as many players that were in the game that had just ended.

As previously stated, the start-button handler results in the restart of the attract mode loop and,

therefore, the L8.4 cannot reset the button-press counts at the start of AttractModeMainLoop() which is

what IJ L-7 does for flipper-button and gun-trigger sound counts. For L8.4 the memory clearing needs to

be done prior to the AttractModeMainLoop() only in the cases where the attract mode is genuinely

starting and not in the case of the restart of attract mode due to start-button during zero credits.

An analysis of the L-8 code and referring to the logic chart above, the AttractModeEnter() function is the

place where L8.4 can safely reset the RAM counters for start-button and gun-trigger pulls. This function

is common to all places where attract mode starts where subsequent start-button and gun-trigger

sounds can, from then on, be counted. As shown in the logic chart, subsequent restarts of attract mode

due to start-button (with zero credits) will not cause the counts to reset since AttractModeEnter() is not

involved at such attract mode restarts. In the case of one-coin buy-in, the game-over code still calls

AttractModeEnter() even though the subsequent one-coin buy-in will cancel the AttractModeMainLoop()

that AttractModeEnter() had tried to launch. In this case the AttractModeEnter() is still an appropriate

place to clear the RAM for start-button and gun-trigger switch counts when one-coin buy-in is in use.

Shown below is the partially annotated AttractModeEnter() function. This is at $4613,38, ROM offset

0x60613.

---;---

 ;

 ; AttractModeEnter()

 ;

4613: 34 16 PSHS X,B,A ;

4615: 86 01 LDA #$01 ;

4617: 97 87 STA $87 ; $87 is non-zero when in attract mode or test mode

4619: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

461C: 53 5F 39 ;

461F: BD A8 4A JSR $A84A ;

4622: BD AB 98 JSR $AB98 ; FlippersRelayDisable()

4625: BD 83 DB JSR $83DB ;

4628: 1F ;

4629: B6 17 93 LDA $1793 ; test mode indicator (non-zero in test mode)

462C: 26 20 BNE $464E ; If $1793 was non-zero then skip to the end

 ; This is where attract mode is launched at power-up and

 ; when leaving menu mode

462E: 86 04 LDA #$04 ; Index 0x04 into $5D1A,3D tbl == AttractMode() $793F,30

4630: BD C7 91 JSR $C791 ; This function saves the 0x04 into $0487 which is how

 ; main code knows the function ID when re-scheduling

 ; attract mode after "insert coin" w/zero credits

4633: BD 4B 6D JSR $4B6D ;

4636: BD A2 52 JSR $A252 ;

4639: 8E 4B 8D LDX #$4B8D ;

463C: C6 38 LDB #$38 ;

463E: BD C7 22 JSR $C722 ;

4641: BD 86 21 JSR $8621 ; CallFunctionPointerParameterBytes()

4644: 80 2B ; $802B has $5EDD,3B

4646: BD 4D 3A JSR $4D3A ;

4649: BD 86 21 JSR $8621 ; CallFunctionPointerParameterBytes()

464C: 80 D0 ; $80D0 has $6585,3B

464E: 35 96 PULS A,B,X,PC ;

 ;

---;---

The function, above, is modified so it will jump to a new L8.4 function located at the end of the bank $38

which performs the instructions that were replaced with the jump instruction and then clear the RAM

for L8.4 attract mode. The updated portion of the code is as follows:

4629: B6 17 93 LDA $1793 ; test mode indicator (non-zero in test mode)

462C: 26 20 BNE $464E ; If $1793 was non-zero then skip to the end

 ; This is where attract mode is launched at power-up and

 ; when leaving menu mode

462E: 86 04 LDA #$04 ; Index 0x04 into $5D1A,3D tbl == AttractMode() $793F,30

4630: BD C7 91 JSR $C791 ; This function saves the 0x04 into $0487 which is how

 ; main code knows the function ID when re-scheduling

 ; attract mode after "insert coin" w/zero credits

462E: BD 7F EC JSR $7FEC ; Call new L8.4 attract-mode start hook

4631: 20 00 BRA $4633 ; Dummy instructions to fill in the bytes

4633: BD 4B 6D JSR $4B6D ;

4636: BD A2 52 JSR $A252 ;

At the end of bank $38 is the new L8.4 function, as shown below. This is located at $7FEC,38, ROM

offset 0x63FEC.

---;---

 ;

 ;

7FEC: 7F 06 43 CLR $0643 ; For L8.4, Clear RAM byte for start-button closures

7FEF: 7F 06 44 CLR $0644 ; For L8.4, Clear RAM byte for gun-trigger closures

7FF2: 86 FF LDA #$FF ;

7FF4: B7 06 45 STA $0645 ; Push 0xFF into last played sound index, start-button

7FF7: B7 06 46 STA $0646 ; Push 0xFF into last played sound index, gun-trigger

 ;

7FFA: 86 04 LDA #$04 ; Index 0x04 into $5D1A,3D tbl == AttractMode() $793F,30

7FFC: BD C7 91 JSR $C791 ; This function saves the 0x04 into $0487 which is how

 ; main code knows the function ID when re-scheduling

 ; attract mode after "insert coin" w/zero credits

7FFF: 39 RTS ;

 ;

---;---

The new L8.4 memory clearing ensures the start-button and gun-trigger counts are reset to zero and

also the saved index from the previously played sound is set to 0xFF which is not a valid sound index so

the first played sound is not inadvertently determined to have been played most recently.

Attract Mode Improvement: Start-Button Handling
In this section the new L8.4 changes for attract-mode start-button handling are described. This refers to

the following items:

 Put in code to relocate the existing start-button sound to different bank with more room.

 Enhance the start-button sound code to check attract-mode for L8.4

 Have the start-button sound code, in L8.4 mode, play up to 3 sounds & reset timer code.

 Fix bug for all cases so start-button only makes sound when Attract Sounds are enabled.

First, the start-button handling code where sound is played needs to be relocated to where there is

more room in ROM space to implement the L8.4 function when Attract Mode is set to L8.4. To

understand how this gets relocated, the entire start-button switch handler is shown below, partially

annotated with relevant section highlighted. This code is at $4540,38, ROM offset 0x60540.

---;---

 ;

 ; SwitchMatrixHdlr_StartButton()

 ;

4540: BD 86 D0 JSR $86D0 ; CancelScheduledCallbackIDParameterBytes()

4543: 78 7F ;

4545: BD 4D 4C JSR $4D4C ;

4548: 7D 03 83 TST $0383 ; In menu-system indicator

454B: 10 26 00 9B LBNE $45EA ; If $0383 is is non-zero then we're done, do nothing

 ;

454F: BD 48 D1 JSR $48D1 ;

4552: 10 24 00 94 LBCC $45EA ; C-clear? do nothing

 ;

4556: BD 83 19 JSR $8319 ; GetSwitchClosedParameterByte() // C-clr = sw closed

4559: 11 ; 0x11 == Start Button

455A: 10 24 00 8C LBCC $45EA ; C-clear? switch is closed, do nothing

 ;

455E: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

4561: 5C 0A 39 ; Checks for 1 or more credits, C-clr = 1 or more cred.

4564: 24 12 BCC $4578 ; C-clr means theres 1 or more credits, C-set means zero

 ;

 ; Code only when no credits:

 ; {

4566: BD 86 21 JSR $8621 ; CallFunctionPointerParameterBytes()

4569: 80 52 ; $8052 == $5ECB,3B, debug RTS

456B: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

456E: 00 0C ;

4570: 24 78 BCC $45EA ;

4572: BD 85 53 JSR $8553 ; Calls function from table at $5D1A,3D

4575: 17 ; 0x17 --> $7DDD,30, 0-credits sound handler

4576: 20 72 BRA $45EA ; }

 ;

4578: 96 87 LDA $87 ; $87 = 0x00 when Game in progress

457A: 26 5E BNE $45DA ; Game not in progress? Go to $45DA

 ;

457C: BD B1 D1 JSR $B1D1 ; GameOnLastBallCheckCBitClearCurrentBallInA()

457F: 81 01 CMPA #$01 ; Ball 1?

4581: 27 2E BEQ $45B1 ;

4583: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

4586: A1 00 ; StandardAdjustment033, Game Re-start, Adj=0xA1

4588: 24 60 BCC $45EA ;

458A: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

 ; C-bit set when not-equal

458D: A1 02 ; StandardAdjustment033, Game Re-start, Adj=0xA1

458F: 24 13 BCC $45A4 ;

 ;

4591: 86 1E LDA #$1E ; This many sleeps will be 0.46875 seconds

4593: BD 83 46 JSR $8346 ;--\ Sleep()

4596: 01 ; | 0.015625 seconds

 ; |

4597: BD 83 19 JSR $8319 ; | GetSwitchClosedParameterByte() // C-clr = sw closed

459A: 0B ; | 0x0B == Start Button

459B: 25 4D BCS $45EA ; | Switch is no longer pushed, do nothing

459D: 4A DECA ; |

459E: 26 F3 BNE $4593 ;--/

 ; Switch was held down for entire 0.46875 seconds,

 ; proceed to add player

 ;

45A0: 96 87 LDA $87 ; $87 has 0x00 when Game in progress

45A2: 26 46 BNE $45EA ; Game no longer in progress? done

 ;

45A4: 86 02 LDA #$02 ;

45A6: BD 4A 8D JSR $4A8D ; EndOfGameBookkeepingUpdates()

45A9: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

45AC: 62 84 39 ;

45AF: 20 37 BRA $45E8 ;

 ;

45B1: BD B1 9F JSR $B19F ; GetCurrentGameNumberOfPlayersIntoA()

45B4: 81 04 CMPA #$04 ;

45B6: 24 32 BCC $45EA ;

45B8: BD 88 F5 JSR $88F5 ;

45BB: 5C 1F 39 ;

45BE: 1C FE ANDCC #$00FE ;

45C0: BD 86 21 JSR $8621 ;

45C3: 80 1C SUBA #$1C ;

45C5: 25 23 BCS $45EA ;

45C7: 4C INCA ;

45C8: BD B1 9B JSR $B19B ;

45CB: BD 88 F5 JSR $88F5 ;

45CE: 62 56 39 ;

45D1: 8D 2C BSR $45FF ;

45D3: BD CA E2 JSR $CAE2 ;

45D6: 8D 30 BSR $4608 ;

45D8: 20 10 BRA $45EA ;

 ;

45DA: BD BC 5F JSR $BC5F ;

45DD: 25 0B BCS $45EA ;

45DF: 1C FE ANDCC #$00FE ; C-clear

45E1: BD 86 21 JSR $8621 ; CallFunctionPointerParameterBytes()

45E4: 80 55 ; $8055 == $61A9,3B, debug RTS

45E6: 25 02 BCS $45EA ;

45E8: 8D 03 BSR $45ED ;

45EA: 7E 99 A2 JMP $99A2 ;

 ;

---;---

For L8.4, it was found that the callback function Index 0x17 needs to be updated so it can be called from

start-button or from gun-trigger alike. This is needed as a safe method of allowing the gun trigger to get

the attract-mode to interrupt with the display of previously played game scores (when Tournament

mode is enabled). In order to support this, the portion of start-button handler shown above is modified

as shown below. This code begins at $4566,38, ROM offset 0x60566.

 ; Code only when no credits:

 ; {

4566: BD 86 21 JSR $8621 ; CallFunctionPointerParameterBytes()

4569: 80 52 ; $8052 == $5ECB,3B, debug RTS

456B: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-bit clear = ID found

456E: 00 0C ;

4570: 24 78 BCC $45EA ;

4572: BD 85 53 JSR $8553 ; Calls function from table at $5D1A,3D

4575: 17 ; 0x17 --> $7DDD,30, 0-credits sound handler

4572: BD 7F 05 JSR $7F05 ; Calls L8.4 Function to play sound and call $8553

4575: 12 NOP ; with 0x17 --> $7DDD,30, 0-credits sound handler

4576: 20 72 BRA $45EA ; }

This will cause the start-button handler, when there are zero credits, to first call the new L8.4 function

that is shown below. This is located at $7F05,38, ROM offset 0x63F05. This function will play a L8.4

sound if appropriate to do so, and then call $7FE4,38 to proceed. Initial L8.4 design had the code at

$4572,38 call directly to $7FE4,38. The $7F05,38 was inserted in later L8.4 revisions to allow the L8.4

start-button sound to play during the period of time in which the “Insert Coin” message is being

displayed. This is why this code flows through $7F05,38 before getting to $7FE4,38.

---;---

 ;

 ; The L8.4 attract mode allows up to 3 start-button

 ; sounds which get played here prior to scheduling the

 ; function that shows the "Insert Coin" message.

 ; This way, all 3 sounds can be triggered during the

 ; "Insert Coin" message, if button is repeatedly pressed.

 ;

7F05: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

7F08: 10 00 ; 0x10 == Attract Sounds, C-set when not equal to 0x00

7F0A: 24 0A BCC $7F16 ; If no attract sounds, branch to show CreditsInsertCOin

 ;

7F0C: BD 82 FF JSR $82FF ; LoadAWithTableIndexByteParameter()

7F0F: 17 ; 0x17, $1BE7:$1BE8 FeatureAdjustment023, Attract Mode

7F10: 81 03 CMPA #$03 ; Adjustment Value = 0, L8.1 C-bit set

 ; 1, L8.2 C-bit set

 ; 2, L8.3 C-bit set

 ; 3, L8.4 C-bit clear

7F12: 25 02 BCS $7F16 ; If c-set then not L8.4

7F14: 8D 03 BSR $7F19 ; Call the L8.4 start-button handler

7F16: 7E 7F E4 JMP $7FE4 ; Go schedule the remainder of the start-button work

 ;

---;---

 ;

 ;

 ; Perform the L8.4 start-button sound code

 ;

7F19: 34 12 PSHS X,A ;

7F1B: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

7F1E: 00 F2 ; Parameter 0x00F2

7F20: 24 36 BCC $7F58 ; If timer is running, no sounds, skip to the end

 ;

7F22: 8E 7F 65 LDX #$7F65 ; X=0x7F65, start of sound numbers for start-button

 ;

7F25: 86 0A LDA #$0A ;--\ A gets 0x0A

7F27: BD A7 5B JSR $A75B ; | Get16BitPseudoRandomValueintoA()

7F2A: B1 06 45 CMPA $0645 ; | Is it same random 8-bit as last time?

7F2D: 27 F6 BEQ $7F25 ; | If so, keep trying for different random number

7F2F: 81 05 CMPA #$05 ; | Check if we have FUA sound index

7F31: 26 09 BNE $7F3C ; | If not at FUA then use this sound

7F33: BD 86 5B JSR $865B ; | LookupGameAdjustmentParam1andCheckIfEqualsParam2()

7F36: 16 00 ; | FeatureAdjustment022, Profanity, Adj=0x16

7F38: 25 02 BCS $7F3C ; | If C-set then it Profanity is ON, okay to play FUA

7F3A: 20 E9 BRA $7F25 ;--/ FUA was picked but Profanity is OFF, try another

 ;

 ;

7F3C: B7 06 45 STA $0645 ; Save random number A into $0645

 ;

7F3F: A6 86 LDA A,X ; A = StartButtonZeroCreditsSounds[A]

 ;

7F41: BD BD FB JSR $BDFB ; DoSoundTableIndexA(), plays random sound effect

7F44: 25 12 BCS $7F58 ; if Error then return without counting it

 ;

7F46: 7C 06 43 INC $0643 ; $0643++

7F49: B6 06 43 LDA $0643 ; A = $0643

7F4C: 81 03 CMPA #$03 ; if (A >= 3) // if played 3 or more sound effects

7F4E: 25 08 BCS $7F58 ; {

7F50: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

7F53: 00 F2 ; ID = 00F2

7F55: 7F 5A 38 ; StartButtonZeroCreditsSilenceTimer()

 ; }

7F58: 35 92 PULS A,X,PC ;

 ;

---;---

 ;

 ; StartButtonZeroCreditsSilenceTimer()

 ; Function ID == 00F2

 ;

7F5A: BD 86 79 JSR $8679 ; SleepLong()

7F5D: 46 50 ; 4m41.25 seconds

7F5F: 7F 06 43 CLR $0643 ; Reset the start-button sound count back to zero

7F62: 7E 99 A2 JMP $99A2 ; ThreadedFunctionDone()

 ;

---;---

 ;

 ; StartButtonZeroCreditsSounds[]

 ;

7F65: A3 ; “No way, Jose”

7F66: 83 ; “Let‟s go”

7F67: 8B ; “Way to go“

7F68: 8D ; “Hasta la vista, baby“

7F69: 8E ; “Chill out“

7F6A: 92 ; FUA

7F6B: 93 ; “Woopdadidoo”

7F6C: 97 ; “Time to go”

7F6D: 7E ; “Get out”

7F6E: 9B ; “Out of the way”

 ;

---;---

The code, above, will allow the start-button to play a sound. After the 3rd such sound, a timer is set

before another round of 3 sounds can be triggered. The duration of the timer is set to match that of IJ

when flipper buttons experience a quiet period after triggering 3 different sound effects.

The code, above, then jumps to $7FE4,38 function, depicted below.

---;---

 ;

7FE4: 7F 06 47 CLR $0647 ; For L8.4, Clear $0647 = handling start-button

7FE7: BD 85 53 JSR $8553 ; Calls function from table at $5D1A,3D

7FEA: 17 ; 0x17 --> $7DDD,30, start-button zero-credits function

7FEB: 39 RTS ;

 ;

---;---

The new function, above, for L8.4 will simply clear the previously identified RAM byte used in attract

mode to inform the $8553 index function 0x17 that the start-button is being handled. Later, it will be

shown how this same RAM byte is made non-zero to allow the 0x17 function to know it is to handle a

request from the gun-trigger being pulled during attract mode and during Tournament Mode.

The original code, and now the new code calls $8553 with parameter byte 0x17. This causes the code to

call a lookup function and run function at index 0x17. The lookup table that $8553 is located starting at

$5D1A,3D, ROM offset 0x75D1A, with entry 17 containing the following data:

5D90: 18 1C ; Index17

5D92: 7D DD 30 ; Start-button zero-credits sound player

The first two bytes are metadata used by the $8553 function caller (details of how they are used have

not been fully analyzed or documented). The last three bytes are the address of the function to be

invoked. As shown, the function is $7DDD,30 which is at ROM offset 0x43DDD. The content of this

function as it is in L-8 is shown below for reference.

---;---

 ;

7DDD: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

7DE0: DC ; 0xDC flag for main inner attract block played twice

7DE1: 25 08 BCS $7DEB ;

7DE3: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

7DE6: 51 ; 0x51 == Twangz

7DE7: BD 84 8F JSR $848F ; ClearMemoryFlag()

7DEA: DC ; 0xDC flag for main inner attract block played twice

7DEB: BD 7B 74 JSR $7B74 ; AttractMode_CreditsInsertCoin()

7DEE: 7E C9 52 JMP $C952 ;

 ;

---;---

For L8.4 the function at $7DDD,30 will be removed (bytes set to 0xFF) and the table data at index 0x17

will point to new function instead of pointing to $7DDD,30. Other L8.4 code has been added near the

end of bank $3A, and this new code for start-button is placed there also. Note the entire L-8 ROM only

contains a single call to $8553 with index 0x17 (the call shown above) so this change can safely be made.

The $5D1A,3D table entry for 0x17 is changed to the following:

5D90: 18 1C ; Index17

5D92: 7D DD 30 ; Start-button zero-credits sound player

5D92: 7F 48 3A ; Start-button zero-credits sound player, L8.4

The new start-button sound handler is located at $7F48,3A, ROM offset 0x6BF48 and is as follows.

---;---

 ;

 ; L8.4 Start-Button Sound Handler & Gun-Trigger helper

 ;

7F48: 7D 06 47 TST $0647 ; 00 == Start-button, else gun-trigger

7F4B: 26 29 BNE $7F76 ; If non-zero do gun-trigger tournament mode scores

 ;

7F4D: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

7F50: 10 00 ; 0x10 == Attract Sounds, C-set when not equal to 0x00

7F52: 24 0A BCC $7F5E ; If no attract sounds, branch to show CreditsInsertCoin

 ;

7F54: BD 82 FF JSR $82FF ; LoadAWithTableIndexByteParameter()

7F57: 17 ; 0x17, $1BE7:$1BE8 FeatureAdjustment023, Attract Mode

7F58: 81 03 CMPA #$03 ; Adjustment Value = 0, L8.1 C-bit set

 ; 1, L8.2 C-bit set

 ; 2, L8.3 C-bit set

 ; 3, L8.4 C-bit clear

7F5A: 24 02 BCC $7F5E ; C-clr is L8.4, skip the pre L8.4 start-button sound

7F5C: 8D 09 BSR $7F67 ; Call the pre L8.4 start-button handler

 ;

7F5E: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7F61: 7B 74 30 ; AttractMode_CreditsInsertCoin()

7F64: 7E C9 52 JMP $C952 ;

 ;

---;---

 ;

 ; Perform the original L-8 start-button sound code

 ;

7F67: BD 84 AD JSR $84AD ; GetMemoryFlag() // C-bit clear when flag set

7F6A: DC ; 0xDC indicates main inner attract block played 2x

7F6B: 25 08 BCS $7F79 ;

7F6D: BD 85 46 JSR $8546 ; DoSoundTableParameterByte()

7F70: 51 ; 0x51 == Twangz

7F71: BD 84 8F JSR $848F ; ClearMemoryFlag()

7F74: DC ; 0xDC indicates main inner attract block played 2x

7F75: 39 RTS ;

 ;

---;---

 ;

 ; AttractMode_LastGameScores_Tournament()

 ;

 ; When this function is called for gun-trigger, logic

 ; has already determined that game is in tournament mode,

 ; the only work to do here is to show the last game

 ; scores and sleep for same period as IJ L-7 before

 ; being done. This will then restart attract-mode.

 ;

7F76: BD FB AE JSR $FBAE ; ClearDisplayMemory()

7F79: BD 88 F5 JSR $88F5 ; CallBankedFunction_Param_WPCAddr()

7F7C: 6A F4 3B ; Put scores into pixel memory

7F7F: BD E2 74 JSR $E274 ; Instant-on display

7F82: BD 86 79 JSR $8679 ; SleepLong(0x04B0)

7F85: 04 B0 ; 18.75 seconds

7F87: 7E C9 52 JMP $C952 ;

 ;

---;---

Readers are encouraged to trace through the code above to see how the attract mode behaves for the

start button when it has been pressed while there are zero credits. This code also has a preview on how

the gun-trigger will end up showing last-game scores when tournament mode is set. Details on gun-

trigger are next. Attentive readers may notice the original L-8 sound gets played in the scheduled 0x17

function immediately prior to showing “Insert Coin” message while the L8.4 plays up to 3 sounds in the

start-button handler prior to scheduling the 0x17 function. This change is needed in L8.4 to ensure the

start-button presses can play sounds even while the “Insert Coin” message is playing. Since the 0x17

function must run to completion, it is not allowed to be re-entered until it has finished its “Insert Coin”

message and, as such, to get start-button to play sound during the display of “Insert Coin”, this design in

L8.4 is needed.

Attract Mode Improvement: Gun-Trigger Handling
In this section the new L8.4 changes for attract-mode gun-trigger handling are described. This refers to

the following items:

 Gun-trigger switch table metadata so its callback is used even at game-over.

 Gun-trigger callback function checks for attract mode.

 Gun-trigger callback function during attract mode, check attract-mode for L8.4.

 Gun-trigger callback function L8.4 mode, play up to 3 sounds and reset timer code.

 Gun-trigger callback function in Tournament mode, shows previously played scores.

First, the switch-table data needs updated so that the gun-trigger handler code gets called when the

gun-trigger switch is closed during attract mode. As described in the L8.3 document, each switch is

represented in the switch data table with an 11-byte structure containing various characteristics about

how the switch is to be handled. Some of the data bytes contain flags that define how or when the

switch-closure is to be processed. Specifically the 8th and 9th bytes of each switch table entry contains

bit-mapped flags. The meaning of some of these flags have been determined and listed below. Shown

below is a brief description of the full 11-bytes of data that exists for each playfield switch.

; --

; Each 11-byte entry for each switch below has the following format:

; --

; 01 02 03 04 05 06 07 08 09 0A 0B

;

;

; 01 02

; 03 04 05 ; $XXYY,ZZ Callback Address in ROM where code is ran upon switch closure

; 06 ; This value is reset value for this switch's byte in idle-switch array at $174E.

; 07

; 08 ; This is a flag byte with the following bit-flag definitions for this switch

; ; 11111111

; ; ||||||||

; ; |||||||\-- 0x01 bit.

; ; ||||||\--- 0x02 bit.

; ; |||||\---- 0x04 bit.

; ; ||||\----- 0x08 bit.

; ; |||\------ 0x10 bit.

; ; ||\------- 0x20 bit. When set, switch is NOT included 60-ball switch error report

; ; |\-------- 0x40 bit.

; ; \--------- 0x80 bit.

; ;

; ;

;

; 09 ; This is another flag byte

; ; 11111111

; ; ||||||||

; ; |||||||\-- 0x01 bit.

; ; ||||||\--- 0x02 bit.

; ; |||||\---- 0x04 bit. Set = switch is ignored if closed during bonus addup

; ; ||||\----- 0x08 bit.

; ; |||\------ 0x10 bit. Set = switch processed if closed in attract-mode/test-mode

; ; ||\------- 0x20 bit. Set = switch processed if closed during TILT period

; ; |\-------- 0x40 bit. Set = switch is valid, its callback may be invoked

; ; \--------- 0x80 bit. Set = switch processed if closed during bonus addup

; ;

; ; The 0x04 bit is checked prior to the 0x80 bit. Further research is needed.

; ;

; 0A

; 0B

;

;--

Some of the behaviors/descriptions are subject to further investigation especially on byte 09 bits 0x04

and 0x80 both being related to switch closure during bonus award. In all cases, “switch processed”

means that the callback function at bytes 03 04 05 gets called.

For L8.4 it was immediately obvious that a change is needed in this gun-trigger switch table entry so that

the gun-trigger callback function gets called when the switch gets closed during attract mode. A

comparison is in order between IJ L-7 and T2 L-8, as shown below.

;--

; Gun Trigger flag bytes IJ-L7: 00 02 79 D6 36 03 00 00 70 00 04

; ^

; |

; 0x40 bit == switch is valid --------------------------+

; 0x20 bit == switch allowed in tilt-mode --------------+

; 0x10 bit == switch allowed in attract-mode/test-mode -+

;

; Gun Trigger flag bytes T2-L8: 00 02 5D 0A 31 3C 00 00 40 00 04

; ^

; |

; 0x40 bit == switch is valid --------------------------+

;

;--

Comparing IJ and T2, it is evident the only differences are as follows:

 Byte 06, T2 uses value 0x3C (60) where IJ uses 0x03. This is the number to balls in play that can

play without the switch closing before game flags the switch as bad in the test report. The T2

software allows 60 balls to play before declaring the gun-trigger as bad (if it has not been closed)

while IJ only allows 3 balls in play to go by without gun-trigger switch closure before declaring

the gun-trigger switch as bad in the test report.

 Byte 09, T2 only has 0x40 bit set which means switch is valid. By default this means its callback

function will only be called during game play and not during TILT or bonus award period. The IJ,

on the other hand has 3 bits set, 0x04, 0x02 and 0x01 which means the IJ gun-trigger callback

function can be called during game, during TILT and during attract mode or test mode.

Clearly, the change needed for T2 L8.4 gun-trigger switch table data is that its byte 09 needs to have the

0x10 bit set so that its callback function is invoked when the switch is closed during attract mode. The

changed data is depicted below. This is the gun-trigger switch table entry is at $4A68,3D, ROM offset

0x74A68.

4A68: 00 02 ; SwitchTableEntry1C, 34, Grip Trigger

4A6A: 5D 0A 31 ; SwitchMatrixHdlr_GunTrigger()

4A6D: 3C 00 ;

4A6F: 00 40 ; 40=Valid

4A6F: 00 50 ; 40=Valid, 10=AttractMode (L8.4)

4A71: 00 04 ;

With the 0x10 bit added to the table entry’s 9th byte, the gun-trigger callback $5D0A,31 will be invoked

when the gun-trigger is closed during attract mode. This necessarily means the gun-trigger handler code

needs to ensure it invokes the normal L-8 code if called during game-play or plays a L8.4 sound if called

during attract-mode. In order to do this, the IJ L-7 code is analyzed to determine how it handles gun-

trigger switch closure so something similar can be done for T2 L8.4.

In addition to the change to the 9th byte, the 3rd, 4th and 5th bytes need to be updated so that the gun-

trigger switch closure calls a new L8.4 function. The new function will decide if the game is in game-

mode or not and determine if original L-8 gun-trigger code at $5D0A,31 should be called or new L8.4

code called instead. This new function is located at some free space at $7F73,31 which means the gun-

trigger switch table entry is further updated as follows:

4A68: 00 02 ; SwitchTableEntry1C, 34, Grip Trigger

4A6A: 5D 0A 31 ; SwitchMatrixHdlr_GunTrigger()

4A6A: 7F 73 31 ; SwitchMatrixHdlr_GunTriggerL84()

4A6D: 3C 00 ;

4A6F: 00 40 ; 40=Valid

4A6F: 00 50 ; 40=Valid, 10=AttractMode (L8.4)

4A71: 00 04 ;

The new function at $7F73,31, ROM offset 0x47F73, is as follows:

---;---

 ;

 ; L8.4 Gun-Trigger Code Inserted at $7F73,31

 ;

7F73: BD F7 59 JSR $F759 ; CheckGameMode() // z-bit set if game in progress

7F76: 26 03 BNE $7F7B ; If z-bit clear, go do L8.4 attract mode

7F78: 7E 5D 0A JMP $5D0A ; Go to normal L-8 gun-trigger handling during game mode

7F7B: BD 89 2F JMP $892F ; CallBankedFunction_Param_WPCAddr_NoReturn()

7F7E: 7F 6F 38 ; GunTriggerL84Handler()

 ;

---;---

This new function calls a common L-8 function to check if game-mode is active and, if so, jumps to the

$5D0A,31 function which is the normal L-8 handler for gun-trigger. If game-mode is not active, then

new L8.4 function is called. Since there is not enough free ROM space in bank $31, the L8.4 handler is in

bank $38 so the $892F function is used to effectively jump to the code in the other bank. There is no

need for such code to return back here since it will end its work with the same jump to $99A2 as what

the original L-8 switch handler does when it’s finished.

The L8.4 gun-trigger function at $7F6F,38 ROM offset 0x63F6F is shown below.

---;---

 ;

 ; GunTriggerL84Handler()

 ;

 ; Called here after confirming not in game mode.

 ; Could be in attract mode or test mode, so first need

 ; to check $1793.

 ;

7F6F: 7D 17 93 TST $1793 ; $1793 is 0 during attract mode, non-zero in test mode

7F72: 26 04 BNE $7F78 ; If non-zero branch to the end, no work to do here

 ;

7F74: 8D 05 BSR $7F7B ; Branch to routine to deal with L8.4 gun-trigger sounds

7F76: 8D 58 BSR $7FD0 ; Branch to routine to deal with Tournament Mode Scores

 ;

7F78: 7E 99 A2 JMP $99A2 ; All done

 ;

 ;

---;---

 ;

 ; Do L8.4 gun-trigger attract-mode sounds

 ;

7F7B: BD 82 FF JSR $82FF ; LoadAWithTableIndexByteParameter()

7F7E: 17 ; FeatureAdjustment023, Attract Mode, Adj 0x17

7F7F: 81 03 CMPA #$03 ; Adjustment Value = 0, L8.1 C-bit set

 ; 1, L8.2 C-bit set

 ; 2, L8.3 C-bit set

 ; 3, L8.4 C-bit clear

7F81: 25 37 BCS $7FBA ; If c-set then not L8.4, no gun-trigger sound, goto end

7F83: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

7F86: 10 00 ; 0x10 == Attract Sounds, C-bit set when not 0x00

7F88: 24 30 BCC $7FBA ; If no attract sounds, no gun-trigger sound, goto end

 ;

7F8A: BD 86 90 JSR $8690 ; SearchLinkedListForId() // c-clear means ID is found

7F8D: 00 F3 ; Parameter 0x00F3

7F8F: 24 29 BCC $7FBA ; If timer is running, no sounds, goto end

 ;

7F91: 8E 7F C6 LDX #$7FC6 ; X=0x7FC6, start of list of sound #s for gun-trigger

 ;

7F94: 86 0A LDA #$0A ;--\ A gets 0x0A

7F96: BD A7 5B JSR $A75B ; | Get16BitPseudoRandomValueintoA()

7F99: B1 06 46 CMPA $0646 ; | Is it same random 8-bit as last time?

7F9C: 27 F6 BEQ $7F94 ;--/ If so, keep trying for different random number

 ;

7F9E: B7 06 46 STA $0646 ; Save random number A into $0646

 ;

7FA1: A6 86 LDA A,X ; A = GunTriggerSounds[A]

 ;

7FA3: BD BD FB JSR $BDFB ; DoSoundTableIndexA(), plays random sound effect

7FA6: 25 12 BCS $7FBA ; if Error then return without counting it

 ;

7FA8: 7C 06 44 INC $0644 ; $0644++

7FAB: B6 06 44 LDA $0644 ; A = $0644

7FAE: 81 03 CMPA #$03 ; if (A >= 3) // if played 3 or more sound effects

7FB0: 25 08 BCS $7FBA ; {

7FB2: BD 8B 77 JSR $8B77 ; ScheduleFunctionStart()

7FB5: 00 F3 ; ID = 00F2

7FB7: 7F BB 38 ; GunTriggerSilenceTimer()

 ; }

7FBA: 39 RTS ;

 ;

---;---

 ;

 ; GunTriggerSilenceTimer()

 ; Function ID == 00F2

 ;

7FBB: BD 86 79 JSR $8679 ; SleepLong()

7FBE: 2A 30 ; 2m48.75s

7FC0: 7F 06 44 CLR $0644 ; Reset the gun-trigger sound count back to zero

7FC3: 7E 99 A2 JMP $99A2 ; ThreadedFunctionDone()

 ;

---;---

 ;

 ; GunTriggerSounds[]

 ;

7FC6: A1 ; “You‟re targeted for termination”

7FC7: AE ; Gunshot

7FC8: 65 ; “Take your best shot”

7FC9: 69 ; “Great shot”

7FCA: 7C ; “Load the cannon”

7FCB: 7D ; “Shoot again”

7FCC: 90 ; “Get down”

7FCD: 99 ; “Don‟t move”

7FCE: 9E ; “Reloaded”

7FCF: 9F ; “Destroy everything”

 ;

---;---

 ;

 ; Check if Tournament mode, if set, show scores

 ;

7FD0: BD 86 5B JSR $865B ; LookupGameAdjustmentParam1andCheckIfEqualsParam2()

7FD3: 9A 01 ; StandardAdjustment026, Tournament Play, Adj=0x9A

7FD5: 25 02 BCS $7FD9 ; C-set = tournament mode is off, skip to end, no work

7FD7: 8D 01 BSR $7FDA ; ScheduleGunTriggerTournamentModeScoresDisplay()

7FD9: 39 RTS ;

 ;

---;---

 ;

 ; ScheduleGunTriggerTournamentModeScoresDisplay()

 ;

7FDA: 86 01 LDA #$01 ;

7FDC: B7 06 47 STA $0647 ; Push 0x01 into $0647 to signal 0x17 fn to show scores

7FDF: BD 85 53 JSR $8553 ; Calls function from table at $5D1A,3D

7FE2: 17 ; 0x17 --> $7F48,3A, L8.4 start-button/gun-trigger hdlr

7FE3: 39 RTS ;

 ;

---;---

Readers are encouraged to trace through the L8.4 gun-trigger sound handler, above, starting at

$7F6F,38. When tournament mode is set, the code sets $0647 to non-zero and then calls the indexed

function 0x17 same as start-button. As shown in earlier code-change for L8.4 the start-button indexed

function 0x17 is modified to check $0647 and determine whether to handle it as gun-trigger (and show

previously played game scores) or as a start-button and play sound then show the “Insert Coin” message.

The way in which indexed function 0x17 is called necessarily means the attract mode is going to be

interrupted and then restarted. The interruption will either be the “Insert Coin” message or the last

played scores display.

Note that all timers used are done to match that of IJ L-7. This includes the timeout period where start-

button won’t make noise (equal to IJ flipper button sound timeout period) and the gun-trigger timeout

period. The duration in which tournament mode previously played scores is shown also matches IJ

when flipper button is pressed in attract mode when tournament mode is enabled.

Appendix
This section contains additional information not covered in the previous sections.

Indexed Display Effect Functions
During development of L8.4 and especially during the attract-mode updates, the L-8 function $8553 was

given a closer examination for the possible need of having to use it for gun-trigger display of previously

played game scores (when tournament mode is enabled) interrupting and restarting the attract mode in

the process. It was noticed that the start-button handler in L-8 necessarily needs to invoke the function

to play sound effect and show “Insert coin” by using $8553 in order for the attract mode to be allowed

to be interrupted and restarted. Details into precisely how the $8553 function call of indexed function

0x17 causes attract mode to be interrupted and restarted have not been fully studied.

What was done in L8.4 was survey the ROM for how $8553 is called with various index values in order to

trigger different display effects. This was done in hopes of finding an unused index or possibly consider

increasing the table at $5D1A,3D to accommodate the gun-trigger’s need to interrupt the display with

previously played game scores.

Ultimately it was determined to be too uncertain and too much risk in attempting to use an unused

index or to attempt to increase the size of $5D1A,3D table, especially given the nature of the code

change being implemented (a simple and fun way to enhance the L8.4 attract mode). The final solution

for L8.4 was to simply use the existing start-button index function 0x17 for both start-button and gun-

trigger. Prior to calling the $8553 with index 0x17, the L8.4 code ensures a RAM byte is set to 0x00 or

0x01. The function handler for index 0x17 is updated in L8.4 to then check this RAM byte and proceed

with attract-mode interruption of either the “Insert coins” message or the display of previously played

game scores. Refer to text earlier in this document for technical details of this code change. It should

be noted the RAM byte that is used to flag index function 0x17 was vetted and determined to be safe to

use as it is only otherwise used during video mode during game play. Using it in this way during attract

mode is safe and poses no risk.

While surveying the $8553 index functions, a list of the various indexed functions was made and

recorded here for posterity. The $8553 function calls another function, $C791, to call up the indexed

function. Both of these function usages was examined and documented in the table below.

$8553/
$C791
Index

$8553 Called From, or
$C791 Called from

$5D1A,3D Entry Data

Game Usage/Feature

ROM Offset WPC Address Flag Bytes Vector

0x00 00 24 $C952

0x01 0x607C9 $47C9,38 01 01 $6AC1,3B Player score, steady

0x02 0x7B22A $B22A 01 01 $68F5,3B Player score, blinking

0x03 0x45703 $5703,31 01 01 $69EC,3B Player score, scrolling down/up

 0x7B342 $B342 01 01 $69EC,3B Player score, scrolling down/up

0x04 0x66078 $6078,39 01 01 $793F,30 Attract mode

 0x60630 $4630,38 01 01 $793F,30 Attract mode

0x05 0x7C750 $C750 01 01 $6899,3B Testing… / Test report

0x06 0x607DD $47DD,38 F3 3A $7E19,30 Game Over / Player Scores

 0x66074 $6074,39 F3 3A $7E19,30 Game Over / Player Scores

0x07 0x6083B $483B,38 F3 3A $505E,24 Player X is a top marksman

0x08 0x60851 $4851,38 F3 3C $4DC3,24 HSTD Initials Entry

0x09 0x608B1 $48B1,38 F3 3C $50B9,24 HSTD Initials Received / Award

0x0A 0x608F5 $48F5,38 F3 3A $44B4,24 Match Sequence animation

0x0B 0x7CFE8 $CFE8 08 64 $51C6,24 Flipper button status report

 0x7D218 $D218 08 64 $51C6,24 Flipper button status report

0x0C 0x65EA0 $5EA0,39 E4 2C $7DF1,30 Shows credits in large font

0x0D 80 60 $42FF,24 Tilt warning

0x0E F0 40 $6AB8,3B

0x0F 0x65949 $5949,39 01 01 $433F,24 TILT

0x10 0x6076C $476C,38 EE 02 $7553,33 Bonus addup sequence

0x11 0x60CFB $4CFB,38 40 20 $735F,35 Shoot Again animation sequence

0x12 0x60D31 $4D31,38 40 20 $681B,3B Replay At score shown

0x13 0x7BD04 $BD04 10 1A $6928,3B Press “Enter” for test report

0x14 0x74515 $4515,3D 00 26 $7A1F,33 Match/Replay knocker

0x15 0x6F64B $764B,3B 90 2A $47E2,24 Pinball Missing Please Wait

0x16 0x74848 $4848,3D F1 6C $6CDF,3B Volume Level adjustment

0x17 0x60572 $4572,38 18 1C $7DDD,30 Start-button zero-credits sound

0x18 0x680A3 $40A3,3A 10 6C $68C7,3B Open coin-door to use buttons

0x19 0x6602E $602E,39 F3 3C $67DE,3B (?) attract mode restarts

0x1A 0x66042 $6042,39 01 01 $67E7,3B 1-coin buy-in countdown

0x1B 0x4585D $585D,31 B0 62 $7264,33 Ramp MILLION award

 0x45DCC $5DCC,31 B0 62 $7264,33 Ramp MILLION award

 0x4607F $607F,31 B0 62 $7264,33 Ramp MILLION award

0x1C 0x45580 $5580,31 E8 22 $72B9,33 Database Selector

0x1D DD 22 $7907,33 Extra Ball Animation

0x1E 0x44F02 $4F02,31 DD 22 $783F,33 Jackpot Animation

0x1F 0x44F47 $4F47,31 DD 22 $4B44,24 Super Jackpot Animation

0x20 EA 22 $42E8,2B Video mode

0x21 0x456C4 $56C4,31 01 01 $721C,33 Hurry Up

0x22 0x4636A $636A,31 DD 62 $7241,33 Shows score/points in huge font

0x23 0x4572A $572A,31 A0 62 $732A,35 Extra ball is lit

0x24 0x44D38 $4D38,31 B0 62 $7C63,33 Hunter Ship Explosion, direct hit

0x25 0x456D9 $56D9,31 01 01 $715A,33 Payback time

0x26 0x46145 $6145,31 DD 62 $712C,33 Payback Time

0x27 0x46CBC $6CBC,31 DD 62 $7505,33 Multiball start animation

0x28 0x456EA $56EA,31 01 01 $6FC6,33 Load the Gun countdown

0x29 0x470E4 $70E4,31 DD 62 $4718,24 Get the super jackpot

0x2A 0x45BAC $5BAC,31 B4 62 $7203,35 Bonus-X multiplier

0x2B 0x451EA $51EA,31 71 62 $6EED,33 Jackpot Grows

 0x45A0D $5A0D,31 71 62 $6EED,33 Jackpot Grows

0x2C 0x444E5 $44E5,31 B3 42 $7910,35 Autofire machine gun

 0x4463B $463B,31 B3 42 $7910,35 Autofire machine gun

 0x455DE $55DE,31 B3 42 $7910,35 Autofire machine gun

0x2D 0x44956 $4956,31 B2 62 $7DD5,35 Kickback animation

0x2E 0x44A71 $4A71,31 B0 42 $73BD,35 Chase Loop motorcycle

0x2F 71 62 $7A91,35 Blocky screen fill bottom up

0x30 0x457D4 $57D4,31 B0 62 $7C30,35 Blocky Bonus Held message

0x31 0x45EB7 $5EB7,31 B6 62 $4088,24 Security Level doors opening

0x32 0x45D66 $5D66,31 DD 62 $7321,35 Hurry Up is Lit

0x33 0x46B8C $6B8C,31 DD 62 $41CD,24 Pull Trigger / Hunter Ship target

0x34 0x6E263 $6263,3B B0 62 $438D,24 Los Angeles July 11, 2029

0x35 0x464BE $64BE,31 DD 62 $43BD,24 Let’s Go

0x36 0x464CE $64CE,31 DD 62 $43D3,24 GO

0x37 0x464DE $64DE,31 DD 62 $43E9,24 RUN

0x38 0x445F5 $45F5,31 04 62 $43FF,24 Pull Trigger to shoot ball

 0x445FE $45FE,31 04 62 $43FF,24 Pull Trigger to shoot ball

0x39 0x451B3 $51B3,31 DE 62 $46A1,24 Ball Locked, Jackpot multiplied

 0x459E5 $59E5,31 DE 62 $46A1,24 Ball Locked, Jackpot multiplied

 0x47032 $7032,31 DE 62 $46A1,24 Ball Locked, Jackpot multiplied

0x3A 0x457AF $57AF,31 B0 62 $414D,24 Return Lanes are lit

0x3B 0x45E30 $5E30,31 B6 62 $7311,35 Get the CPU

 0x460E3 $60E3,31 B6 62 $7311,35 Get the CPU

0x3C 0x45AA8 $5AA8,31 B2 62 $790B,35 Kickback Lit

 0x45ACB $5ACB,31 B2 62 $790B,35 Kickback Lit

0x3D 0x461C7 $61C7,31 DD 62 $7264,33 Million jumbled characters

0x3E 0x44C8F $4C8F,31 DD 62 $72DE,35 # Targets Remaining

0x3F 0x47379 $7379,31 F5 28 $7390,31 (?) attract mode restarts

0x40 0x75F89 $5F89,3D F4 3A $60C6,3D Gun Test

0x41 0x46017 $6017,31 EA 62 $72C0,35 Shoot for video mode

0x42 0x456FD $56FD,31 01 01 $6F82,33 Load the Gun, super jackpot value

0x43 0x461BC $61BC,31 DD 42 $53C4,24 Payback Time total, # million

0x44 0x44AB4 $4AB4,31 B1 62 $7264,33 Million jumbled characters

0x45 C6 26 $7A20,33 Replay award animation

0x46 C6 26 $7A56,33 Special award animation

0x47 0x45CB6 $5CB6,31 C6 06 $53FE,24 Easter Egg: Hello Xaqery

0x48 0x45CB6 $5CB6,31 C6 06 $5424,24 Easter Egg: Hello Anna

0x49 0x45CB6 $5CB6,31 C6 06 $544A,24 Easter Egg: Hello Doc X

0x4A 0x45CB6 $5CB6,31 C6 06 $5468,24 Easter Egg: Hello World

The table above serves as supporting data for future enhancements or code examinations.

ROM Image Changes
The table, below, identifies every ROM change in L8.4 as compared to the L8.3 ROM image with a brief

description of each ROM change. Refer to text throughout this document for technical details of each

ROM byte change described below. Refer to the L8.3 document for all ROM changes between L8.3 and

the official L-8 ROM image.

ROM
Offset

WPC
Address

Original Bytes Original Description New Bytes New Description

0x113A8 $53A8,24 BD D3 60 Flipper-button status-
report code about to
report number of
bonus-x for extra-ball
lit.

7E 57 57 Jump to new L8.4 code at
$5757,24 to determine
whether or not to exclude
bonus-x for extra-ball from
the flipper-button status-
report.

0x11757 $5757,24 FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
Start of region of
unused ROM bytes in
bank $24.

BD 86 5B 83 00 25 03 7E

53 C2 BD D3 60 7E 53 AB
Code that checks “Max E.B.
Count” adjustment and
decides whether to show
the bonux-x for lit extra ball
or to exclude the message
from flipper-button status-
report.

0x2C36E $436E,2B A7 25 In Video Mode startup,
this is the address
portion of a JSR
instruction. Originally
this jumps to $A725 to
load up a random
number into A register.

49 E7 The JSR now jumps to new
L8.4 code at $49E7,2B
which checks for
tournament mode and, if
set, returns same value for
each player in multi-player
game. Otherwise returns
genuinely random number
as per original code.

0x2C387 $4387,2B A7 25 In Video Mode startup,
this is another call to
fetch a random number
from $A725.

49 EE The JSR now jumps to new
L8.4 code at $49EE,2B to
get either a tournament
mode value or genuine
random number.

0x2C3A4 $43A4,2B 7E 43 A7 25 01 4C In Video Mode startup,
when it has been
determined the EB
should be shown during
the video mode this
code loads A with 0x01
as flag value into
$064C.

25 04 8A 80 20 00 The L8.4 code repurposes
the $064C so it contains a
7-bit counter in low 7-bits.
Here code is changed so
when EB is to be awarded A
gets 0x80 high bit flag to
indicate EB will be part of
the Video Mode.

0x2C543 $4543,2B 7D 06 4C During Video Mode this
is code that checks for
non-zero value in $064C

BD 4A 2C The L8.4 code calls new
routine that will check if EB
should be shown. The

to see if EB should be
shown.

routine will check 0x80 bit
of $064C and return Z-bit
set/cleared accordingly.

0x2C591 $4591,2B A7 25 During Video Mode this
is address of a JSR
instruction where code
fetches random value
to determine next
robot direction.

4A 1E The JSR now jumps to new
L8.4 code at $4A1E,2B to
get either a tournament
mode value or genuine
random number.

0x2C5AA $45AA,2B A7 During Video Mode this
is part of $A725 address
of a JSR instruction
where code fetches
random value to
determine next robot
timing/speed.

4A The L8.4 code calls new
routine at $4A25,2B (which
means only the high byte of
address is changed in
ROM). This gets either a
tournament mode value or
genuine random number.

0x2C91E $491E,2B FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
FF FF FF FF FF

Start of region of
unused ROM bytes in
bank $2B.

18 A3 18 EB 18 F1 18 F7

18 FD 19 21 19 2D 19 39

19 45 19 51 19 5D 19 69

19 75 19 81 19 8D 19 99

19 A5 19 B1 00 00 18 EB

18 F1 18 F7 18 FD 19 27

19 33 19 3F 19 4B 19 57

19 63 19 6F 19 7B 19 87

19 93 19 9F 19 AB 19 B7

00 00 18 A3 18 EB 18 F1

18 F7 18 FD 19 21 19 27

19 39 19 3F 19 51 19 57

19 69 19 6F 19 81 19 87

19 99 19 9F 19 B1 19 B7

00 00 18 EB 18 F1 18 F7

18 FD 19 2D 19 33 19 45

19 4B 19 5D 19 63 19 75

19 7B 19 8D 19 93 19 A5

19 AB 00 00 10 AE 81 27

04 AB A4 20 F7 39 8D F4

8E F9 00 A6 86 39 34 10

8E 05 B5 BD FB 29 A6 84

35 90 BD 86 5B 9A 01 24

07 BD A7 25 32 62 35 30

39 8D EF 8D E1 8D D7 35

B0 34 30 8E 49 1E 20 F1

34 30 8E 49 44 20 EA 8D

D9 B6 06 4C 85 80 27 05

4C 8A 80 20 03 4C 84 7F

B7 06 4C 84 7F 34 02 8D

B5 8C 49 68 27 04 AB E0

20 02 A0 E0 8D A0 35 B0

34 30 8E 49 68 20 D0 34

30 8E 49 90 20 C9 34 02

B6 06 4C 85 80 35 82 BD

84 80 49 BD 84 80 4A BD

86 5B 83 00 39

Block of code performs the
Video Mode code for
getting a set of identical
seemingly random numbers
for all players in a multi-
player game when
Tournament Mode is
enabled. This includes all
jump points from the
previous changes described
above. If Tournament
Mode is not enabled then
the regular L-8 logic is used
where genuine random
numbers are used.

0x41B04 $5B04,30 73 When adjustments are
showing number of
seconds for a particular
adjustment, this is the
starting ‘s’ in “sek.”
That is shown when
language is set to
German.

53 For L8.4 the abbreviated
seconds in German is
corrected to use upper case
‘S’ for “Sek.”.

0x43DDD $7DDD,30 BD 84 AD DC 25 08 BD 85

46 51 BD 84 8F DC BD 7B

74 7E C9 52

When the start button FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF

The L8.4 code moves this

is pushed during attract
mode and there are not
enough credits to start
a game, this function is
called to possibly play a
sound effect and to
show the “Insert Coin”
message for a brief
moment before attract
mode restarts.

logic with enhancements to
$7F48,3A thus making this
$7DDD,30 function no
longer used. It is reset to
unused 0xFF bytes for
completeness and for
possible reuse by other
code in the future.

0x44676 $4676,31 AF This is byte used to
indicate function id
00AF, Ball-saver
countdown timer loop.
This is part of code that
checks for whether or
not to show the
Autofire animation as
part of the ball
stoppage accounting
logic.

83 This is byte used to indicate
function id 0083, Ball-saver
maintenance function. This
L8.4 code changes modifies
the function ID that the ball
stoppage accounting
searches for when
determining whether or not
to show the Autofire
animation. Refer to
“Multiball Auto-Fire Code
Correction” section of this
document for technical
details.

0x44BCE $4BCE,31 86 90 00 84 24 07 BD 86

90 00 E1 25 57
This is code used for 5-
bank target hits used
for determining
whether the target hit
is for ordinary game
play, or if it is an
attempt to shoot the
hunter ship from the
cannon.

88 F5 7A B9 3A 25 5D 27

59 7E 4B DB 12
The updated L8.4 code calls
into a new function at
$7AB9,3A which performs a
more elaborate set of
checks for determining how
the 5-bank target should be
processed. Depending on
whether the $7AB9,3A
function returns C and Z
bits, the new code here
proceeds accordingly.
Refer to “Hunter Ship 5-
Bank Target L8.4 Code
Changes” section of this
document for technical
details.

0x45565 $5565,31 F7 06 12 BD A7 25 During Database Award
setup this code saves
the winning award
index from B into $0612
and then calls $A725 to
get a random number
into A for remaining of

BD 88 F5 6B C0 34 The updated L8.4 code calls
into a new function at
$57FA,24 which will check if
Tournament Mode is
enabled and, if so, ensures
all players in a multi-player
game get the same award,

the database award
logic.

otherwise original L-8 logic
is retained.

0x4574C $574C,31 8E 05 AD BD FB 29 7E 57

55
During the awarding of
extra ball this code is
after the $B383
function has been
called which checks or
skips the accumulation
of an extra ball if player
is ineligible. This L-8
code proceeds with
assumption EB was
awarded even if it was
not accumulated, and
shows the extra ball
animation on the
display.

25 3B 12 8E 05 AD BD FB

29
The L8.4 code takes
advantage of the fact that
the $B383 function returns
with C-bit set if the extra
ball was not actually
accumulated. This code
checks the C-bit and, if set,
skips over the extra ball
animation sequence. If c-
bit is clear then the L-8 logic
proceeds with incrementing
of the per-player extra ball
award count and display of
the extra ball animation.

0x45BA2 $5BA2,31 84 80 49 BD 84 80 4A During Bonus-x
advancement this is
part of code that is
executed when the
extra ball is being lit.
This code sets some
logic flags to control the
bonus-x behavior
regarding extra ball lit
and then it calls $572E
to illuminate the extra
ball lamp at the skull
shot.

88 F5 4A 35 2B 24 03 The L8.4 code calls a new
function at $4A35,2B to set
the same logic flags as L-8
and then determine if the
extra ball should be lit
based on the “Max E.B.
Count” adjustment. If the
extra ball can be lit then it
returns C-bit set. This code
checks the return C-bit
value and proceeds to
either light the extra ball or
not.

0x45ED4 $5ED4,31 84 49 30 24 06 8D 47 8D

07 20 04 8D 03 8D 3F 39
During the “Security
Pass” award this
function is called to
advance left/right
security awards in L-8.

88 F5 7A F4 3A 39 FF FF

FF FF FF FF FF FF FF FF
In L8.4 the “Security Pass”
award function now calls a
new L8.4 function at
$7AF4,3A to handle all of
the security lamp
advancement. This results
in unused bytes in this
function which are replaced
with 0xFF so they can be
repurposed later if needed.

0x46A2C $6A2C,31 A7 5B 1F 89 3A This is code used when
game is determining
the 5-bank lamp(s) that
need to be lit and
subquently hit by
cannon-shot in order to
start multiball. The L-8

88 F5 6C 0C 34 In L8.4 this replacement
code will call a new
function at $6C0C,34 which
will ensure that if
Tournament Mode is
enabled, all players in a
multi-player game get the

code here is getting a
random number and
advancing the value of
X by such random
number.

same 5-bank lamp patterns
for each multiball. If
Tournament Mode is not
enabled then the original L-
8 logic is used.

0x46E66 $6E66,31 8B 77 00 83 6E 8A 31 When the autofire
timer is being set due to
skill-shot, this is the
code where the timer is
about to be set. The
number of seconds is in
the B register and this
code schedules function
ID 0083 at $6E8A,31
which will ensure balls
are returned to the
playfield during the
time period in the B
register.

88 F5 7C 00 3A 20 00 The L8.4 code has a call to a
new function for L8.4 at
$7C00,3A which will check
the new L8.4 “SS Autofire
Time” adjustment and
schedule the function ID
0083 at $6E8A,31 with the
timer value set accordingly.

0x47099 $7099,31 F7 59 7E 70 9E This function is called
when the ball is
transitioning from the
ball-popper to the
cannon with the hits-
remaining being
reported on the display.
This code is checking if
game is in progress (or
if such ball movement is
happening during
attract mode if ball got
into the ball-popper).
This code has a dummy
JMP instruction taking
up three bytes of space.

FB 77 BD F7 59 The L8.4 code adjusts the
code so that a common L-8
function at $FB77 is first
called which waits for any
animation in progress to
complete before returning.
After this the $F759
function is called to check
game mode same as L-8
logic. This code change is
needed for fixing the “PAPA
Lost Super Jackpot”
problem. Refer to “PAPA
Lost Super Jackpot Code
Fixes” section of this
document for technical
details.

0x47180 $7180,31 84 8F 48 This is a state-check
function that is called
when the ball is in the
ball-popper. This code
is a function call to
$848F to clear memory
flag 0x48 as part of
normal state-audit
logic.

7F 8F 12 The L8.4 code replaces the
$848F function with a call
to new L8.4 function at
$7F8F,31 to perform logic
needed as part of the bug
fix for the “PAPA Lost Super
Jackpot” problem.

0x47F73 $7F73,31 FF FF FF FF FF FF FF FF

FF FF FF FF FF FF
Start of region of
unused ROM bytes in

BD F7 59 26 03 7E 5D 0A

BD 89 2F 7F 6F 38
In L8.4 the gun-trigger
switch closure calls this

bank $31. new function instead
directly calling $5D0A,31 as
it does in L-8. This new
function checks if game
mode or attract mode. If
game mode then calls
$5D0A,31. If attract mode
then it jumps to new L8.4
function at $7F00,38.

0x47F8F $7F8F,31 FF FF FF FF FF FF FF FF

FF FF FF FF
In region of unused
ROM bytes in bank $31.

BD 86 90 00 86 24 04 BD

84 8F 48 39
The ROM change at
$7180,31, 0x47180 calls
this new function as part of
the “PAPA Lost Super
Jackpot” fix. Logic will only
clear the 0x48 memory flag
if multiball is not running.
Refer to the “The PAPA Lost
Super Jackpot Bug” section
of this document for
technical details.

0x47FAD $7FAD,31 B9 This is part of L8.3 code
where the drop-target
“up” function ID 00B9 is
referenced by L8.3 code
checking if the callback
function is currently
running.

B1 This updates the function
ID for the L8.3 code for
drop-target “up” from B9 to
B1.
Refer to the “Fix the L8.3
Function ID Overlap Issue”
section of this document
for details.

0x47FE2 $7FE2,31 B9 This is part of L8.3 code
where the drop-target
“up” function ID 00B9is
referenced by L8.3 code
where the function is
being scheduled.

B1 This updates the function
ID for the L8.3 code for
drop-target “up” from B9 to
B1.
Refer to the “Fix the L8.3
Function ID Overlap Issue”
section of this document
for details.

0x518BA $58BA,34 59 26 34 When game is about to
start sequence for
super jackpot attempt,
this is where code
schedules function that
maintains the moving 5-
bank lamp. This is
address of the
scheduled function
$5926,34.

7E 95 3A The L8.4 code replaces the
original function call with
address $7E95,3A which is
the L8.4 super-jackpot lamp
movement function.

0x518FE $58FE,34 A7 5B When game is about to 6C 25 The L8.4 code changes this

illuminate one of the 5-
bank targets that player
must hit for jackpot,
this is function call to
$A75B where a random
number is retrieved for
which lamp to
illuminate.

to call $6C25,34 which will
check if Tournament Mode
is set and, if so, ensure all
players in a multiplayer
game get the same jackpot
lamp. If Tournament Mode
is not set then a random
number is used as original
L-8 logic.

0x51926 $5926,34 86 FF 97 D3 BD 87 15 15

18 86 04 B7 05 F9 BD 83

46 14 BD FD B4 18 18 7A

05 F9 B6 05 F9 4D 26 EE

BD 83 46 14 BD FD A2 18

18 7C 05 F9 B6 05 F9 81

04 25 ED 20 D9

This is the super jackpot
5-bank lamp movement
function called from
code cited above at
$58BA,34, 0x518BA.

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF

The L8.4 replaces the super
jackpot lamp movement
function with new code at
$7E95,3A. This L-8 function
is no longer used so it is
removed and set to 0xFF so
the ROM space may be
repurposed if needed.

0x52B1D $6B1D,34 FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF

Start of region of
unused ROM bytes in
bank $34.

18 A3 18 EB 18 F1 18 F7

18 FD 19 21 19 2D 19 39

19 45 19 51 19 5D 19 69

19 75 19 81 19 8D 19 99

19 A5 19 B1 00 00 18 EB

18 F1 18 F7 18 FD 19 27

19 33 19 3F 19 4B 19 57

19 63 19 6F 19 7B 19 87

19 93 19 9F 19 AB 19 B7

00 00 18 EB 18 F1 18 F7

18 FD 19 21 19 27 19 39

19 3F 19 51 19 57 19 69

19 6F 19 81 19 87 19 99

19 9F 19 B1 19 B7 00 00

10 AE 81 27 04 AB A4 20

F7 39 8D F4 8E F9 00 A6

86 39 1F 12 8D 16 A6 84

1F 21 8D EE 39 8E 6B 1D

8D F0 84 0F 4C 39 8E 6B

43 8D E7 39 8E 05 C5 BD

FB 29 39 BD 86 5B 9A 01

24 07 F7 06 12 BD A7 25

39 34 20 8D D8 BD 86 5B

83 00 25 0C 81 02 26 02

86 0D 81 0A 26 02 86 0F

1F 89 F7 06 12 8D C7 8D

CB 6C 84 35 A0 34 30 8E

05 9D BD FB 29 A6 84 AE

E4 8D 97 84 0F 81 04 23

04 80 05 20 F8 35 B0 BD

86 5B 9A 01 24 05 BD A7

5B 20 09 34 10 8E 6B 1D

8D D3 35 10 1F 89 3A 39

BD 86 5B 9A 01 24 05 BD

A7 5B 20 09 34 10 8E 6B

67 8D BA 35 10 39

Block of L8.4 code used for
getting consistent behavior
for all players in a multi-
player game when
Tournament Mode is
enabled.
$6BAA,34 gets database
award index.
$6BB3,34 gets database
selector to blink as winner.
$6BC0,34 is entry point for
database award handler.
$6BF2,34 gets multiball
lamp pattern number.
$6C0C,24 is entry point for
multiball lamp pattern.
$6C25,24 is entry point for
jackpot lamp selector.

0x572B7 $72B7,35 86 37 97 B4 When 3-bank rollovers
have been completed
enough times for Extra
Ball to be lit, this code is
storing value 0x37 into
RAM byte $B4 as
indicator that Extra Ball
should be lit.

7E 7E E8 12 The L8.4 jumps to new code
at $7EE8,35 to determine if
the extra ball should be lit
or not, depending on the
adjustment “Max E.B.
Count”.

0x57EE8 $7EE8,35 FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF
Start of region of BD 86 5B 83 00 25 03 7E

C9 52 86 37 97 B4 7E 73
The L8.4 inserts this new

FF unused ROM bytes in
bank $35.

2A function called from the
$72B7,35, 0x572B7 change,
above. When 3-bank
rollovers are about to light
the extra ball this function
will prevent that from
happening if the “Max E.B.
Count” adjustment is for no
extra balls.

0x57FBF $7FBF,35 19 This is byte region
where L8.x code uses to
ensure a value
checksum can be
calculated.

21 The L8.4 code updates this
byte so a valid checksum
can be calculated.

0x57FCA $7FCA,35 33 This is an informational
string in the ROM
indicating the “T2_l8.3”
designation.

34 Updated in L8.4 to indicate
“T2_l8.4”.

0x60573 $4573,38 85 53 17 The start-button
handler, when pressed
during attract mode
without enough credits
to start a game will use
this code to call $8553
to schedule function
index 0x17 to possibly
play a sound effect and
show “Insert Coins”
message.

7F 05 12 The L8.4 code has this part
of code call new function at
$7F05,38 which will play
L8.4 attract mode sound if
applicable, and then call a
function to schedule
function 0x17 for pre L8.4
attract-mode sound, if
applicable and then show
“Insert Coin” message. The
0x12 is a NOP filler byte.

0x6062E $462E,38 86 04 BD C7 91 When attract mode is
being scheduled to start
up such as at startup,
menu exit or game-over
this code is used to set
the attract mode index
0x04 into function
$C791 as normal part of
attract mode
scheduling.

BD 7F EC 20 00 The L8.4 code replaces this
part of code with a jump to
new L8.4 function $7FEC,38
which performs L8.4 attract
mode memory setup for
start-button and gun-
trigger sound effects, and
then it calls $C791 with
0x04 to schedule the
attract mode.

0x63F05 $7F05,38 FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF

Region of unused ROM
bytes at the end of
bank $38.

BD 86 5B 10 00 24 0A BD

82 FF 17 81 03 25 02 8D

03 7E 7F E4 34 12 BD 86

90 00 F2 24 36 8E 7F 65

86 0A BD A7 5B B1 06 45

27 F6 81 05 26 09 BD 86

5B 16 00 25 02 20 E9 B7

06 45 A6 86 BD BD FB 25

12 7C 06 43 B6 06 43 81

03 25 08 BD 8B 77 00 F2

7F 5A 38 35 92 BD 86 79

46 50 7F 06 43 7E 99 A2

A3 83 8B 8D 8E 92 93 97

7E 9B

This contains L8.4 code
called when start-button is
pressed when there is not
enough credits to start a
game. If Attract Sounds are
On and Attract Mode is L8.4
this will play up to 3 sounds
and then schedule a

timeout period.
Afterwards, code jumps to
$7FE4,38 to continue with
start-button handling,
doing pre L8.4 attract
sound, if needed, and
showing “Insert Coin”.

0x63F6F $7F6F,38 FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF

Region of unused ROM
bytes at the end of
bank $38.

7D 17 93 26 04 8D 05 8D

58 7E 99 A2 BD 82 FF 17

81 03 25 37 BD 86 5B 10

00 24 30 BD 86 90 00 F3

24 29 8E 7F C6 86 0A BD

A7 5B B1 06 46 27 F6 B7

06 46 A6 86 BD BD FB 25

12 7C 06 44 B6 06 44 81

03 25 08 BD 8B 77 00 F3

7F BB 38 39 BD 86 79 2A

30 7F 06 44 7E 99 A2 A1

AE 65 69 7C 7D 90 99 9E

9F BD 86 5B 9A 01 25 02

8D 01 39 86 01 B7 06 47

BD 85 53 17 39 7F 06 47

BD 85 53 17 39 7F 06 43

7F 06 44 86 FF B7 06 45

B7 06 46 86 04 BD C7 91

39

This contains L8.4 functions
used for L8.4 attract mode.
$7F6F,38 is the gun-trigger
L8.4 handler to play sounds
and schedule Tournament
Mode score display.
$7FE4,38 is the start-button
handler in L8.4.
$7FEC,38 is the attract
mode init function for L8.4.

0x681D1 $41D1,3A 8D 74 8D 4E 24 08 8D 5B

25 3B 8D 63 24 F2
The WPC pre-menu
messages reach this
logic as game
information is shown
before entering menu.

7E 7A 0B 55 36 20 43 48

45 43 4B 53 55 4D
Logic is replaced with a
jump to new L8.4 code at
$7A0B,3A where the pre-
menu will include the
report of the game
checksum. The bytes here
are replaced with the static
string “U6 CHECKSUM” for
use by the pre-menu code.

0x6AD96 $6D96,3A 7A 0B This was L8.3 code that
was experimental
during sound test after
advancing past the
database award music,
this code would do a
forced stop of all
sounds to overcome a
problem in certain 3rd
party sound boards that
didn’t otherwise stop
playing the database
music in the same way
original WPC hardware
would.

6D F3 In L8.4 the original L-8 code
is restored here. There is
no longer the experimental
L8.3 code to force all
sounds to stop when
advancing the sound test
past the database award
music. This restores
intended code as the
experimental code was not
intended to be part of L8.3.
Refer to section “Removal
of the L8-3 Sound 05
Explicit Stop” of this
document for more details.

0x6BA0B $7A0B,3A 34 02 BD 6D F3 A6 41 81

06 26 03 BD C0 A5 35 82

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

This was the helper
function for the L8.3
experimental sound
test music stop when
advancing past

4D 26 15 BD 42 47 BD 42

23 24 0D BD 42 34 24 03

7E 42 16 BD 42 40 24 EB

BD 7A 3B BD 42 23 24 0D

BD 42 34 24 03 7E 42 16

BD 42 40 24 D6 7E 41 DF

BD 42 4C 8D 03 8D 41 39

34 36 32 7B B6 FF EE 8D

1C A7 E4 E7 61 B6 FF EF

This contains the L8.4 pre-
menu display of game
checksum value . The entry
point to this L8.4 code is at
$7A0B,3A with supporing

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF

database award music.
This and unused ROM
bytes near the end of
bank $3A.

The helper function is
no longer used and is
being replaced with
L8.4 code as shown to
the right.

8D 13 A7 62 E7 63 6F 64

31 E4 BD 8A DA 81 01 94

02 32 65 35 B6 34 02 8D

0B 1F 89 35 02 8D 01 39

44 44 44 44 84 0F 81 09

23 03 8B 37 39 8B 30 39

34 36 32 74 BD 7A A0 D6

11 31 E4 86 0B BD 91 39

6F 6B BD 8A DA 81 01 94

09 32 6C 35 B6 8E 41 D4

B6 17 4D 85 01 27 03 8E

7A AE 39 55 36 20 42 41

44 20 43 53 55 4D

function located
immediately after.

0x6BAB9 $7AB9,3A FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF

Unused region near the
end of bank $3A.

34 12 BD 86 90 00 E1 25

09 BD 86 5B 1C 00 27 09

20 23 BD 86 90 00 84 25

20 BD 84 AD 48 24 12 86

04 BD 86 90 00 88 25 09

4A 27 0A BD 83 46 01 20

F0 1C FA 20 04 1C FA 1A

04 35 92

The L8.4 hunter-ship hit
determinator. Called from
$4BCE,31, 0x44BCE as part
of improved L8.4 hunter-
ship hit determination. This
includes the lookup of new
L8.4 adjustment “Cannon 1
Hit” to decide if a
secondary target hit can be
included to allow multiple
target lamps to be
extinguished with the
same, single, cannon shot.

0x6BAF4 $7AF4,3A FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF

Unused region near the
end of bank $3A.

BD 84 49 30 24 18 BD 88

F5 5F 22 31 BD 88 F5 5E

E4 31 24 08 8D 1F 27 04

BD 84 2B 30 20 16 BD 88

F5 5E E4 31 BD 88 F5 5F

22 31 24 08 8D 07 27 04

BD 84 2B 3A 39 34 12 8E

05 95 BD FB 29 A6 84 8E

05 99 BD FB 29 A1 84 35

92

The L8.4 adds this function
for fixing the “Security
Pass” problem where the
lamps might be incorrectly
lit if security pass award
causes Payback Time to
start. This is called from
the $5ED4,31, 0x45ED4
ROM change shown above.

0x6BB3D $7B3D,3A FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF

Unused region near the
end of bank $3A.

34 10 8E 05 91 BD FB 29

6F 84 BD 87 BE 05 00 BD

84 2B 03 35 90

The L8.4 adds this function
to ensure the bonus-x
lamps are extinguished
when a tilt occurs. This
fixes problem where bonus-
x lamps are not correctly lit
after tilt.

0x6BB52 $7B52,3A FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

Unused region near the
end of bank $3A.

BD 79 E2 25 03 BD 7B 6D

39 34 06 BD 82 FF 95 81

02 22 04 1F 89 58 3A AE

84 35 86 34 36 1F 30 BD

7B C2 BD 7B 5B BD B9 51

35 B6 7B 94 7B 94 7B 9D

7B A7 7B AB 7B AF 7B B4

7B BD 7B B4 7B B8 7B BD

7B B8 4F 52 49 47 49 4E

41 4C 00 4F 52 49 47 49

4E 41 4C 45 00 4F 46 46

00 41 55 53 00 48 4F 52

53 00 73 65 63 00 73 65

63 73 00 53 65 6B 2E 00

This section of L8.4 code
contains new code releated
to the new L8.4 adjustment
“SS Autofire Time”. This
has the menu adjustment
handler starting at
$7B52,3A and the code that
the skll shot code calls to

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

C1 00 26 05 8E 7B 7C 20

34 C1 0B 26 05 8E 7B 82

20 2B C1 15 22 EE C1 0A

23 04 C0 0B 20 04 86 2B

A7 A0 8E 7B 8E C1 01 26

03 8E 7B 88 C1 09 23 05

86 31 A7 A0 5F CA 30 E7

A0 86 20 A7 A0 39 34 06

BD 82 FF 1D 81 00 27 16

81 0B 27 1A 81 15 22 0E

81 0A 23 06 80 0B 1F 89

20 04 34 02 EB E0 BD 8B

77 00 83 6E 8A 31 35 86

initiate the autofire timer
according to the
adjustment value, starting
at $7C00,3A.

0x6BC2A $7C2A,3A FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

Unused region near the
end of bank $3A.

BD 79 E2 25 02 8D 01 39

34 36 1F 30 8D 08 BD 7B

5B BD B9 51 35 B6 C1 0C

25 01 5F 86 06 3D 8E 7C

4E 30 8B 39 7B 94 7B 94

7B 9D 7C 96 7C 96 7C 96

7C 9E 7C 9E 7C 9E 7C A6

7C AD 7C B4 7C BA 7C C3

7C CC 7C D4 7C DD 7C E6

7C EE 7C F3 7C FA 7D 04

7D 0B 7D 14 7D 1E 7D 25

7D 2E 7D 38 7D 3F 7D 3F

7D 47 7D 50 7D 50 7D 5A

7D 63 7D 63 4F 52 49 47

2E 2B 31 00 4F 52 49 47

2E 2B 2B 00 4D 45 44 49

55 4D 00 4D 49 54 54 45

4C 00 4D 4F 59 45 4E 00

4D 45 44 49 55 4D 2B 31

00 4D 49 54 54 45 4C 2B

31 00 4D 4F 59 45 4E 2B

31 00 4D 45 44 49 55 4D

2B 2B 00 4D 49 54 54 45

4C 2B 2B 00 4D 4F 59 45

4E 2B 2B 00 48 41 52 44

00 53 43 48 57 45 52 00

44 49 46 46 49 43 49 4C

45 00 48 41 52 44 2B 31

00 53 43 48 57 45 52 2B

31 00 44 49 46 46 2F 4C

45 2B 31 00 48 41 52 44

2B 2B 00 53 43 48 57 45

52 2B 2B 00 44 49 46 46

2F 4C 45 2B 2B 00 45 58

50 45 52 54 00 45 58 50

45 52 54 45 00 45 58 50

45 52 54 2B 31 00 45 58

50 45 52 54 45 2B 31 00

45 58 50 45 52 54 2B 2B

00 45 58 50 45 52 54 45

2B 2B 00 18 A3 18 EB 18

F1 18 F7 18 FD 19 21 19

2D 19 39 19 45 19 51 19

5D 19 69 19 75 19 81 19

8D 19 99 19 A5 19 B1 00

00 18 EB 18 F1 18 F7 18

FD 19 27 19 33 19 3F 19

4B 19 57 19 63 19 6F 19

7B 19 87 19 93 19 9F 19

AB 19 B7 00 00 18 EB 18

F1 18 F7 18 FD 19 21 19

27 19 39 19 3F 19 51 19

57 19 69 19 6F 19 81 19

87 19 99 19 9F 19 B1 19

B7 00 00 4F 10 AE 81 27

04 AB A4 20 F7 8D 59 AB

84 39 8D EF 8E FD 00 A6

86 39 8E 7D 6D 8D F3 84

07 81 05 25 02 80 04 39

8E 7D B7 8D E5 39 8D F8

46 46 46 46 20 E9 8E 7D

93 8D D7 84 01 39 8D E8

84 03 81 03 25 02 80 02

39 86 04 C1 03 25 02 8D

C9 81 05 25 02 86 04 8D

01 39 34 04 B7 05 F9 8B

11 C6 18 BD 9E 7F 35 84

8E 05 D1 BD FB 29 39 C1

This section of L8.4 code
contains new code related
to the L8.4 super-jackpot
enhancements. Notable
portions are:
$7C2A,35 is entry point for
the new “Super Jackpot”
adjustment handler,
showing the various
adjustment values.
From $7D6D,35 through
$7E94,35 is code related to
the faux “random” values
used in super jackpot to
ensure, in fairness, all
players in a multi player
game get the same super
jackpot experience
(regardless if Tournament
mode or not).
$7E95,35 is the entry point
to the L8.4 super jackpot
lamp movement
maintenance during the
super jackpot attempt.
From $7EC1,35 through
$7F47,35 is the code for
each of the different super-
jackpot lamp movement
patterns.

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF

01 27 10 C1 04 27 0C C1

07 27 08 C1 0A 27 04 1C

FE 20 02 1A 01 39 C1 02

27 10 C1 05 27 0C C1 08

27 08 C1 0B 27 04 1C FE

20 02 1A 01 39 34 10 8D

CE 24 08 8D C3 A6 84 27

0C 20 04 8D D9 24 06 BD

83 46 10 20 04 BD 83 46

14 35 90 86 FF 97 D3 BD

83 0C 1E 8D 84 C1 06 24

02 20 1C C1 09 24 05 BD

7E 18 20 03 BD 7E 08 81

04 27 74 81 03 27 6B 81

02 27 35 81 01 27 49 B6

05 F9 27 19 81 04 24 05

BD 7E 10 27 10 8D A6 BD

FD B4 18 18 7A 05 F9 B6

05 F9 4D 26 F0 8D 96 BD

FD A2 18 18 7C 05 F9 B6

05 F9 81 04 25 EF 20 DD

8D 83 BD FD B4 18 18 B6

05 F9 26 07 86 04 B7 05

F9 20 03 7A 05 F9 20 E8

BD 7E 77 BD FD A2 18 18

B6 05 F9 81 04 25 06 4F

B7 05 F9 20 03 7C 05 F9

20 E6 8E 7F 3E 20 03 8E

7F 43 BD 7E 77 BD 87 BE

18 18 B6 05 F9 A6 86 BD

7E 34 20 EE 02 03 04 00

01 03 04 00 01 02

0x6BF48 $7F48,3A FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF

Unused region near the
end of bank $3A.

7D 06 47 26 29 BD 86 5B

10 00 24 0A BD 82 FF 17

81 03 24 02 8D 09 BD 88

F5 7B 74 30 7E C9 52 BD

84 AD DC 25 08 BD 85 46

51 BD 84 8F DC 39 BD FB

AE BD 88 F5 6A F4 3B BD

E2 74 BD 86 79 04 B0 7E

C9 52

This section of code is the
L8.4 new function handler
for indexed function 0x17.
This is called from attract
mode when start-button is
pressed (with < 1 credit) or
when gun-trigger is pressed
when Tournament Mode is
enabled. For start-button it
optionally plays sound
effect when attract mode is
less than L8.4 and always
shows “Insert Coin”
message. For gun-trigger it
always shows previously
played game scores. The
attract mode restarts when
this code completes.

0x6E273 $6273,3B B1 D1 Code during ball-start
when playfied state is
being set up for the
current player/current
ball. This is address of
the $B1D1 function that
is called to determine if
the player is doing
poorly and is deserving
of an “Extra ball is lit”.
The $B1D1 returns C-bit

78 DA The L8.4 replaces the
function call to a new L8.4
function at $78DA,3B which
will include the “Max E.B.
Count” adjustment in the
determination of whether
player is given “Extra ball is
lit”. This new function also
calls the original $B1D1
function in making the
determination. The

clear if player is to be
given “Extra ball is lit”.

$78DA,3B function returns
C-bit clear if player is to be
given “Extra ball is lit”.

0x6E2F4 $62F4,3B 8E 05 91 BD FB 29 7E 62

FD 6F 84
Code during ball-start
when playfield state is
being set up for the
current player/current
ball. This is the portion
of code that clears the
current player’s bonus-
X value as past of
ordinary start of ball.

BD 88 F5 7B 3D 3A 7E 62

FF 12 12
The L8.4 code has this code
call a new L8.4 function at
$7B3D,3A which will
perform the same L-8 logic
of clearing the player’s
bonus-X value and, new in
L8.4 also extinguish the
bonus-X lamps. This is part
of fix to ensure bonus-X
lamps are not incorrectly lit
after a tilt.

0x6F8DA $78DA,3B FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF
Start of region of
unused ROM bytes in
bank $3B.

BD 86 5B 83 00 25 04 1A

01 20 03 BD B1 D1 39
This is the new L8.4
function called from
$6273,3B, 0x6E273 for the
ball-start code to check if
player can be given “Extra
ball is lit” if they are doing
poorly. The new L8.4 logic
ensures the player is not
given such consideration if
the “Max E.B. Count”
adjustment is set for no
extra balls.

0x73FB7
0x73FC4
0x73FD2
0x73FE0
0x73FEF
0x73FFE

$7FB7,3C
$7FC4,3C
$7FD2,3C
$7FE0,3C
$7FEF,3C
$7FFE,3C

33 These are 3 occurrences
of ‘3’ in fixed version
strings for on-display
report of L8.3 in various
languages and
release/prototype
designators.

34 The L8.4 simply updates
these 6 occurrences to ‘4’
for L8.4.

0x74A6A $4A6A,3D 5D 0A In the switch-matrix
data table this is the
callback address for
gun-trigger switch
closures. When gun-
trigger switch is closed
this tells the s/w to call
function $5D0A,31.

7F 73 The L8.4 code updates the
switch-matrix data table to
call new L8.4 function at
$7F73,31 so that enhanced
logic can be implemented
to allow L8.4 attract mode
to play sounds and to show
previous game scores if
Tournament Mode is
enabled.

0x74A70 $4A70,3D 40 In the switch-matrix
data table this is a flag
byte in gun-trigger data.
The 0x40 bit indicates

50 For L8.4 code this flag byte
adds the 0x10 bit, making
the resulting value 0x50.
The 0x01 bit indicates the

the switch is value and
its callback address may
be called when switch is
closed.

gun-trigger’s callback
function may be called
when switch is closed
during attract mode.

0x75D92 $5D92,3D 7D DD 30 This is a function
callback data table
entry data for index
0x17. The 0x17 indexed
function is called when
start-button is pressed
during attract mode
when there are not
enough credits to start
a game. This causes
function $7DDD,30 to
be called which can
optionally play a sound
effect and then show
the “Insert Coin”
message.

7F 48 3A For L8.4 the 0x17 function
address is changed to new
L8.4 function $7F48,3A.
The new function is
designed to be called from
L8.4 code for start-button
or from gun-trigger. This
allows the attract mode to
be interrupted by the start-
button “Insert Coin”
message or from gun-
trigger display of previous
game scores when
Tournament Mode is
enabled.

0x7658B $658B,3D 65 AB 11 83 00 00 26 04

8E 65 B6 39 11 83 00 01

26 04 8E 65 BB 39 11 83

00 02 26 03 8E 65 C0 39

4D 45 4E 55 20 45 52 52

4F 52 00 4C 38 2E 31 00

4C 38 2E 32 00 4C 38 2E

33 00

The L8.3 code for
displaying “Attract
Mode” adjustment
values, this has code
and the display strings.

66 E0 11 83 00 00 26 04

8E 66 EB 39 11 83 00 01

26 04 8E 66 F0 39 11 83

00 02 26 04 8E 66 F5 39

11 83 00 03 26 03 8E 66

FA 39 FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF

For L8.4 the “Attract Mode”
adjustment includes “L8.4”
and this code is expanded
to check for the new
adjustment value. Space is
not available here for the
new “L8.4” string so all
adjustment atrings are
moved away from this
section and the now
unused bytes are set to
0xFF.

0x766E0 $66E0,3D FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF

Unused region in bank
$3D.

4D 45 4E 55 20 45 52 52

4F 52 00 4C 38 2E 31 00
4C 38 2E 32 00 4C 38 2E

33 00 4C 38 2E 34 00

For L8.4 the adjustment
strings for “Attract Mode”
are moved here with the
new “L8.4” string added.

0x76701 $6701,3D 1C At the start of the L8.3
Feature Adjustment
English strings table,
this byte defines the
number of strings.

1F For L8.4 3 new feature
adjustments were added so
this value is increased by 3.

0x7673B $673B,3D 67 43 67 43 67 43 Feature Adjustment
English strings table,
three placeholder,
unused entries.

68 EB 68 F8 69 09 The three new adjustment
strings added to the English
strings table. These are
addresses to the start of
the strings in $3D. This
refers to $68EB,3D,

$68F8,3D, and $6909,3D.

0x768EB $68EB,3D FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF

Unused region in bank
$3D.

43 41 4E 4E 4F 4E 20 31

20 48 49 54 00 53 53 20

41 55 54 4F 46 49 52 45

20 54 49 4D 45 00 53 55

50 45 52 20 4A 41 43 4B

50 4F 54 00

Three new strings for
English feature
adjustments. $68EB,3D
“CANNON 1 HIT”, $68F8,3D
“SS AUTOFIRE TIME”,
$6909,3D “SUPER
JACKPOT”.

0x76A01 $6A01,3D 1C At the start of the L8.3
Feature Adjustment
German strings table,
this byte defines the
number of strings.

1F For L8.4 3 new feature
adjustments were added so
this value is increased by 3.

0x76A3B $6A3B,3D 67 43 67 43 67 43 Feature Adjustment
German strings table,
three placeholder,
unused entries.

6B 7F 6B 90 69 09 The three new adjustment
strings added to the
German strings table.
These are addresses to the
start of the strings in $3D.
This refers to $6B7F,3D,
$6B90,3D, and $6909,3D.
Note the third string points
to the existing string
defined in the English table
as the same string is used
for both languages.

0x76B7F $6B7F,3D FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF

Unused region in bank
$3D.

4B 41 4E 4F 4E 45 20 31

20 54 52 45 46 46 45 52

00 53 53 20 41 55 54 4F

46 49 52 45 20 5A 45 49

54 00

Two new strings for
German feature
adjustments. $6B7F,3D
“KANONE 1 TREFFER”,
$6B90,3D “SS AUTOFIRE
ZEIT”.

0x76D01 $6D01,3D 1C At the start of the L8.3
Feature Adjustment
French strings table,
this byte defines the
number of strings.

1F For L8.4 3 new feature
adjustments were added so
this value is increased by 3.

0x76D3B $6D3B,3D 67 43 67 43 67 43 Feature Adjustment
French strings table,
three placeholder,
unused entries.

6E D4 6E E1 69 09 The three new adjustment
strings added to the French
strings table. These are
addresses to the start of
the strings in $3D. This
refers to $6ED4,3D,
$6EE1,3D, and $6909,3D.
Note the third string points
to the existing string
defined in the English table
as the same string is used

for both languages.

0x76ED4 $6ED4,3D FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF

FF FF FF FF FF FF

Unused region in bank
$3D.

43 41 4E 4F 4E 20 31 20

43 4F 55 50 00 53 53 20

44 55 52 2E 20 41 55 54

4F 46 49 52 45 00

Two new strings for French
feature adjustments.
$6ED4,3D “CANON 1
COUP”, $6EE1,3D “SS DUR.
AUTOFIRE”.

0x77001 $7001,3D 1C Feature Adjustments
metadata table, this
byte defines the
number of entries.

1F For L8.4 3 new feature
adjustments were added so
this value is increased by 3.

0x77118 $7118,3D 02 The “Attract Mode”
entry in Feature
Adjustments metadata
table, this defines the
default adjustment
value 02 for “L8.3”.

03 In L8.4 the default value for
this adjustment changes to
03 for “L8.4”.

0x7711C $711C,3D 02 The “Attract Mode”
entry in Feature
Adjustments metadata
table, this defines the
maximum value the
setting can take. 02 for
“L8.3”.

03 In L8.4 the maximum value
for this adjustment changes
to 03 for “L8.4”.

0x77158 $7158,3D 00 00 01 00 8E BC FF Placeholder data in
ROM for unused
adjustment A2.28.

01 74 13 3A 72 70 3A For L8.4 the adjustment
A2.28 is enabled for
“Cannon 1 Hit”. These byte
changes enable the setting
using existing string
handlers to represent the
“ON” and “OFF” option
values.

0x77164 $7164,3D 00 00 01 00 8E BC FF Placeholder data in
ROM for unused
adjustment A2.29.

15 00 01 00 7B 52 3A For L8.4 the adjustment
A2.29 is enabled for “SS
Autofire Time”. These byte
changes enable the setting
and defines $7B52,3A, new
L8.4 code for handling the
display of adjustment
values.

0x77170 $7170,3D 00 00 01 00 8E BC FF Placeholder data in
ROM for unused
adjustment A2.30.

0B 00 01 00 7C 2A 3A For L8.4 the adjustment
A2.30 is enabled for “Super
Jackpot”. These byte
changes enable the setting
and defines $7C2A,3A, new
L8.4 code for handling the
display of adjustment
values.

Corrections to the L8.3 Document
During the L8.4 development, a few typographical errors in the L8.3 document were observed and

recorded here for completeness.

0x7FFEE $FFEE 73 08 The L8.3 WPC
Checksum value 7308.

9A 08 The L8.4 WPC Checksum
value 9A08

Page Info

79 ROM offset of moved adj tableis shown as 0x77680 but should be 0x77000

92 Code depicted as 7A12: 81 02 should be depicted as: 81 06

182 ROM change 0x6AD95 should describe T05 is failing to stop, not T06.

L8.4 Test/Verification
Testing of the L8.4 image was done to ensure all scenarios behave as expected. Each major set of

changes provided in each beta L8.4 ROM image were carefully constructed and thoroughly tested.

As each code change was developed, it was ran through with an emulator, single stepping through the

new code to ensure flow is as intended. This includes all logic paths the new code can take. Once the

code flow is confirmed, then game play in the emulator is done to ensure the new code works as

expected.

Beta testing was done on all bug fixes and improvements. Each beta ROM image is provided with a set

of instructions and areas to test with focus being on the new elements added. Testing of the release

candidate was done to ensure proper and expected behavior prior to releasing the ROM image for

general distribution.

Any/All bug reports have been carefully examined and applied toward making the L8.4 toward its final

release.

During L8.4 development this technical document was created in parallel so that technical details and

code analysis can be double checked as the documentation is being created. This technique serves as a

way to preserve quality and consistency of the code changes.

Prior to L8.4 release, the analysis of each and every ROM change was done (and documented, above) to

ensure no inadvertent changes were included. In this exercise no inadvertent code changes were found.

Lastly, several passes were made through this document with focus on double-checking the depicted

code changes, ensuring correct and intended changes throughout.

Once Again, a big THANK YOU for each and every

beta tester. We appreciate the time and effort you

have put forth in making L8.4 possible!

